Pressure and die temperature effects on microstructure and mechanical properties of squeeze casting 2017A wrought Al alloy

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Pressure and die temperature effects on microstructure and mechanical properties of squeeze casting 2017A wrought Al alloy"

Transcription

1 Int. J. Microstructure and Materials Properties, Vol. 7, No. 6, Pressure and die temperature effects on microstructure and mechanical properties of squeeze casting 2017A wrought Al alloy Mohamed Ben Amar and Slim Souissi* National Engineering School of Sfax (ENIS), University of Sfax, B.P , Tunisia *Corresponding author Najib Souissi Faculty of Sciences of Sfax (FSS), University of Sfax, B.P , Tunisia Chedly Bradai National Engineering School of Sfax (ENIS), University of Sfax, B.P , Tunisia Abstract: Squeeze casting process was carried out on an industrial 2017A aluminium alloy conventionally used for wrought products. In this research, the effects of applied pressure and die temperature on the microstructure and mechanical properties were investigated. The results show that the finer microstructure was achieved through the squeeze casting. Furthermore, higher pressures improved the fracture properties and decreased the percentage of porosity of the cast alloy. It was found that a direct squeeze casting pressure and die temperature gave a good combination of tensile strength, yield strength and elongation. Keywords: squeeze casting; pressure; die temperature; 2017A Al alloy; microstructure; mechanical properties. Reference to this paper should be made as follows: Ben Amar, M., Souissi, S., Souissi, N. and Bradai, C. (2012) Pressure and die temperature effects on microstructure and mechanical properties of squeeze casting 2017A wrought Al alloy, Int. J. Microstructure and Materials Properties, Vol. 7, No. 6, pp Copyright 2012 Inderscience Enterprises Ltd.

2 492 M. Ben Amar et al. Biographical notes: Mohamed Ben Amar received his PhD in Mechanical Manufacturing from ENIT University in Currently, he is working as an Assistant Professor at the Department of Mechanical Engineering in the National Engineering School of Sfax, Tunisia. He has 33 years of experience in teaching and research in the field of cast aluminium alloy. Slim Souissi received his PhD in Mechanical Engineering from National Engineering School of Sfax in 2012 and obtained his Master Diploma in Mechanical Engineering from the same school in His research area is on development of microstructure and mechanical properties in aluminium alloys. Currently, he is working as an Assistant Professor at the Department of Mechanical Engineering in the National Engineering School of Sfax, Tunisia. Najib Souissi is a PhD student at the Faculty of Science, University of Sfax, Tunisia. He obtained his Master of Inorganic Chemistry in 2011 from the same university. His main research interest includes the effects of squeeze casting parameters of aluminium alloy. Chedly Bradai is a Professor in the Mechanical Engineering Department of National Engineering School of Sfax (ENIS), Tunisia. He is interested in electrochemical research. He is the Director of Mechanical Physical Unit of Materials (UPMM-LASEM) and the Supervisor of many research projects. The scientific activity is documented by more than 50 publications on various aspects of mechanical behaviour of different materials and polymers. His experimental and numerical studies are performed on the material behaviour characterisation under static and dynamics solicitations. 1 Introduction Compared to casting aluminium alloys, wrought aluminium alloys have been widely used in the mechanical automotive and aerospace industry due to their good properties (Guo and Yang, 2007). One of the best promising technologies capable of making better use of wrought aluminium alloys is the squeeze casting process which has been developed for the purpose of counteracting the disadvantages and further extending the advantages of die casting in the casting technique in order to produce better quality cast components (Zhong et al., 2003). Squeeze casting is regarded as a combination of gravity die-casting and closed die forging in a single process (Aweda and Adeyemi, 2009a). The liquid molten metal is compressed under pressure inside the mould cavity of a re-usable metal mould. The process is one of the improved casting techniques used for the production of engineering components through the application of pressure on the cast metal to minimise defects associated with shrinkage cavities and porosity formation (Aweda and Adeyemi, 2009b; Masoumi and Hu, 2011). Several authors have reported the superiority of properties of squeeze cast products over the conventional casting process. This is brought about by the flexibility of the squeeze cast parameters. Hajjari and Divandari (2008) have shown that squeeze casting caused the refinement of the microstructure and reduction in the dendrite arm spacing (DAS) of the cast structure possibly due to increasing the cooling rate (Hajjari and Divandari, 2008). Increasing the squeeze pressure also led to the formation of finer

3 Pressure and die temperature effects 493 microstructure. Furthermore, higher pressures decreased the percentage of porosity and increased the density of the cast alloy (Hajjari and Divandari, 2008; Kurz and Fisher, 1984). The effect of squeeze casting parameters on the microstructure and mechanical properties of aluminium alloys has been investigated to a large extent (Fan et al., 2010; Maleki et al., 2009). Despite the manufacturing and component property advantages of squeeze casting near-net-shape parts from wrought Al alloys, few studies have investigated the effect of processing the resultant microstructure. The effects of applied pressure and die temperature (T d ) on microstructure and mechanical properties of squeeze cast 2017A Al alloy have been investigated in this work. The results are compared with the microstructure and the mechanical properties of the wrought material in reception state (as extruded). 2 Experimental procedure 2.1 Material Alloy 2017A provides average tensile strength but good machinability. It is widely used in mechanical applications (as extrusions or thick plates) (MIL-HDBK-5H, 1998; Vargel et al., 2004). In this work, the alloy is received as extruded bar of diameter 20 mm and has the composition shown in Table 1. Table 1 Chemical composition (wt%) of the alloy used in this work Si Fe Cu Mn Mg Zn Al Rest 2.2 Squeeze casting method The squeeze casting experiments were performed on a hydraulic press (Figure 1) consisting of steel mould. The device allows the moulding of vertical specimens under a pressure up to 100 MPa applied by the punch until material solidification. In gravity casting, molten metal was poured directly into the mould without external pressure. The device is also equipped with a system which provides temperature regulation of the mould. The punch-and-die set were made of hot-die steel and the cast billets were hexagonal in shape, 8 mm in side length and 120 mm in length. The selection of the preheating temperature 200, 250, and 300 C is carried out in a way to avoid severe thermal shock, which can damage the piece by a sudden change in the temperature of the material surface. The squeeze casting parameters that were prepared for the specimens are shown in Table 2. Table 2 Process conditions of the specimens Pouring temperature ( C) Die preheating temperature T d ( C) Applied pressure (MPa) Gravity

