Metal Organic Framework-templated. Chemiresistor: Sensing Type Transition from P-to- N Using Hollow Metal Oxide Polyhedron via

Size: px
Start display at page:

Download "Metal Organic Framework-templated. Chemiresistor: Sensing Type Transition from P-to- N Using Hollow Metal Oxide Polyhedron via"

Transcription

1 Supporting Information Metal Organic Framework-templated Chemiresistor: Sensing Type Transition from P-to- N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement Ji-Soo Jang, Won-Tae Koo, Seon-Jin Choi,, and Il-Doo Kim, * Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon , Republic of Korea Applied Science Research Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon , Republic of Korea * idkim@kaist.ac.kr S-1

2 Figure S1. (a) TEM image of Pd NPs encapsulated ZIF-67, (b) magnified TEM image of Pd NPs encapsulated ZIF-67 S-2

3 N 2 uptake (cm 3 /g, STP) Relative pressure (P/P 0 ) Adsorb Desorb Figure S2. N 2 adsorption/desorption isotherms of Pd encapsulated ZIF-67 S-3

4 Figure S3. N 2 adsorption/desorption isotherms of (a) PdO loaded Co 3 O 4 HNCs, and (b) Co 3 O 4 -PdO loaded n-sno 2 HNCs S-4

5 Figure S4. (a) EDS elemental mapping images of Co 3 O 4 -PdO loaded n-sno 2 HNCs, (b) EDS line scan profile of Sn, Co, and O in Co 3 O 4 -PdO loaded n-sno 2 HNCs, (c) EDS elemental mapping images of SnO 2 -PdO loaded p-co 3 O 4 HNCs, and (d) EDS line scan profile of Sn, Co, and O in SnO 2 -PdO loaded p-co 3 O 4 HNCs Energy-dispersive X-ray spectroscopy (EDS) mapping images of Co 3 O 4 -PdO loaded n-sno 2 HNCs superimposed in Figure S4a explicitly revealed that Co 3 O 4 and SnO 2 co-existed in hollow polyhedral structures. Through the EDS line-scan profile in Figure S4b, we verified that predominant phase in polyhedral structures was SnO 2 (red line). A 2.6-fold higher relative line mean intensity, which is dependent on the mass %, implies that the 1.5 h GRR S-5

6 induced the p-n transition with relative mass ratio of 2.6 (Sn/Co). In terms of modulation in electron depletion layers, the p-n junction can lead to drastic thickness change of surface depletion layers on semiconductor, thereby showing sensitive response toward target gas molecules. Meanwhile, EDS mapping images of SnO 2 -PdO loaded p-co 3 O 4 HNCs also showed uniformly distributed Sn, Co, and O components in hollow polyhedral structures (Figure S4c). However, the qualitative visible mapping intensity of Sn is much weaker than that of Co 3 O 4 -PdO loaded n-sno 2 HNCs. The EDS line profile of SnO 2 -PdO loaded p-co 3 O 4 HNCs revealed that component mean intensity of Co was 3.4 fold higher than that of Sn (Figure S4d). These results well corresponds to time controlled p-n transition during GRR process. S-6

7 Figure S5. (a) SEM image of collapsed Co 3 O 4 -PdO loaded n-sno 2 HNCs, (b) magnified SEM image of collapsed Co 3 O 4 -PdO loaded n-sno 2 HNCs S-7

8 Figure S6. EDS mapping image of (a) Co 3 O 4 -PdO loaded n-sno 2 HNCs and (b) SnO 2 -PdO loaded p-co 3 O 4 HNCs S-8

9 Figure S7. XPS spectra of Pd in (a) SnO 2 -PdO loaded p-co 3 O 4 HNCs and (b) Co 3 O 4 -PdO loaded n-sno 2 HNCs S-9

10 Figure S8. XPS spectra of O - and O 2- in (a) SnO 2 -PdO loaded p-co 3 O 4 HNCs and (b) Co 3 O 4 - PdO loaded n-sno 2 HNCs S-10

