Ambi-Valence Taken Literally: Ru vs. Fe Oxidation in 1,1'- Diphosphinoferroceneruthenium(II) Hydride and Chloride Complexes as

Size: px
Start display at page:

Download "Ambi-Valence Taken Literally: Ru vs. Fe Oxidation in 1,1'- Diphosphinoferroceneruthenium(II) Hydride and Chloride Complexes as"

Transcription

1 1 Ambi-Valence Taken Literally: Ru vs. Fe Oxidation in 1,1'- Diphosphinoferroceneruthenium(II) Hydride and Chloride Complexes as Deduced from Spectroelectrochemistry of the Heterodimetallic Mixed-Valent Intermediates Torsten Sixt, Monika Sieger, Michael J. Krafft, Denis Bubrin, Jan Fiedler and Wolfgang Kaim * Supporting Information

2 2 Table S1. Selected 1 H-NMR Data a of Ligands and Heterobimetallic Complexes compound solvent b δ CH (Fc) CH (Cym) CH 3 Dppf A dippf A depf A (Me / i Pr) [(C 5 Me 5 )RuH(dppf)] (1) c B / [(C 5 Me 5 )RuH(dippf)] (2) d B / [(Cym)RuCl(dppf)](PF 6 ) (3) C / /0.87 [(Cym)RuCl(depf)](PF 6 ) (5) C / /1.33 [(Cym)RuCl(dippf)](PF 6 ) (4) C / /1.19 [(Cym)RuH(dppf)](PF 6 ) (6) e D / /1.12 {(µ-dppf)[(cym)rucl 2 ] 2 } (7) C /0.95 {(µ-depf)[(cym)rucl 2 ] 2 } (8) C / /1.04 {(µ-dippf)[(cym)rucl 2 ] 2 } (9) C / /1.12 a Chemical shifts δ. b A = CDCl3, B = C 6 D 6, C = acetone-d 6, D = CD 3 CN. c Hydride triplet at ( 2 J HP = 25.8 Hz). d Hydride triplet at ( 2 J HP = 38.6 Hz). e Hydride triplet at (²J HP = 39.0 Hz).

3 3 Table S2. 31 P-NMR Data of Ligands and Complexes a compound solvent δ( 31 P) b δ = δ C - δ L dppf CDCl dippf CDCl depf CDCl [(C 5 Me 5 )RuH(dppf)] (1) C 6 D [(C 5 Me 5 )RuH(dippf)] (2) C 6 D [(Cym)RuCl(dppf)](PF 6 ) (3) (CD 3 ) 2 CO [(Cym)RuCl(dippf)](PF 6 ) (4) (CD 3 ) 2 CO [(Cym)RuCl(depf)](PF 6) (5) (CD 3 ) 2 CO [(Cym)RuH(dppf)](PF 6 ) (6) e CD 3 CN {(µ-dppf)[(cym)rucl 2 ] 2 } (7) (CD 3 ) 2 CO {(µ-depf)[(cym)rucl 2 ] 2 } (8) (CD 3 ) 2 CO {(µ-dippf)[(cym)rucl 2 ] 2 } (9) (CD 3 ) 2 CO a Chemical shifts δ vs. H 3 PO 4. b Coordination induced shift.

4 4 Table S3. X-ray Diffraction Data Collection Parameters [(C 5 Me 5 )RuH(dippf)] (2) [(Cym)RuCl(dippf)](PF 6 ) (4) [(Cym)RuCl(depf)](PF 6 ) (5) empirical formula C 32 H 52 FeP 2 Ru C 32 H 50 ClF 6 FeP 3 Ru C 28 H 42 ClF 6 FeP 3 Ru fw cryst size (mm) temp (K) 173(2) 173(2) 173(2) space group P2 1 /n Pc P-1 cell constants a (Å) (2) (1) (11) b (Å) (4) (1) (13) c (Å) (3) (2) (2) α ( ) (10) β ( ) 95.47(3) (7) (10) γ ( ) (9) V (Å 3 ) (11) (6) (3) Z d calcd (g/ml) θ range (deg) 4.30 to to to index ranges -13 h 13, -21 k 21, -2 h 19, -1 k 16, 0 h 13, -15 k 16,

5 rflns collected no of indep rflns R(merge) [R(int) = ] R(int) = R(int) = GOF(F 2 ) a data / restraints / params 6046/68/ /8/ /6/384 final R indices Rl = R1 = Rl = wr2 = wr2 = wr2 = R indices (all data) b,c R1 = R1 = R1 = wr2 = wr2 = wr2 = a GOF ={Σw( F o 2 - F c 2 ) 2 /(n-m) } 1/2 ; n = number of data; m = number of variables. b R = (Σ F o - F c )/Σ F o. c R w = {Σ[w( Fo 2 F - F c 2 ) 2 ]/Σ[w(F 4 o )] } 1/2.

6 6 Table S4. Selected Distances (pm) and Angles ( ) of Complexes [(C 5 Me 5 )RuH(dpf)] [(C 5 Me 5 )RuH(dippf)] (2) [(C 5 Me 5 )RuH(dppf)] (1) a distances Ru-H 159(2) 143(4) Ru-P 229.6(2) 227.1(1) 230.7(2) 225.9(1) Ru-Cp* b Fe H Fe Ru 446.3(1) 438 c angles P-Ru-P 98.33(6) 97.9(1) torsion Cp-Cp d dihedral angle Cp-Cp 5.1 e a From ref. 10a. b Distance to center of (C 5 Me 5 ) ring. c No esd given. d Torsion of the Cp(ferrocene) rings relative to the eclipsed conformation. e Not reported.