4 494 M. Ben Amar et al. Figure 1 Experimental setup with steel mould used in the squeeze casting process (see online version for colours) 2.3 Microstructural analysis In order to investigate the effect of applied pressures on the microstructure, a series of photos was performed using an optical microscope LEICA DMLP with a digital camera JVC. Each sample was prepared and etched with Keller s reagent (Metallography and Microstructures, 1995). Scanning electron microscopy (SEM) was used to analyse the tensile fracture surface. 2.4 Measuring of density and porosity The variation of density and porosity on the gravity and squeeze cast samples, manufactured in various applied pressures, were assessed for their specific weight using the Archimedes principle. The porosity of specimen was calculated by the following equation (Masoumi and Hu, 2011): Dt Da % Porosity = 100% Da (1) where D a is the density of alloy squeeze cast under 100 MPa and D t is the experimental density. 2.5 Mechanical properties In order to evaluate tensile properties of the gravity and squeeze cast specimens, the tests were carried out in an Instron-5567 tensile materials testing machine. The tests were

5 Pressure and die temperature effects 495 performed under displacement control with a strain rate starting at s 1. A strain-gage (gage length of 12.5 mm, Mod , Instron Corp.) was attached to the central part of the specimen. All of the specimens were machined and taken from the middle of cast billets. For each casting condition four specimens were tested and the mean results were reported. The geometry of the tensile specimens is shown in Figure 2 with the standard (ISO :2009) form. Figure 2 Geometry of tension test specimen [mm] 3 Results and discussion 3.1 Microstructure Figure 3 illustrates the microstructure of the portion of an extruded, gravity die cast and squeeze cast under die temperature fixed at 200 C. Figure 3(a) shows the microstructure of the portion of an extruded bar with a uniform and homogenous microstructure with fine α (Al) grains generated by the extrusion process. Figure 3(b) illustrates the microstructure of the gravity cast sample that contains coarse grain size, high porosity and inhomogeneity. Micrographs 3(c) and 3(d) show the microstructure of squeeze cast specimens that were produced under 50 and 100 MPa pressures, respectively. These micrographs show that the microstructures prepared under higher applied pressures are much finer, homogenous and smaller in size. It is clear that the squeezing pressure has significant influence on the microstructure of the alloy (Vijian and Arunachalam, 2005). The results show that the grain size of the alloy decreases with the increase of the squeezing pressure as shown in Table 3. Furthermore, the inter-metallic phases in the alloy with no applied pressure are coarser than those under high squeezing pressure. This effect is a result of the change in phase diagram according to the Clausius-Clapeyron equation (Ghomashchi and Vikhrov, 2000): ( ) dt T V V = dp ΔH f f l s f where T f is the equilibrium freezing temperature, V l and V s are the specific volumes of the liquid and solid respectively, and ΔH f is the latent heat of fusion. Substituting the appropriate thermodynamic equation for volume, the effect of pressure on freezing point may roughly be estimated by: (2)

6 496 M. Ben Amar et al. ΔH f P = P0 exp (3) RTf The above equation shows that an increase in the freezing point (T f ) of the alloy is caused by the increase in pressure (P). In this equation P 0, ΔH f and R are constants. For pure aluminium, the calculated value of equation is K/MPa (Yue, 1997), which means the liquidus would rise 6.8 K at the pressure of 100 MPa. Increasing the freezing point causes undercooling in the alloy that is already superheated. The higher freezing point brings about the larger undercooling in the initially superheated alloy and thus elevates the nucleation frequency, resulting in a more fine-grained structure. Apart from the changes in undercooling of the molten alloy caused by applied pressure, greater cooling rates for the solidifying alloy can be realised due to reduction in the air gap between the alloy and the die wall and thus larger effective contact area. Obviously, the increase of cooling rate and heat-transfer coefficient will result in the refinement of the grain size of squeeze casting alloy. Table 3 Average grain size of the cast specimens under various pressure levels (T d = 200 C) Applied pressure (MPa) Average grain size (µm) Gravity Figure 3 Optical micrographs at T d = 200 C, (a) as extruded, (b) gravity die cast, (c) squeeze cast under 50 MPa, (d) squeeze cast under 100 MPa (see online version for colours)

7 Pressure and die temperature effects Alloy densification Density and porosity measurements of the specimens corresponding to different processing conditions are shown in Table 4. The results show that the gravity die cast specimens contained about 8% porosity. However, the squeeze cast specimens under 50 MPa contained about 2% porosity. Nevertheless, the squeeze cast specimens under 100 MPa is almost free of porosity. Consequently, the alloy becomes highly dense with considerably low amount of porosity. Table 4 Density measurements of the cast specimens under various pressure levels (T d = 200 C) Applied pressure (MPa) Density (kg/m 3 ) Porosity (%) Gravity 2, , , Mechanical properties Figures 4, 5 and 6 show, respectively, the ultimate tensile strength (UTS), yield strength (YS) and percentage of elongation of the gravity and squeeze cast specimens prepared with different die temperature. It can be seen from Figure 4 that at a die temperature of 300 C and 100 MPa, a squeeze cast alloy has better UTS at 312 MPa. Figure 5 presents the better YS value 243 MPa at low die temperature (200 C) and 100 MPA. It is observed in Figure 6 that elongation increases around 7% with the rise in die temperature (300 C) and in high squeeze cast pressure. The extruded specimens have a good UTS, YS and elongation because of good mechanical properties provided by the extrusion process. Figure 4 UTS of 2017A Al alloy manufactured in various conditions (see online version for colours)

8 498 M. Ben Amar et al. Figure 5 YS of 2017A Al alloy manufactured in various conditions (see online version for colours) Figure 6 Elongation of 2017A Al alloy manufactured in various conditions (see online version for colours) The increase in the elongation, and UTS with increasing applied pressure could be attributed, in part, to the reduction of the grain size and, in part, to materials densification. The increase in the YS might be attributed to the higher dislocation density (Masoumi and Hu, 2011). Conversely, with lengthy solidification time, the alloy exhibits shrinkage problems, higher levels of gas porosity, or large grain size. In addition, all exhibit reduced tensile properties, particularly reduced ductility (Campbell, 1991). 3.4 Tensile fracture surface analysis The fracture surfaces provide useful information on the effect of microstructure on the mechanical response of the alloy. Some of the SEM pictures are selectively presented in