11 Response(R air /R gas ) Co 3 O 4 -PdO loaded n-sno 2 HNCs Temperature ( o C) Figure S9. Temperature dependent sensitivity of Co 3 O 4 -PdO loaded n-sno 2 HNCs toward 5 ppm acetone S-11

12 Figure S10. Gas senisng characteristics of Co 3 O 4 -PdO loaded n-sno 2 HNCs: (a) response and recovery time evaluation depending on the acetone gas concentration, (b) cyclic sensing response of Co 3 O 4 -PdO loaded n-sno 2 HNCs toward acetone with gas concentraion of 5 ppm at 450 o C S-12

13 Figure S11. Time dependent sensitivity of PdO loaded p-co 3 O 4 HNCs toward 5 ppm acetone S-13

14 Figure S12. (a) Alumina sensor substrate with gold sensing electrode (front side) and Pt micro-heater (back side), (b) digital image of sensor chamber and array type alumina mold S-14

15 Figure S13. Linear approximation of the detection limit of Co 3 O 4 -PdO loaded n-sno 2 HNCs S-15

16 Table S1. Recent publications on MOF derived SMOs based chemiresistive acetone sensors Gas Materials Optimal Detection Response Reference species temperature limit 260 o C 1.9 ppb nanowire ppm MOF templated 150 o C N/A Cu 2 O/CuO cages ppm MOF templated ZnO nanocages 300 o C 100 ppb 0.1 ppm 14 MOF templated PdO-ZnO loaded SnO 2 nanotubes 400 o C 10 ppb 5 ppm 18 Acetone MOF templated ZnO/ZnCo 2 O 4 hollow spheres MOF derived PdO loaded Co 3 O 4 cubes 250 o C N/A 5 ppm o C 0.1 ppm 5 ppm 20 MOF templated ZnO/ZnFe 2 O 4 nanospheres 290 o C 1 pm 25 ppm, 5 ppm 21 MOF derived Co 3 O 4 /NiCo 2 O 3 double-shelled cages o C N/A 100 ppm 22 MOF derived 450 o C 5 ppb 5ppm In this work S-16

17 Co 3 O 4 -PdO loaded n-sno 2 HNCs Table S2. Recent publications on MOF based chemiresistive sensors Gas species Materials Optimal Detection Response Reference temperature limit H 2 S ZIF-8 Room N/A 1ppm 1 temperature (RT) n-butanol SNNU-50 RT N/A 100 ppm 2 H 2 S Cu(bdc) RT N/A 1 1ppm 1 xh 2 O H 2 S Fumarate RT 5.4 ppb ppm 1,3 based fcu- MOF N(CH 3 ) 3 Co(im) 2 MOF 75 o C 2 ppm 100 ppm 4 (Trimethyla mine) MeOH Cu 3 (HTTP) 2 RT N/A 200 ppm 5 (EtOH), Acetone Cu 3 (HTTP) 2 RT N/A ppm (acetone) EtOH Ni 3 (HITP) 2 RT N/A ppm (EtOH), Acetone Ni 3 (HITP) 2 RT N/A 200 5,6 5,6 ppm (acetone) MeOH MIL-53-NH 2 RT N/A 5000 ppm 7,8 (Al)@polyme r Formaldehy ZIF o C 5 ppm 100 ppm 9 de (Formaldehyde) S-17

18 Acetone ZIF o C 5 ppm 100 ppm 9 (acetone) Acetone MOF derived Co 3 O 4 -PdO loaded n- SnO 2 HNCs 450 o C 5 ppb 5ppm In this work Table S3. Recent publications on MOF derived SMOs based chemiresistive sensors Gas species Materials Optimal temperature Detection limit Response Formaldehyde ZnO@ZIF- 300 o C 5.6 ppm 100 CoZn ppm nanowire Ethanol MOF 300 o C 10 ppm 200 templated ppm Co 3 O 4 concave nanocubes Ethanol MOF 150 o C N/A templated ppm Cu 2 O/CuO cages NH 3 3D RT 0.5 ppm hierarchical ppm Reference porous Co 3 O 4 Benzene MOF 300 o C 100 ppb templated ZnO ppm nanocages Benzene MOF 450 o C N/A 5 ppm 15 templated hierarchical hollow ZnO Formaldehyde MOF 210 o C N/A S-18