7 7 Table S5. Selected Bond Lengths (pm) and Angles ( ) of Complexes [(Cym)RuCl(dpf)](PF 6 ) [(Cym)RuCl(dppf)](PF 6 ) (3) 16a [(Cym)RuCl(dippf)](PF 6 ) (4) [(Cym)RuCl(depf)](PF 6 ) (5) molecule 1 molecule 2 distances d(ru-p) 235.3(3) 239.7(3) 239.8(2) (9) 238.1(3) 243.8(3) 244.3(2) (9) d(ru-cl) 238.7(3) 239.5(3) 238.7(2) (9) d(ru-cym) a 178.4(9) d(fe M) (2) 443.6(2) 445.6(1) d(p--p) d(fe-cp) b angles Cl-Ru-P 84.06(10) 87.30(7) 88.70(6) 86.39(7) 88.35(9) 81.53(6) 82.15(6) 84.17(7) P-Ru-P 93.70(9) 95.43(6) 95.24(6) 94.18(8) Cp-Cp c (0.8) 0.58(0.49) 2.05(0.11)

8 8 Cp torsion d b 3.16(1.22) 3.76(0.80) 2.19(0.47) a Distance to center of cymene ligand. b Not reported. c Dihedral angle between ferrocene-cp ligands. d Deviation from the synperiplanar conformation.

9 9 Table S6. Electrochemical Data a of Complexes [(Cym)MX(dpf)]PF 6, M = Ru or Os and X = Cl or H complex ion E 1/2 (E1/E2) E3 E4 E5 E6 [(C 5 Me 5 )RuH(dppf)] (1) (i) [(C 5 Me 5 )RuH(dippf)] (2) (i) [(Cym)RuCl(dppf)] + (3) [(Cym)RuCl(dippf)] + (4) 0.27 b [(Cym)RuCl(depf)] + (5) [(Cym)OsCl(dppf)] + (10) 11b [(Cym)RuH(dppf)] + (6) c c c {(µ-dppf)[(cym)rucl 2 ] 2 } (7) b {(µ-depf)[(cym)rucl 2 ] 2 } (8) {(µ-dippf)[(cym)rucl 2 ] 2 } (9) b a All potentials in V vs. Cp2 Fe 0/+, v = 100 mv/s, 0.1 M Bu 4 NPF 6 /THF. b Poorly resolved wave. c Not observed.

10 10 Table S7. EPR Data a of Oxidized Complexes g 1 g 2 g 3 g av b g c [(C 5 Me 5 )RuH(dppf)] + (1 + ) [(C 5 Me 5 )RuH(dippf)] + (2 + ) [(Cym)RuCl(dppf)] 2+ (3 + ) [(Cym)RuCl(dippf)] 2+ (4 + ) [(Cym)OsCl(dppf)] 2+ (10 + ) 11b a From electrochemical oxidation in 0.1 M Bu 4 NPF 6 /THF, measurements at 4 K. b Average g factor g av = [1/3(g g 2 + g 2 3 )] 1/2. c g =g 1 - g 3.

11 11 Table S8. Ru-H Vibrational Frequencies ν (Ru-H) (cm -1 ) from Spectroelectrochemistry a complex ν (Ru II -H) ν (Ru lll -H) [(C 5 Me 5 )RuH(dppf)] o/+ (1 o/+ ) [(C 5 Me 5 )RuH(dippf)] o/+ (2 o/+ ) [(Cym)RuH(dppf)] +/2+ (6 o/+ ) a From solution spectra in 0.1 M Bu 4 NPF 6 /THF.

12 12 Table S9. Absorption Maxima of Oxidized Forms a complex Solvent λ max b (ε c ) [(C 5 Me 5 )RuH(dppf)] + (1 + ) d THF sh [(C 5 Me 5 )RuH(dppf)] + (1 + ) e CH 2 Cl (486) [(C 5 Me 5 )RuH(dippf)] + (2 + ) d THF sh 345 [(Cym)RuCl(dppf)] 2+ (3 + ) CH 2 Cl (360) 420sh 295 (11000) [(Cym)RuH(dppf)] 2+ (6 + ) CH 2 Cl (750) 400sh 298 (21000) a From spectroelectrochemistry in 0.1 M Bu 4 NPF 6 solution. b In nm. c In M -1 cm -1. d Molar extinction not available with sufficient accuracy. e From ref. 10a.

13 Figure S1. Space-filling model of molecule 2 in the crystal. 13

14 14 Figure S2. Molecular structure of 4 in the crystal.

15 15 Figure S3. UV-vis spectroelectrochemical oxidation of 2 at 298 K in 0.1 M Bu 4 NPF 6 /THF. Spectra collected during the potential scan at the first oxidation peak.

16 16 Scheme S1 Cl Cl Cl Cl Fe PR 2 [(Cym)RuCl 2 ] 2 MeOH RT Ru PR 2 PR 2 Ru PR 2 Fe R = Ph, i Pr, Et R = Ph, i Pr, Et [(Cym)MCl 2 ] 2 M = Ru, Os <AN/MeOH> AgPF 6 /TlNO 3 Fe PR 2 Ru Cl Li[BEt 3 H] <THF> Fe PR 2 Ru H PR 2 PR 2 R = Ph, i Pr, Et R = Ph