9 Pressure and die temperature effects 499 the paper. High magnification observations of tensile fracture surface of the extruded specimens reveal fine voids of varying sizes [Figure 7(a)]. The small dimples are evidence for the highest energy absorption due to plastic deformation. This is the feature of ductile failure. The tensile fracture surface of the gravity die cast specimen, as shown in Figure 7(b), is brittle in nature. Porosity can be seen easily in the alloy when the alloy is cast with no applied pressure. It is evident that an internal discontinuity due to the presence of porosity serves as the initiation point of cracks in the gravity die cast specimens. Initiation of the crack normally occurs at small flaws which cause concentration of stress. The cracks take an inter-granular path, particularly when segregation or inclusions weaken the grain boundaries (Donald and Pradeep, 2002). Figure 3(b) shows that the grain size is coarse which results in a bad ductility. The tensile fracture surface of the squeeze cast specimen under 50 MPa revealed that the specimen have failed in a brittle inter/trans-granular manner as shown in Figure 7(c). The failure is in a mixed-mode fracture comprising inter-granular fractures and quasi-cleavage planes. The grain size becomes finer as a result of squeezing pressure. Figure 7(d) shows the fracture surface of the squeeze cast specimen under 100 MPa. It is indicated that failure is in trans-granular fracture. By increasing the applied pressure, the formation of dimples increases which is characterised in a ductile fracture. It is also worth mentioning that the effect of pressure and the resulting higher cooling rate on the grain size have to be added to its impact on the refining of shrinkage porosities (Campbell, 1991). Figure 7 Tensile fractographs (SEM) of different investigated specimens at T d = 200 C, (a) as extruded, (b) gravity die cast, (c) squeeze cast under 50 MPa, (d) squeeze cast under 100 MPa

10 500 M. Ben Amar et al. 4 Conclusions The effect of pressure and die temperature on the microstructure and mechanical properties of the squeeze cast and the gravity die cast 2017A Al alloy are investigated in this work. The pressure applied in squeeze casting promotes rapid solidification and a refined grain structure. Increasing the applied pressure up to 100 MPa was sufficient to eliminate all traces of shrinkage and gas porosity within the casting which is confirmed by Maleki e al. (2009). Density of the specimens increased with application of 50 MPa pressure. It is further increased steadily for higher applied pressure (up to 100 MPa) above which it approached its theoretical value. It is postulated that the 100 MPa applied pressure was able to fully eliminate gas and shrinkage porosities. The die temperature and pressure gave a good combination of mechanical properties of the gravity cast and squeeze cast 2017A wrought Al alloy. References Aweda, J.O. and Adeyemi, M.B. (2009a) Determination of temperature distribution in squeeze cast aluminium using the semi-empirical equations method, Journal of Materials Processing Technology, Vol. 209, Nos. 17, pp Aweda, J.O. and Adeyemi, M.B. (2009b) Experimental determination of heat transfer coefficients during squeeze casting of aluminium, Journal of Materials Processing Technology, Vol. 209, No. 3, pp Campbell, J. (1991) Castings, 1st ed., Butterworth Heinemann, Oxford, UK. Donald, R.A. and, Pradeep, P.P. (2002) The Science and Engineering of Materials, 4th ed., Thomson, Canada. Fan, C.H., Chen, Z.H., He, W.Q., Chen, J.H. and Chen, D. (2010) Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds, Vol. 504, No. 2, pp Ghomashchi, M.R. and Vikhrov, A. (2000) Squeeze casting: an overview, Journal of Materials Processing Technology, Vol. 101, Nos. 1 3, pp.1 9. Guo, H. and Yang, X. (2007) Preparation of semi-solid slurry containing fine and globular particles for wrought aluminium alloy 2024, Transactions Nonferrous Metals Society of China, Vol. 17, No. 4, pp Hajjari, E. and Divandari, M. (2008) An investigation on the microstructure and tensile properties of direct squeeze cast and gravity die cast 2024 wrought Al alloy, Materials & Design, Vol. 29, Nos. 9, pp Kurz, W. and Fisher, D.J. (1984) Fundamentals of Solidification, Trans Tech Publications, Switzerland. Maleki, A., Shafyei, A. and Niroumand, B. (2009) Effects of squeeze casting parameters on the microstructure of LM13 alloy, Journal of Materials Processing Technology, Vol. 209, No. 8, pp Masoumi, M. and Hu, H. (2011) Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg-Al-Ca alloy, Materials Sciences Engineering, Vol. A 528, Nos , pp Metallography and Microstructures (1995) ASM Hand Book, 9th ed., Vol. 9, pp , Materials Park, Ohio. MIL-HDBK-5H (1998) Metallic materials and elements for aerospace vehicle structures, US Department of Defense, pp.3 64.

11 Pressure and die temperature effects 501 Vargel, C., Jacques, M. and Schmidt, M.P. (2004) The most common wrought aluminium alloys, Corrosion of Aluminium, pp Vijian, P. and Arunachalam V.P. (2005) Experimental study of squeeze casting of gunmetal, Journal of Materials Processing Technology, Vol. 170, Nos. 1 2, pp Yue, T.M. (1997) Squeeze casting of high-strength aluminuim wrought alloy AA 7010, Journal of Materials Processing Technology, Vol. 66, Nos. 1 3, pp Zhong, Y., Su, G. and Yang, K. (2003) Microsegregation and improved methods of squeeze casting 2024 aluminium alloy, Journal of Materials Sciences Technology, Vol. 19, Nos. 5, pp

The use of magnesium has grown dramatically in the. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 CHINA FOUNDRY

The use of magnesium has grown dramatically in the. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 CHINA FOUNDRY CHINA FOUNDRY Vol.9 No.2 Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 *Xuezhi Zhang, Meng Wang, Zhizhong Sun, and Henry Hu (Department of Mechanical, Automotive and

More information

A Study on Semi Solid Squeeze Forging of High Strength Brass. K.H. Choe*, G.S.Cho*, K.W. Lee*, Y.J. Choi**, K.Y. Kim*** and M.H.