19 Acetone templated mesoporous In 2 O 3 nanorod MOF derived Co 3 O 4 -PdO loaded n-sno 2 HNCs ppm 450 o C 5 ppb 5ppm In this work S-19

20 References (1) Yassine, O.; Shekhah, O.; Assen, A. H.; Belmabkhout, Y.; Salama, K. N.; Eddaoudi, M. Angew. Chem., Int. Ed. 2016, 55, (2) Bai, X.-Y.; Ji, W.-J.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C.; Zhai, Q.-G. Cryst. Growth Des. 2016, 17, 423. (3) Campbell, M. G.; Dincă, M. Sensors 2017, 17, (4) Chen, E.-X.; Fu, H.-R.; Lin, R.; Tan, Y.-X.; Zhang, J. ACS Appl. Mater. Interfaces 2014, 6, (5) Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc. 2015, 137, (6) Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. J. Am. Chem. Soc.2016, 139, (7) Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. Chem. Soc. Rev 2017, 46, (8) Sachdeva, S.; Soccol, D.; Gravesteijn, D. J.; Kapteijn, F.; Sudhölter, E. J.; Gascon, J.; de Smet, L. C. ACS Sens. 2016, 1, (9) Chen, E.-X.; Yang, H.; Zhang, J. Inorg. Chem. 2014, 53, (10) Tian, H.; Fan, H.; Li, M.; Ma, L. ACS Sens. 2015, 1, 243. (11) Lü, Y.; Zhan, W.; He, Y.; Wang, Y.; Kong, X.; Kuang, Q.; Xie, Z.; Zheng, L. ACS Appl. Mater. Interfaces 2014, 6, (12) Wang, Y.; Lü, Y.; Zhan, W.; Xie, Z.; Kuang, Q.; Zheng, L. J. Mater. Chem. A 2015, 3, (13) Wu, B.; Wang, L.; Wu, H.; Kan, K.; Zhang, G.; Xie, Y.; Tian, Y.; Li, L.; Shi, K. Microporous Mesoporous Mater. 2016, 225, 154. (14) Li, W.; Wu, X.; Han, N.; Chen, J.; Qian, X.; Deng, Y.; Tang, W.; Chen, Y. Sens. Actuators, B 2016, 225, 158. (15) Li, W.; Wu, X.; Liu, H.; Chen, J.; Tang, W.; Chen, Y. New J. Chem. 2015, 39, (16) Wang, J.-L.; Zhai, Q.-G.; Li, S.-N.; Jiang, Y.-C.; Hu, M.-C. Inorg. Chem.Comm. 2016, 63, 48. (17) Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. Adv. Mater. 2016, 28, (18) Koo, W.-T.; Jang, J.-S.; Choi, S.-J.; Cho, H.-J.; Kim, I.-D. ACS Appl. Mater. Interfaces S-20

21 (19) Koo, W.-T.; Choi, S.-J.; Jang, J.-S.; Kim, I.-D. Sci. Rep. 2017, 7, (20) Koo, W.-T.; Yu, S.; Choi, S.-J.; Jang, J.-S.; Cheong, J. Y.; Kim, I.-D. ACS Appl. Mater. Interfaces 2017, 9, (21) Wang, X.; Zhang, S.; Shao, M.; Huang, J.; Deng, X.; Hou, P.; Xu, X. Sens. Actuators, B (22) Qu, F.; Jiang, H.; Yang, M. Mater. Lett. 2017, 190, 75. S-21