Applications of electrochemistry

Size: px
Start display at page:

Download "Applications of electrochemistry"

Transcription

1 Applications of electrochemistry Electrochemistry has a number of different uses, particularly in industry. The principles of cells are used to makeelectrical batteries. In science and technology, a battery is a device that stores chemical energy and makes it available in an electrical form. Batteries are made of electrochemical devices such as one or more galvanic cells or fuel cells. Batteries have many uses including in: Interesting Fact: A fuel cell converts the chemical potential energy produced by the oxidation of fuels (e.g. hydrogen gas, hydrocarbons, alcohols) into electrical energy. torches electrical appliances such as cellphones (long-life alkaline batteries) digital cameras (lithium batteries) hearing aids (silver-oxide batteries) digital watches (mercury/silver-oxide batteries) military applications (thermal batteries) In this section we are going to look at a few examples of the uses of electrochemistry in industry. Electroplating The electrolytic cell can be used for electroplating. Definition 1: Electroplating

2 The process of coating an electrically conductive object with a thin layer of metal using an electrical current. Electroplating occurs when an electrically conductive object is coated with a layer of metal using electrical current. Sometimes, electroplating is used to give a metal particular properties or for aesthetic reasons: corrosion protection abrasion and wear resistance the production of jewellery Figure 1: a) An electroplated piece of aluminium artwork and b) a wax stool electroplated in copper. Electro-refining (also sometimes called electrowinning) is electroplating on a large scale. Copper plays a major role in the electrical industry as it is very conductive and is used in electric cables. One of the problems though is that copper must be pure if it is to be an effective current carrier. One of the methods used to purify copper, is electrowinning (copper ore is processed into impure blister copper, which is then deposited as pure copper through electroplating). The copper electrowinning process is as follows: 1. A bar of impure copper containing other metallic impurities acts as the anode. 2. The cathode is made up of pure copper with few impurities. 3. The electrolyte is a solution of aqueous CuSO4 and H2SO4.

3 Figure 2: A simplified diagram to illustrate what happens during the electrowinning of copper. 4. When current passes through the cell, electrolysis takes place: The impure copper anode oxidises to form Cu2+ ions in solution. The anode decreases in mass. Cu(s) Cu2+(aq)+2e At the cathode reduction of positive copper ions takes place to produce pure copper metal. The cathode increases in mass. Cu2+(aq)+2e Cu(s) (>99% purity) 5. The other metal impurities do not dissolve (Au(s), Ag(s)) and form a solid sludge at the bottom of the tank or remain in solution (Zn(aq), Fe(aq) and Pb(aq)) in the electrolyte. The chloralkali industry

4 The chlorine-alkali (chloralkali) industry is an important part of the chemical industry, which produces chlorine andsodium hydroxide through the electrolysis of the raw material brine. Brine is a saturated solution of sodium chloride (NaCl) that is obtained from natural salt deposits. Definition 2: Brine A saturated aqueous solution of sodium chloride. Interesting Fact: Remember that electrolytic cells are used to transform reactants into products by turning electric current into chemical potential energy. The products of the chloralkali industry have a number of important uses: Chlorine is used: to purify water as a disinfectant in the production of: hypochlorous acid (used to kill bacteria in drinking water) paper, food antiseptics, insecticides, medicines, textiles, laboratory chemicals paints, petroleum products, solvents, plastics (such as polyvinyl chloride) Sodium hydroxide (also known as 'caustic soda') is used to: make soap and other cleaning agents purify bauxite (the ore of aluminium) make paper make rayon (artificial silk)

5 One of the problems of producing chlorine and sodium hydroxide is that when they are produced together the chlorine combines with the sodium hydroxide to form chlorate (ClO ) and chloride (Cl ) ions. This leads to the production of sodium chlorate, NaClO, a component of household bleach. To overcome this problem the chlorine and sodium hydroxide must be separated from each other so that they don't react. There are three industrial processes that have been designed to overcome this problem. All three methods involve electrolytic cells. 1. The Mercury Cell In the mercury-cell (Figure Figure 3): The anode is a carbon electrode suspended from the top of a chamber. The cathode is liquid mercury that flows along the floor of this chamber. The electrolyte is brine (NaCl solution) that is passed through the chamber. When an electric current is applied to the circuit, chloride ions in the electrolyte are oxidised at the anode to form chlorine gas. 2Cl (aq) Cl2(g) + 2e At the same time sodium ions are reduced at the anode to solid sodium. The solid sodium dissolves in the mercury making a sodium/mercury amalgam. Na+(aq) + Hg(l) + e Na(Hg) The amalgam is poured into a separate vessel, where it decomposes into sodium and mercury. The sodium reacts with water in the vessel and produces sodium hydroxide and hydrogen gas, while the mercury returns to the electrolytic cell to be used again. 2Na(Hg) + 2H2O(l) 2NaOH(aq) + H2(g) + Hg(l)