A Study on Semi Solid Squeeze Forging of High Strength Brass. K.H. Choe*, G.S.Cho*, K.W. Lee*, Y.J. Choi**, K.Y. Kim*** and M.H. A Study on Semi Solid Squeeze Forging of High Strength Brass K.H. Choe*, G.S.Cho*, K.W. Lee*, Y.J. Choi**, K.Y. Kim*** and M.H. Kim**** *Advanced Material R/D Center, KITECH, 994-32 Dongchun-dong, Yeonsu-gu,

More information

PROPERTIES OF EN AW-2024 WROUGHT ALUMINUM ALLOY AFTER CASTING WITH CRYSTALLIZATION UNDER PRESSURE

PROPERTIES OF EN AW-2024 WROUGHT ALUMINUM ALLOY AFTER CASTING WITH CRYSTALLIZATION UNDER PRESSURE PROPERTIES OF EN AW-2024 WROUGHT ALUMINUM ALLOY AFTER CASTING WITH CRYSTALLIZATION UNDER PRESSURE Branislav Vanko 1, Ladislav Stanček 1, Michal Čeretka 1, Eduard Sedláček 1, Roman Moravčík 2 1 Institute

More information

The Effect of Microstructure on Mechanical Properties of Forged 6061 Aluminum Alloy

The Effect of Microstructure on Mechanical Properties of Forged 6061 Aluminum Alloy Proceedings of the 9 th International Conference on Aluminium Alloys (2004) Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd 1382 The Effect of Microstructure

More information

Hot Cracking Susceptibility in the TIG Joint of AZ31 Mg-Alloy Plates Produced by the TRC Process with and without Intensive Melt Shearing

Hot Cracking Susceptibility in the TIG Joint of AZ31 Mg-Alloy Plates Produced by the TRC Process with and without Intensive Melt Shearing Materials Science Forum Vol. 765 (2013) pp 756-760 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/msf.765.756 Hot Cracking Susceptibility in the TIG Joint of AZ31 Mg-Alloy Plates

More information

TENSILE AND FRACTURE BEHAVIOR OF 6061 Al-Si Cp METAL MATRIX COMPOSITES

TENSILE AND FRACTURE BEHAVIOR OF 6061 Al-Si Cp METAL MATRIX COMPOSITES International Conference on Advanced Materials and manufacturing Technologies (AMMT) December 8-20, 204 JNTUH College of Engineering Hyderabad TENSILE AND FRACTURE BEHAVIOR OF 606 Al-Si Cp METAL MATRI

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

ELSAYED Ayman*, IMAI Hisashi**, UMEDA Junko** and KONDOH Katsuyoshi*** Abstract

ELSAYED Ayman*, IMAI Hisashi**, UMEDA Junko** and KONDOH Katsuyoshi*** Abstract Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering ELSAYED Ayman*, IMAI Hisashi**, UMEDA Junko**

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

Fundamental Study on Impact Toughness of Magnesium Alloy at Cryogenic Temperature

Fundamental Study on Impact Toughness of Magnesium Alloy at Cryogenic Temperature Fundamental Study on Impact Toughness of Magnesium Alloy at Cryogenic Temperature Akihiro Takahashi Department of Mechanical Engineering National Institute of Technology, Miyakonojo College, Miyakonojo,

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management DIFFUSION BONDING OF AL ALLOY USING DIFFERENT IINTERLAYERS Assist. Prof. Dr. Ahmed A. Akbar*, Samer K. Khaleel * Asst. Prof. Dr. at University of Technology, Production Engineering and Metallurgy, Iraq

More information

Chapter Two. Aluminum Extrusion Alloys

Chapter Two. Aluminum Extrusion Alloys Chapter Two Aluminum Extrusion Alloys Advantages of Aluminum Extrusions Aluminum s Material Advantages: Recyclable and Nontoxic Lightweight Strong High Strength to Weight Ratio Resilient Corrosion-Resistant

More information

Semi-Solid Slurry Casting Using Gas Induced Semi-Solid Technique to Enhance the Microstructural Characteristics of Al-4.3Cu Alloy

Semi-Solid Slurry Casting Using Gas Induced Semi-Solid Technique to Enhance the Microstructural Characteristics of Al-4.3Cu Alloy Semi-Solid Slurry Casting Using Gas Induced Semi-Solid Technique to Enhance the Microstructural Characteristics of Al-4.3Cu Alloy M. Abdi 1a, S.G. Shabestari 2, b * 1 Ph.D. student, Center of Excellence

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 598 603 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Tensile & Fracture Behavior of Al-Si Cp Metal Matrix Composites

Tensile & Fracture Behavior of Al-Si Cp Metal Matrix Composites Tensile & Fracture Behavior of Al-Si Cp Metal Matrix Composites Jushkumar Siddani Department of Mechanical Engineering Anurag Group of Institutions, Hyderabad, Telangana, India Dr. C. Srinvas Department

More information

Investigation of aging heat treatment on microstructure and mechanical properties of 316L austenitic stainless steel weld metal

Investigation of aging heat treatment on microstructure and mechanical properties of 316L austenitic stainless steel weld metal Computational Methods and Experiments in Material Characterisation II 63 Investigation of aging heat treatment on microstructure and mechanical properties of 316L austenitic stainless steel weld metal

More information

CONVENTIONAL AND SEMI-SOLID A356 ALLOY WITH ADDITION OF STRONTIUM

CONVENTIONAL AND SEMI-SOLID A356 ALLOY WITH ADDITION OF STRONTIUM CONVENTIONAL AND SEMI-SOLID A356 ALLOY WITH ADDITION OF STRONTIUM Y.S.Seo, L.M.M.Nasir, H.Zuhailawati, A.S.Anasyida * Structural Materials Niche Area, School of Materials & Mineral Resources Engineering,

More information

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy *Yin Dongsong 1, Zhang Erlin 2 and Zeng Songyan 1 (1. School of Materials Science and Engineering, Harbin

More information

RHEO-DIECASTING OF ALUMINIUM ALLOYS AND COMPONENTS

RHEO-DIECASTING OF ALUMINIUM ALLOYS AND COMPONENTS 1 Title of Publication Edited by TMS (The Minerals, Metals & Materials Society), 2004 RHEO-DIECASTING OF ALUMINIUM ALLOYS AND COMPONENTS Z. Fan, S. Ji, X. Fang BCAST (Brunel Centre for Advanced Solidification

More information

Effect of melt treatment on microstructure and impact properties of Al 7Si and Al 7Si 2 5Cu cast alloys

Effect of melt treatment on microstructure and impact properties of Al 7Si and Al 7Si 2 5Cu cast alloys Bull. Mater. Sci., Vol. 30, No. 5, October 2007, pp. 439 445. Indian Academy of Sciences. Effect of melt treatment on microstructure and impact properties of Al 7Si and Al 7Si 2 5Cu cast alloys K G BASAVAKUMAR*,

More information

Effects of quench aging treatment on microstructure and tensile properties of thixoformed ZA27 alloy

Effects of quench aging treatment on microstructure and tensile properties of thixoformed ZA27 alloy Effects of quench aging treatment on microstructure and tensile properties of thixoformed ZA27 alloy T.-J. Chen*, Y. Hao and Y.-D. Li The effects of quench aging heat treatment on microstructure and tensile

More information

INFLUENCE OF MICROSTRUCTURE ON TENSILE PROPERTIES OF MAGNESIUM ALLOY AZ91

INFLUENCE OF MICROSTRUCTURE ON TENSILE PROPERTIES OF MAGNESIUM ALLOY AZ91 INFLUENCE OF MICROSTRUCTURE ON TENSILE PROPERTIES OF MAGNESIUM ALLOY AZ91 ŠTĚPÁNEK Roman 1, PANTĚLEJEV Libor 1, MAN Ondřej 2 1 Institute of Materials Science and Engineering, NETME centre, Brno University

More information

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION KULA Anna 1, BLAZ Ludwik 1 1 AGH University of Science and Technology,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ALUMINIUM ALLOYS Aluminium and its alloys offer an extremely wide range of capability and applicability, with a unique combination of advantages that make the material of choice

More information

Refining grain structure and porosity of an aluminium alloy. with intensive melt shearing

Refining grain structure and porosity of an aluminium alloy. with intensive melt shearing Refining grain structure and porosity of an aluminium alloy with intensive melt shearing Y. Zuo *, H. Li, M. Xia, B. Jiang, G. M. Scamans, Z. Fan LiME (EPSRC Centre for Innovative Manufacturing in Liquid

More information

Please refer as: Willy Handoko and Bondan T. Sofyan, Modification of Microstructure of AC4B Aluminium CastAlloys by Addition of wt. % Sr, Proc.

Please refer as: Willy Handoko and Bondan T. Sofyan, Modification of Microstructure of AC4B Aluminium CastAlloys by Addition of wt. % Sr, Proc. Please refer as: Willy Handoko and Bondan T. Sofyan, Modification of Microstructure of AC4B Aluminium CastAlloys by Addition of 0.004 wt. % Sr, Proc. 11 th Int. Conf. Quality in Research, Depok, 3-6 August

More information

The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite.

The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite. Please cite this paper as M. N. Mazlee & J. B. Shamsul. (2012). The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite, Advanced

More information

Application of shortened heat treatment cycles on A356 automotive brake. calipers with respective globular and dendritic microstructures

Application of shortened heat treatment cycles on A356 automotive brake. calipers with respective globular and dendritic microstructures Application of shortened heat treatment cycles on A356 automotive brake calipers with respective globular and dendritic microstructures MöLLER H 1*, GOVENDER G 1, STUMPF W E 2 1 Materials Science and Manufacturing,

More information

Metal Casting. Manufacturing Processes for Engineering Materials, 5th ed. Kalpakjian Schmid 2008, Pearson Education ISBN No.

Metal Casting. Manufacturing Processes for Engineering Materials, 5th ed. Kalpakjian Schmid 2008, Pearson Education ISBN No. Metal Casting Important factors in casting Solidification of the metal from its molten state and accompanying shrinkage Flow of the molten metal into the mold cavity Heat transfer during solidification

More information

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy B. Gopi, N. Naga Krishna, K. Venkateswarlu, K. Sivaprasad Abstract An effect of rolling temperature

More information

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy B. Gopi, N. Naga Krishna, K. Venkateswarlu, K. Sivaprasad Abstract An effect of rolling temperature

More information

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite Paper Presenter: S.H. Allameh 1 A. Akhlaghi 2, M. Noghani 3, M. Emamy 4. 1,4- School of Metallurgy

More information

Rheo-Diecasting of Al-Alloys

Rheo-Diecasting of Al-Alloys Proceedings of the 9 th International Conference on Aluminium Alloys (2004) 1092 Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd Rheo-Diecasting of Al-Alloys

More information

Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions

Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions Volume-5, Issue-5, October-2015 International Journal of Engineering and Management Research Page Number: 320-324 Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different

More information

CHARACTERIZATION OF MICROSTRUCTURE AND SHRINKAGE POROSITY OF A SEMI-SOLID METAL SLURRY IN GRAVITY DIE CASTING. and J.Wannasin 5 *

CHARACTERIZATION OF MICROSTRUCTURE AND SHRINKAGE POROSITY OF A SEMI-SOLID METAL SLURRY IN GRAVITY DIE CASTING. and J.Wannasin 5 * CHARACTERIZATION OF MICROSTRUCTURE AND SHRINKAGE POROSITY OF A SEMI-SOLID METAL SLURRY IN GRAVITY DIE CASTING S.Thanabumrungkul 1, W.Jumpol 2, R.Canyook 3, N.Meemongkol 4 and J.Wannasin 5 * 1 Department

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Strip Produced by Twin Roll Casting

Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Strip Produced by Twin Roll Casting Materials Transactions, Vol. 47, No. 7 (2006) pp. 1743 to 1749 #2006 The Japan Institute of Light Metals Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Strip Produced by Twin Roll Casting

More information

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder M. Y. Anwar 1, M. Ajmal 1, M. T. Z. Butt 2 and M. Zubair 1 1. Department of Met. & Materials Engineering, UET Lahore. 2. Faculty of Engineering

More information

Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method

Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method Journal of Mechanical Science and Technology 26 (4) (2012) 1141~1147 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-012-0215-z Optimization of squeeze casting parameters for non symmetrical

More information

EFFECTS OF COOLING MEDIA ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF SAND AND DIE CASTING ALUMINIUM ALLOYS

EFFECTS OF COOLING MEDIA ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF SAND AND DIE CASTING ALUMINIUM ALLOYS EFFECTS OF COOLING MEDIA ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF SAND AND DIE CASTING ALUMINIUM ALLOYS B.O. Adewuyi and J.A. Omotoyinbo Department of Metallurgical and Materials Engineering,

More information

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com The effect of ER4043 and

More information

Fabrication of Short Alumina Fiber and In-situ Mg 2 Si Particle- Reinforced Magnesium Alloy Hybrid Composite and Its Strength Properties