6 Interesting Fact: Figure 3: The mercury cell. In a mercury cell the sodium dissolves in the liquid mercury to form a liquid amalgam of the two metals. This separates the Cl and Na+ ions. The following animation gives a good demonstration of how a mercury cell works. This method only produces a fraction of the chlorine and sodium hydroxide that is used by industry as it has certain disadvantages: mercury is expensive and toxic some mercury always escapes with the brine that has been used

7 mercury reacts with the brine to form mercury(ii) chloride the mercury cell requires a lot of electricity although the chlorine gas produced is very pure, mercury has to be removed from the sodium hydroxide and hydrogen gas mixture. In the past the effluent was released into lakes and rivers, causing mercury to accumulate in fish and other animals feeding on the fish. Today, the brine is treated before it is discharged so that the environmental impact is lower. 2. The Diaphragm Cell In the diaphragm-cell (Figure Figure 4): a porous diaphragm divides the electrolytic cell into an anode compartment and a cathode compartment brine is introduced into the anode compartment and flows through the diaphragm into the cathode compartment an electric current is passed through the brine causing the salt's chlorine ions and sodium ions to move to the electrodes Chlorine gas is produced at the anode 2Cl (aq) + 2e Cl2(g) At the cathode, sodium ions react with water forming caustic soda (NaOH) and hydrogen gas. 2Na+(aq) + 2H2O(l) + e 2NaOH(aq) + H2(g) Some NaCl salt remains in the solution with the caustic soda and can be removed at a later stage.

8 Figure 4: The diaphragm cell. The following animation gives a good demonstration of how a diaphragm cell works. The advantages of the diaphragm cell are: uses less energy than the mercury cell does not contain toxic mercury It also has disadvantages however: the sodium hydroxide is much less concentrated and not as pure the chlorine gas often contains oxygen gas as well the process is less cost-effective as the sodium hydroxide solution needs to be concentrated and purified before it can be used Interesting Fact:

9 To separate the chlorine from the sodium hydroxide, the two half-cells were traditionally separated by a porous asbestos diaphragm, which needed to be replaced every two months. This was damaging to the environment, as large quantities of asbestos had to be disposed. Asbestos is toxic to humans, and causes cancer and lung problems. Today, the asbestos is being replaced by other polymers, which do not need to be replaced as often, and are not toxic. 3. The Membrane Cell The membrane cell (Figure Figure 5) is very similar to the diaphragm cell, and the same reactions occur. The main differences are: the two electrodes are separated by an ion-selective membrane, rather than by a diaphragm the membrane structure allows cations to pass through it between compartments of the cell but does not allow anions to pass through (this has nothing to do with the size of the pores, but rather with the charge on the ions) brine is pumped into the anode compartment, and only the positively charged sodium ions pass into the cathode compartment, which contains pure water

10 Figure 5: The membrane cell. The following animation gives a good demonstration of how a membrane cell works. At the positively charged anode, Cl ions from the brine are oxidised to Cl2 gas. 2Cl (aq) Cl2(g) + 2e At the negatively charged cathode, hydrogen ions in the water are reduced to hydrogen gas. 2H2O(l) + 2e H2(g) + 2OH The Na+ ions flow through the membrane to the cathode compartment and react with the remaining hydroxide (OH ) ions from the water to form sodium hydroxide (NaOH). Na+(aq) + OH (aq) NaOH(aq) The chloride ions cannot pass through the membrane, so the chlorine does not come into contact with the sodium hydroxide in the cathode compartment. The sodium hydroxide is removed from the cell. The overall equation is as follows: 2NaCl(aq)+2H2O(l) Cl2(g)+H2(g)+2NaOH(g) The advantages of using this method are:

11 the sodium hydroxide that is produced is very pure because it is kept separate from the sodium chloride solution the sodium hydroxide has a relatively high concentration this process uses the least electricity of all three cells the cell is cheaper to operate than the other two cells the cell does not contain toxic mercury or asbestos Exercise 1: The chloralkali industry Problem 1: Refer to the flow diagram, which shows the reactions that take place in the membrane cell, and then answer the questions that follow. 1. What liquid is present in the cathode compartment at A? 2. Identify the gas that is produced at B. 3. Explain one feature of this cell that allows the Na+ and OH ions to react at C. 4. Give a balanced equation for the reaction that takes place at C. Practise more questions like this Answer 1: 1. Water and dilute NaOH 2. Chlorine gas

12 3. This type of cell has an ion permeable membrane that allows the positive Na+ ions to move from the anode compartment to the cathode compartment and interact with the OH ions. 4. Na+(aq)+OH (aq) NaOH(aq) Problem 2: Summarise what you have learnt about the three types of cells in the chloralkali industry by completing the table below: Mercury cell Diaphragm cell Membrane cell Main raw material Mechanism of separating Cl2 and NaOH Anode reaction Cathode reaction Purity

13 of NaOH produced Purity of Cl2 produced Energy consumption Environmental impact Cost of production Table 1 Practise more questions like this Answer 2: Mercury cell Diaphragm cell Membrane cell Main raw brine brine brine

14 materia l Mechan ism reduction of Na+ to Na in Hg amalgam use of a porous diaphragm use of a membrane (charge specific) of separati ng Cl2 and NaOH Anode Cl ions Cl2 gas Cl ions Cl2 gas Cl ions Cl2 gas reaction Cathod e reaction Na+ ions 2Na(Hg) 2Na(Hg)+2H2O(l) 2NaOH(aq)+H2(g ) 2Na+(aq)+H2O(l) 2NaOH(l)+H2(g ) 2Na+(aq)+H2O(l) 2NaOH(l)+H2(g ) Purity low purity medium purity high purity of low concentration NaOH Purity of Cl2 high purity mixed with O2 mixed with O2

15 Energy high less than the low energy consum mercury cell ption Environ high lower than the lower than the mental mercury cell diaphragm and impact mercury cell Cost of expensive expensive, as low production product product must be cost ion purified Table 2 Problem 3: The diagram below shows the sequence of steps that take place in the mercury cell. 1. Name the 'raw material' in step 1.

16 2. Give the chemical equation for the reaction that produces chlorine gas in step What other product is formed in step Name the reactants in step 4. Practise more questions like this Answer 3: 1. Aqueous sodium chloride (NaCl, brine) 2. 2Cl (aq) Cl2(g)+2e 3. sodium mercury amalgam 4. sodium mercury amalgam and water Problem 4: Approximately 30 million tonnes of chlorine are used throughout the world annually. Chlorine is produced industrially by the electrolysis of brine. The diagram represents a membrane cell used in the production of Cl2gas. 1. What ions are present in the electrolyte in the left hand compartment of the cell? 2. Give the equation for the reaction that takes place at the anode. 3. Give the equation for the reaction that takes place at the cathode and forms a gas.

17 4. What ion passes through the membrane while these reactions are taking place? 5. Chlorine is used to purify drinking water and swimming pool water. The substance responsible for this process is the weak acid, hypochlorous acid (HOCl). One way of putting HOCl into a pool is to bubble chlorine gas through the water. Give an equation showing how bubbling Cl2(g) through water produces HOCl. 6. A common way of treating pool water is by adding 'granular chlorine'. Granular chlorine consists of the salt calcium hypochlorite, Ca(OCl)2. Give an equation showing how this salt dissolves in water. Indicate the phase of each substance in the equation. (IEB Paper 2, 2003) Practise more questions like this Answer 4: 1. Chloride ions (Cl ) and sodium ions (Na+). 2. 2Cl (aq) Cl2(g)+2e 3. 2H2O(l)+2e H2(g)+2OH (aq) 4. Sodium ions 5. Cl2(g)+H2O(l) HOCl(aq)+HCl(aq) 6. Ca(OCl)2(s) Ca2+(aq)+2OCl (aq) The extraction of aluminium Aluminium is a commonly used metal in industry, where its properties of being both light and strong can be utilised. It is used in the manufacture of products such as aeroplanes and motor cars. The metal is present in deposits of bauxite. Bauxite is a mixture of silicas, iron oxides and hydrated alumina (Al2O3.xH2O). Interesting Fact: Bauxite is a rock that contains a large amount of aluminum oxide (Al2O3) and aluminium hydroxide (Al(OH)3) as well as many other aluminium containing minerals. Bauxite is the richest source of aluminum when compared with any other common rock, and is the best aluminum ore.