Fabrication of Short Alumina Fiber and In-situ Mg 2 Si Particle- Reinforced Magnesium Alloy Hybrid Composite and Its Strength Properties Fabrication of Short Alumina Fiber and In-situ Mg 2 Si Particle- Reinforced Magnesium Alloy Hybrid Composite and Its Strength Properties K. Asano* and H. Yoneda* * Kinki University, Japan Abstract Magnesium

More information

Department of Chemical Engineering and Materials,

Department of Chemical Engineering and Materials, l Si Department of Chemical Engineering and Materials, Al in a real industrial process using a commercial Al Si hypoeutectic alloy. The modi- with WC nanoparticles was determined after T6 heat treatment

More information

Strength properties examination of high zinc aluminium alloys inoculated with Ti addition

Strength properties examination of high zinc aluminium alloys inoculated with Ti addition DOI: 10.1007/s41230-017-6098-y Strength properties examination of high zinc aluminium alloys inoculated with Ti addition *J. Buraś 1, M. Szucki 1, G. Piwowarski 1, W. K. Krajewski 1 and P. K. Krajewski

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 ISSN 1497 Behaviour of Aluminium Alloy Casting with the variation of Pouring Temperature and Permeability of Sand 1 Mahipal Singh, 2Manjinder Bajwa, 3Rohit Sharma, 4Hitesh Arora Abstract: The effect of pouring

More information

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 54 CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 3.1 HIGH STRENGTH ALUMINIUM ALLOY In the proposed work, 7075 Al alloy (high strength) has been identified, as a material for the studies on

More information

A REVIEW OF PARAMETERS AFFECTING DUCTILE FRACTURE OF ALUMINUM ALLOY

A REVIEW OF PARAMETERS AFFECTING DUCTILE FRACTURE OF ALUMINUM ALLOY A REVIEW OF PARAMETERS AFFECTING DUCTILE FRACTURE OF ALUMINUM ALLOY Savan P. Makwana M.E.CAD/CAM, Mechanical Engineering, A.D. Patel Institute of Technology, Gujarat, India ABSTRACT This paper reviews

More information

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling Materials Transactions, Vol. 45, No. 1 (24) pp. 69 to 74 #24 The Japan Institute of Light Metals Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling Hiroki

More information

PART II: Metal Casting Processes and Equipment

PART II: Metal Casting Processes and Equipment Manufacturing Engineering Technology in SI Units, 6 th Edition PART II: Metal Casting Processes and Equipment Introduction Casting involves pouring molten metal into a mold cavity Process produce intricate

More information

EFFECTS OF STRONTIUM ON THE MICROSTRUCTURE OF AL-SI CASTING ALLOYS

EFFECTS OF STRONTIUM ON THE MICROSTRUCTURE OF AL-SI CASTING ALLOYS Materials Science and Engineering, Volume 37/2. (2012), pp. 43 50. EFFECTS OF STRONTIUM ON THE MICROSTRUCTURE OF AL-SI CASTING ALLOYS ANETT KÓSA 1, ZOLTÁN GÁCSI 2, JENŐ DÚL 3 1, 2 University of Miskolc,

More information

THE ROLE OF Mg ON STRUCTURE ANB MECHANICAL PROPERTIES IN ALLOY 718

THE ROLE OF Mg ON STRUCTURE ANB MECHANICAL PROPERTIES IN ALLOY 718 THE ROLE OF Mg ON STRUCTURE ANB MECHANICAL PROPERTIES IN ALLOY 718 Xishan Xie, Zhichao Xu, Bo Qu and Guoliang Chen University of Science and Technology, Beijing 100083, China John F. Radavich, School of

More information

EFFECT OF SOLUTION TREATMENT TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A356 ALLOY

EFFECT OF SOLUTION TREATMENT TEMPERATURE ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A356 ALLOY International Conference on Mechanical Engineering Research (ICMER2013), 1-3 July 2013 Bukit Gambang Resort City, Kuantan, Pahang, Malaysia Organized by Faculty of Mechanical Engineering, Universiti Malaysia

More information

Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy

Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy Chaiyoot Meengam 1, Prapas Muangjunburee 2, Jessada Wannasin 3 1,

More information

HIGH CYCLE FATIGUE OF AN ORTHORHOMBIC TI-22AL- 25NB INTERMETALLIC ALLOY

HIGH CYCLE FATIGUE OF AN ORTHORHOMBIC TI-22AL- 25NB INTERMETALLIC ALLOY HIGH CYCLE FATIGUE OF AN ORTHORHOMBIC TI-22AL- 25NB INTERMETALLIC ALLOY Abstract S.Q.Li, Y.J.Cheng, J.W.Zhang and X.B.Liang Central Iron & Steel Research Institute (CISRI) No.76 Xueyuan Nanlu, Beijing

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

Solidification and Crystallisation 5. Formation of and control of granular structure

Solidification and Crystallisation 5. Formation of and control of granular structure MME 345 Lecture 08 Solidification and Crystallisation 5. Formation of and control of granular structure Ref: [1] A. Ohno, The Solidification of Metals, Chijin Shokan Co. Ltd., 1976 [2] P. Beeley, Foundry

More information

Mg-Al alloys, such as AZ91 and AM60 alloys, have been

Mg-Al alloys, such as AZ91 and AM60 alloys, have been Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy *You Zhiyong, Zhang Yuhua, Cheng Weili, Zhang Jinshan and Wei Yinghui ( College of Materials Science

More information

LIST OF TABLES. Number 1.1 Common AI-Si alloys and their mechanical properties 5

LIST OF TABLES. Number 1.1 Common AI-Si alloys and their mechanical properties 5 LIST OF TABLES Table Caption Page 1.1 Common AI-Si alloys and their mechanical properties 5 2.1 Various Designations of AI-7Si-0.3Mg alloy 12 2.2 Physical properties of LM25 I AI-7Si-0.3Mg alloy 12 2.3

More information

Wrought Aluminum I - Metallurgy

Wrought Aluminum I - Metallurgy Wrought Aluminum I - Metallurgy Northbrook, IL www.imetllc.com Copyright 2015 Industrial Metallurgists, LLC Course learning objectives Explain the composition and strength differences between the alloy

More information

Mohammad Anwar Karim Id :

Mohammad Anwar Karim Id : Department of Mechanical and Industrial Engineering ME 8109 Casting and Solidification of Materials EFFECTS OF RAPID SOLIDIFICATION ON MICROSTRUCTURE AND PROPERTIES OF AL, MG & TI ALLOYS Winter 2012 Presented