18 Electrolysis can be used to extract aluminium from bauxite. The process described below produces 99% pure aluminium: 1. Aluminium is melted along with cryolite (Na3AlF6) which acts as the electrolyte. Cryolite helps to lower the melting point and dissolve the ore. 2. The carbon rod anode provides a site for the oxidation of O2 and F ions. Oxygen and fluorine gas are given off at the anode and also result in anode consumption. 2O2 (aq) O2(g) + 4e 2F (aq) F2(g) + 2e 3. At the cathode cell lining, the Al3+ ions are reduced and metal aluminium deposits on the lining. Al3+(aq) + 3e Al(s) (99% purity) 4. The AlF3 6 electrolyte is stable and remains in its molten state. The overall reaction is as follows: 2Al2O3(s) 4Al(s)+3O2(g) The only problem with this process is that the reaction is endothermic and large amounts of electricity are needed to drive the reaction. The process is therefore very expensive.

Electricity and Chemistry

Electricity and Chemistry Electricity and Chemistry Electrochemistry: It is a branch of chemistry that deals with the reactions involving the conversion of chemical energy into electrical energy and vice-versa. Electrochemical

More information

APPLICATIONS OF ELECTROLYSIS 1.Electrolysis is the chemical decomposition of a substance (electrolyte) by an electric current 2.Electrodes : Anode (

APPLICATIONS OF ELECTROLYSIS 1.Electrolysis is the chemical decomposition of a substance (electrolyte) by an electric current 2.Electrodes : Anode ( ELECTROCHEMISTRY AS Redox reactions Oxidation : loses electrons/oxidation number increases /loses hydrogen/accepts oxygen Reduction : accepts electrons/oxidation number decreases /accepts hydrogen/loses

More information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy. ELECTROLYSIS: -the process of supplying electrical energy to a molten ionic compound or a solution containing ions so as to produce a chemical change (causing a non-spontaneous chemical reaction to occur).

More information

Electro-refining: How it Works

Electro-refining: How it Works Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

On-Site Generation Of Disinfectants

On-Site Generation Of Disinfectants On-Site Generation Of Disinfectants Content 1 SUMMARY... 3 2 WHAT IS ON-SITE GENERATION?... 3 3 HOW DO ON-SITE GENERATORS WORK?... 3 4 WHAT ARE THE BENEFITS OF USING OSGS?... 5 4.1 IMPROVED OPERATOR SAFETY...

More information

carbon anode/+ (1) electrolyte Al 2 O 3 with or dissolved in or solution in cathode/ (1) (steel outer)

carbon anode/+ (1) electrolyte Al 2 O 3 with or dissolved in or solution in cathode/ (1) (steel outer) 1. Aluminium occurs as bauxite, which contains aluminium oxide with impurities mainly of iron (III) oxide and silica. (a) (b) (c) Outline how bauxite is processed to give pure aluminium oxide, showing

More information

QUESTION 1 One difference in the electrode reactions of an electrolytic cell compared to a galvanic cell is:

QUESTION 1 One difference in the electrode reactions of an electrolytic cell compared to a galvanic cell is: QUESTION 1 One difference in the electrode reactions of an electrolytic cell compared to a galvanic cell is: Oxidation occurs at the cathode and reduction at the anode Oxidation occurs at the positive

More information

IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview

IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview IGCSE Chemistry: Electrochemistry and Redox Whole Unit Overview (Please note: (S) denotes material in the Supplement (Extended syllabus) only) Learning Outcomes Suggested Teaching Activities Resources

More information

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES 1. (a) Give THREE differences between a physical and

More information

METALS AND THEIR COMPOUNDS

METALS AND THEIR COMPOUNDS METALS AND THEIR COMPOUNDS Metals are elements whose atoms ionize by electron loss, while non-metals are elements whose atoms ionize by electron gain. Metals are in groups 1, 2 and 3 of the periodic table.

More information

Explain whether this process is oxidation or reduction.

Explain whether this process is oxidation or reduction. 1 Electroplating steel objects with silver involves a three-step process. step 1 A coating of copper is applied to the object. step 2 A coating of nickel is applied to the object. step 3 The coating of

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 (a) What do you understand by the term standard electrode potential? (b) The following cell was set up between a copper electrode and an unknown metal electrode M2+(aq) /M(s). The standard cell potential

More information

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling

Topic 2.7 EXTRACTION OF METALS. Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling Topic 2.7 EXTRACTION OF METALS Extraction of Iron Extraction of Aluminium Extraction of Titanium Recycling EXTRACTING METALS FROM THEIR ORES Most metals do not occur native. They exist in compounds, usually

More information

BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary Education (K.C.S.E)

BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary Education (K.C.S.E) Name. School Candidate s Signature. Index No /. Date. 233/2 CHEMISTRY Paper 2 (Theory) JULY / AUGUST - 2012 Time: 2 Hours BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary

More information

GRADE 10: Chemistry 2. UNIT 10AC.2 11 hours. The chemical industry. Resources. About this unit. Previous learning. Expectations

GRADE 10: Chemistry 2. UNIT 10AC.2 11 hours. The chemical industry. Resources. About this unit. Previous learning. Expectations GRADE 10: Chemistry 2 The chemical industry UNIT 10AC.2 11 hours About this unit This unit is the second of six units on chemistry for Grade 10 advanced. The unit is designed to guide your planning and

More information

EXTRACTION OF METALS MARKING SCHEME

EXTRACTION OF METALS MARKING SCHEME EXTRACTION OF METALS MARKING SCHEME 1. a) Iron is extracted from Iron pyrite / FeS 2 siderite /FeCO 3, magnetite / Fe 3O 4 and haematite / Fe 2O 3 Aluminium is extracted from Bauxite / Al 2O 3. 2H 2O Feldspar

More information

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium?

Suggest one reason why spoons are electroplated. ... Why is hydrogen produced at the negative electrode and not sodium? Q1.This question is about electrolysis. (a) Metal spoons can be coated with silver. This is called electroplating. Suggest one reason why spoons are electroplated. (b) When sodium chloride solution is

More information

I. PHYSICAL PROPERTIES. PROPERTY METALS NON-METALS 1.Lustre Metals have shining surface. They do not have shining surface.

I. PHYSICAL PROPERTIES. PROPERTY METALS NON-METALS 1.Lustre Metals have shining surface. They do not have shining surface. Elements can be classified as metals and non-metals on the basis of their properties. Example of some metals are : Iron (Fe), Aluminium (Al), Silver (Ag), Copper (Cu) Examples of some non-metals are :

More information

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 7.3 to 7.5.

Sodium, Na. Gallium, Ga CHEMISTRY Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 7.3 to 7.5. Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2017 Dr. Susan Findlay See Exercises 7.3 to 7.5 Forms of Carbon How do the group 13 elements differ? Boron is a metalloid (i.e.

More information

Batteries. Self contained electrochemical cell. Dry Cell (Flashlight Battery) ! Primary batteries (not rechargeable)

Batteries. Self contained electrochemical cell. Dry Cell (Flashlight Battery) ! Primary batteries (not rechargeable) Batteries Self contained electrochemical cell! Primary batteries (not rechargeable)! Secondary batteries (rechargeable)! Research Needed to Improve Batteries: CHEM112 LRSVDS Batteries and Corrosion 1 Dry

More information

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2

CO forms CO 2. forms. (a) The coke reacts with the oxygen in the air to form carbon dioxide. C + O 2 1 Iron is extracted from the ore hematite in the Blast Furnace. waste gases firebrick lining raw materials: coke, C iron ore, Fe 2 O 3 limestone, CaCO 3 CO forms air slag molten iron CO 2 forms (a) The

More information

Chemical reactions and electrolysis

Chemical reactions and electrolysis Chemical reactions and electrolysis Higher Revision Questions Name: Class: Date: Time: 95 minutes Marks: 95 marks Comments: Page of 29 (a) Magnesium metal is shaped to make magnesium ribbon. Explain why

More information

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable)

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable) Batteries Self contained electrochemical cell Dry Cell (Flashlight Battery)! Primary batteries (not rechargeable)! Secondary batteries (rechargeable) Anode: Zn(s)! Research Needed to Improve Batteries:

More information

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS INTEXT QUESTIONS GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS Question 6.1: Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method? If the ore or the gangue

More information

There s also got to be a wire, but that s kind of taken for granted.