More information

Forgeability of Modified AZ and ZK Wrought Magnesium Alloys

Forgeability of Modified AZ and ZK Wrought Magnesium Alloys Proceedings of the 8th International Conference on Magnesium Alloys and their Applications; Wiley-VCH, Germany (2010): 463 468. Forgeability of Modified AZ and ZK Wrought Magnesium Alloys Gerrit Kurz 1,

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

The effect of scandium on the as-homogenized microstructure of 5083 alloy for extrusion

The effect of scandium on the as-homogenized microstructure of 5083 alloy for extrusion Materials Science and Engineering A280 (2000) 139 145 www.elsevier.com/locate/msea The effect of scandium on the as-homogenized microstructure of 5083 alloy for extrusion Tadashi Aiura a, Nobutaka Sugawara

More information

International Conference on Material Science and Application (ICMSA 2015)

International Conference on Material Science and Application (ICMSA 2015) International Conference on Material Science and Application (ICMSA 2015) Influence of Er on Microstructure and Properties of Al-0.2%Zr-0.06%B Heat-resistant Alloy Conductor Prepared by Continuous ECAE

More information

Cost effective manufacturing of tungsten heavy alloy foil and sheet material

Cost effective manufacturing of tungsten heavy alloy foil and sheet material Manuscript refereed by Mr Dov Chaiat (Tungsten Powder Technology, Israel) Cost effective manufacturing of tungsten heavy alloy foil and sheet material D. Handtrack, B. Tabernig, H. Kestler, L.S. Sigl PLANSEE

More information

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication Materials Science Forum Online: 26-7- ISSN: 1662-9752, Vols. 519-521, pp 1291-1296 doi:1.428/www.scientific.net/msf.519-521.1291 26 Trans Tech Publications, Switzerland Metallurgical Mechanisms Controlling

More information

Correlation Between Mechanical Properties and Porosity Distribution of A356 in Gravity Die Casting and Low Pressure Die Casting

Correlation Between Mechanical Properties and Porosity Distribution of A356 in Gravity Die Casting and Low Pressure Die Casting Advanced Materials Research Online: 2012-01-24 ISSN: 1662-8985, Vol. 445, pp 283-288 doi:10.4028/www.scientific.net/amr.445.283 2012 Trans Tech Publications, Switzerland Correlation Between Mechanical

More information

Jouji Oshikiri 1, Norio Nakamura 2 and Osamu Umezawa 1

Jouji Oshikiri 1, Norio Nakamura 2 and Osamu Umezawa 1 Proceedings of the 12th International Conference on Aluminium Alloys, September 5 9, 5-9, 21, Yokohama, Japan 21 21 The Japan Institute of Light Metals pp. 2381-2386 2381 Jouji Oshikiri 1, Norio Nakamura

More information

Comparing the Effects of Squeeze Casting on the Mechanical Properties of Selected Aluminum Alloys

Comparing the Effects of Squeeze Casting on the Mechanical Properties of Selected Aluminum Alloys International Journal of Science and Engineering Investigations vol. 6, issue 63, April 217 ISSN: 2251-8843 Comparing the Effects of Squeeze Casting on the Mechanical Properties of Selected Aluminum Alloys

More information

Application of aluminum alloy castings in aerospace

Application of aluminum alloy castings in aerospace February 2010 Research & Development Effect of returns on microstructure and mechanical properties of Al-Cu based alloys *Li Min, Wang Hongwei, Wei Zunjie, Zhu Zhaojun (School of Materials Science and

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy K. R. Cardoso 1, V. Sinka 1, A. García Escorial 2, M. Lieblich 2 1 IP&D UNIVAP, Av. Shishima

More information

Electronics materials - Stress and its effect on materials

Electronics materials - Stress and its effect on materials Electronics materials - Stress and its effect on materials Introduction You will have already seen in Mechanical properties of metals that stress on materials results in strain first elastic strain and

More information

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure Materials Transactions, Vol. 48, No. 11 (2007) pp. 2986 to 2992 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period

More information

Phase Transformation Die Casting Process for Manufacturing a Thin- Type Product and Its Mechanical Performance Assessment

Phase Transformation Die Casting Process for Manufacturing a Thin- Type Product and Its Mechanical Performance Assessment Key Engineering Materials Online: 2004-10-15 ISSN: 1662-9795, Vols. 274-276, pp 535-540 doi:10.4028/www.scientific.net/kem.274-276.535 2004 Trans Tech Publications, Switzerland Phase Transformation Die

More information

Duplex Aging of Ti-15V-3Cr-3Sn-3Al Alloy

Duplex Aging of Ti-15V-3Cr-3Sn-3Al Alloy The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Duplex Aging of Ti-15V-3Cr-3Sn-3Al Alloy Ying-Kai Chou 1), *Leu-Wen Tsay 2)

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN 1530 Component Crack Analysis of high pressure die casting aluminum alloy (Alsi9cu ) Satish kumar Manocha Designation Dy. Manager Department - R&D Name of industries Rico auto industries ABSTRACT: Crack

More information

Equal channel angular pressing of pure aluminium an analysis

Equal channel angular pressing of pure aluminium an analysis Bull. Mater. Sci., Vol. 29, No. 7, December 2006, pp. 679 684. Indian Academy of Sciences. Equal channel angular pressing of pure aluminium an analysis M SARAVANAN, R M PILLAI*, B C PAI, M BRAHMAKUMAR

More information

The effect of high pressure die casting parameter on the porosity and mechanical properties of Aluminum SiliconADC12 alloy

The effect of high pressure die casting parameter on the porosity and mechanical properties of Aluminum SiliconADC12 alloy Current Science International Volume : 06 Issue : 04 Oct.- Dec. 2017 Pages: 872-879 The effect of high pressure die casting parameter on the porosity and mechanical properties of Aluminum SiliconADC12

More information

A PROMISING PREPARATION METHOD FOR AL/7075-B4C/AL LAYERED COMPOSITE BY CONTINUOUS CASTING AND HOT ROLLING

A PROMISING PREPARATION METHOD FOR AL/7075-B4C/AL LAYERED COMPOSITE BY CONTINUOUS CASTING AND HOT ROLLING A PROMISING PREPARATION METHOD FOR AL/7075-B4C/AL LAYERED COMPOSITE BY CONTINUOUS CASTING AND HOT ROLLING Yubo Zhang*,Yingshui Yu, Tingju Li Key Laboratory of Solidification Control and Digital Preparation

More information

Challenges in Producing Reliable Tensile Properties by SIMA 7075

Challenges in Producing Reliable Tensile Properties by SIMA 7075 A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 18 Issue 3/2018 71 75 12/3 Challenges

More information

Backward extrusion of 7075 Al alloy in the semisolid state

Backward extrusion of 7075 Al alloy in the semisolid state International Journal of Chemistry and Material Science Vol. 1(7), pp. 182-188, July, 2013 Available online at http://academeresearchjournals.org/journal/ijcms ISSN 2327-5553 2013 Academe Research Journals

More information

Application of equal channel angular extrusion to semi-solid processing of magnesium alloy

Application of equal channel angular extrusion to semi-solid processing of magnesium alloy Materials Characterization 58 (2007) 190 196 Application of equal channel angular extrusion to semi-solid processing of magnesium alloy Jufu Jiang a,b,, Ying Wang a, Shoujing Luo a a School of Materials

More information

THE EFFECT OF HIGH CYCLE FATIGUE DAMAGE ON TOUGHNESS OF EN8 GRADE STEEL PART II

THE EFFECT OF HIGH CYCLE FATIGUE DAMAGE ON TOUGHNESS OF EN8 GRADE STEEL PART II Int. J. Mech. Eng. & Rob. Res. 2013 P Talukdar et al., 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 2, April 2013 2013 IJMERR. All Rights Reserved THE EFFECT OF HIGH CYCLE FATIGUE DAMAGE

More information

International ejournals

International ejournals ISSN 2249-5460 Available online at ww.internationalejournals.com International ejournals International Journal of Mathematical Sciences, Technology and Humanities 68 (2012) 756 765 Material Characterization

More information

Influence of Remelting AlSi9Cu3 Alloy with Higher Iron Content on Mechanical Properties

Influence of Remelting AlSi9Cu3 Alloy with Higher Iron Content on Mechanical Properties A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 18 Issue 3/2018 25 30 4/3 Influence

More information

Development of Tilt Casting Technology For High Performance Sport Wheels. K K Tong*, M S Yong*, Y W Tham*, R Chang** and K W Wee**

Development of Tilt Casting Technology For High Performance Sport Wheels. K K Tong*, M S Yong*, Y W Tham*, R Chang** and K W Wee** Development of Tilt Casting Technology For High Performance Sport Wheels K K Tong*, M S Yong*, Y W Tham*, R Chang** and K W Wee** * Singapore Institute of Manufacturing Technology, Agency for Science,

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working Forging & Rolling Mechanical Working of Metals In this method no machining process is carried out, but it is used to achieve optimum mechanical properties

More information

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment.

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment. Advanced Materials Research Vol. 585 (2012) pp 435-439 Online available since 2012/Nov/12 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.585.435 Effect

More information

Development of creep-resistant magnesium casting alloys for high temperature automotive applications

Development of creep-resistant magnesium casting alloys for high temperature automotive applications High Performance Structures and Materials IV 53 Development of creep-resistant magnesium casting alloys for high temperature automotive applications L. Han, H. Hu & D. O. Northwood Department of Mechanical,

More information

Mechanical properties and microstructure of large IN713LC nickel superalloy castings

Mechanical properties and microstructure of large IN713LC nickel superalloy castings MATEC Web of Conferences 14, 21004 (2014) DOI: 10.1051/matecconf/20141421004 c Owned by the authors, published by EDP Sciences, 2014 Mechanical properties and microstructure of large IN713LC nickel superalloy

More information

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Takashi CHODA *1, Dr. Hideto OYAMA *2, Shogo MURAKAMI *3 *1 Titanium Research & Development Section, Titanium Div., Iron & Steel

More information

Study of the Effects of Magnesium Content on the Mechanical Properties of Aluminium 6063 Extrudates

Study of the Effects of Magnesium Content on the Mechanical Properties of Aluminium 6063 Extrudates - Vol. LI, No. 02, pp. [1-5], 2018 The Institution of Engineers, Sri Lanka DOI: http://doi.org/10.4038/engineer.v51i2.7289 Study of the Effects of Magnesium Content on the Mechanical Properties of Aluminium

More information

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions D. P. Myriounis, S.T.Hasan Sheffield Hallam

More information

STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY

STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY Venkatachalam G 1, Kumaravel A 2,Arun Kumar N 3, Dhanasekaran Rajagopal 4 1,2,4 Department of Mechanical Engineering,

More information

Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy. Based Composites

Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy. Based Composites ID-1272 Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy Based Composites P. Y. Li, S. L. Dai, H. J. Yu, S. C. Chai and Y. R. Li Beijing Institute

More information

THE INFLUENCE OF CASTING GEOMETRY ON THE TENSILE PROPERTIES AND RESIDUAL STRESSES IN ALUMIUM CASTINGS

THE INFLUENCE OF CASTING GEOMETRY ON THE TENSILE PROPERTIES AND RESIDUAL STRESSES IN ALUMIUM CASTINGS Materials Science Forum Vol. 652 (21) pp 174-179 Online: 21-5-2 (21) Trans Tech Publications, Switzerland doi:1.428/www.scientific.net/msf.652.174 THE INFLUENCE OF CASTING GEOMETRY ON THE TENSILE PROPERTIES

More information

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July ISSN

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July ISSN International Journal Scientific & Engineering Research Volume 3, Issue 7, July-01 1 EFFECT OF MAGNESIUM ENHANCEMENT ON MECHANICAL PROPERTY AND WEAR BEHAVIOUR OF LM6 ALUMINUM ALLOY R. S. Rana and Rajesh

More information

Lecture 11: Metallic Alloys

Lecture 11: Metallic Alloys Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia Course A, Metals and Alloys Lecture 11: Metallic Alloys TRIP Steels A phase change can do work; a good example of this is how viruses infect

More information

INVESTIGATION OF LAZY S FEATURE IN SELF-REACTING TOOL FRICTION STIR WELDS

INVESTIGATION OF LAZY S FEATURE IN SELF-REACTING TOOL FRICTION STIR WELDS INVESTIGATION OF LAZY S FEATURE IN SELF-REACTING TOOL FRICTION STIR WELDS Karl Warsinski 1, Michael West 2, Jim Freeman 3, Todd Curtis 2 1 Department of Materials Science and Engineering Michigan Technological

More information