There s also got to be a wire, but that s kind of taken for granted. RedOx Pt 2 Electrochemical Cells (AKA simple batteries) An electrochemical cell has 3 major components: 1. The Cathode (and it s corresponding solution) 2. The Anode (and it s corresponding solution) 3.

More information

CLEANER PRODUCTION GUIDELINES IN CAUSTIC SODA /CHLOR-ALKALI INDUSTRIES

CLEANER PRODUCTION GUIDELINES IN CAUSTIC SODA /CHLOR-ALKALI INDUSTRIES CLEANER PRODUCTION GUIDELINES IN CAUSTIC SODA /CHLOR-ALKALI INDUSTRIES 2015 Gujarat Cleaner Production Centre (Established by Industries & Mines Department, GoG) ENVIS Centre on: Cleaner Production/Technology

More information

Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

General Principle of Isolation of Elements (NCERT)

General Principle of Isolation of Elements (NCERT) Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

APPLICATIONS OF ELECTROCHEMISTRY

APPLICATIONS OF ELECTROCHEMISTRY APPLICATIONS OF ELECTROCHEMISTRY SPONTANEOUS REDOX REACTIONS APPLICATIONS OF ELECTROCHEMICAL CELLS BATTERIES A galvanic cell, or series of combined galvanic cells, that can be used as a source of direct

More information

ANSWERS AND MARK SCHEMES. (a) proteins /amino acids 1. (b) nitrate will be used up eventually / will run out 1. (c) (i) (3 16) = 85 1

ANSWERS AND MARK SCHEMES. (a) proteins /amino acids 1. (b) nitrate will be used up eventually / will run out 1. (c) (i) (3 16) = 85 1 QUESTIONSHEET 1 (a) proteins /amino acids 1 (b) nitrate will be used up eventually / will run out 1 (c) (i) 23 + 14 + (3 16) = 85 1 (ii) 14 / 85 100 = 16.5 (16.47) 2 if incorrect, one mark is given for

More information

Extracting Metals by Electrolysis

Extracting Metals by Electrolysis Extracting Metals by Electrolysis 1 of 17 Boardworks Ltd 2016 Extracting Metals by Electrolysis 2 of 17 Boardworks Ltd 2016 Methods of extracting metals 3 of 17 Boardworks Ltd 2016 Most metals are found

More information

ICSE-Science 2 (Chemistry) 2004

ICSE-Science 2 (Chemistry) 2004 ICSE-Science 2 (Chemistry) 2004 Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange.

Boiling point in C. Colour in aqueous solution. Fluorine 188 colourless. Chlorine 35 pale green. Bromine X orange. Q1.This question is about halogens and their compounds. The table below shows the boiling points and properties of some of the elements in Group 7 of the periodic table. Element Boiling point in C Colour

More information

Module: 5. Lecture: 28

Module: 5. Lecture: 28 Module: 5 Lecture: 28 Chlorine (continued) 4. Diaphragm cell process Raw material Basis: 1000kg of Chlorine Salt Sodium carbonate Sulfuric acid Steam Electricity Refrigeration Direct labour 1820kg 35kg

More information

I. PHYSICAL PROPERTIES PROPERTY METALS NON-METALS

I. PHYSICAL PROPERTIES PROPERTY METALS NON-METALS Elements can be classified as metals and non-metals on the basis of their properties. Example of some metals are : Iron (Fe), Aluminium (Al), Silver (Ag), Copper (Cu) Examples of some non-metals are :

More information

NCERT solutions for Metals and Non Metals

NCERT solutions for Metals and Non Metals NCERT solutions for Metals and Non Metals 1 Question 1 Give an example of a metal which (i) is a liquid at room temperature. (ii) can be easily cut with a knife. (iii) is the best conductor of heat. (iv)

More information

Step 1. Reason. Step 2. Reason. Explain why it is more difficult to produce drinking water from waste water than from water in lakes.

Step 1. Reason. Step 2. Reason. Explain why it is more difficult to produce drinking water from waste water than from water in lakes. 1 Water from a lake in the UK is used to produce drinking water. (a) What are the two main steps used to treat water from lakes? Give a reason for each step. Step 1 Reason Step 2 Reason (b) Explain why

More information

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE MR D HR UV AS HE R ICSE BOA RD PAP ER 200 4 1 ICSE-2004 Section A (40 Marks) (Attempt all questions from this section) Question 1 (a) Choose the letters A,B,C or D to match the descriptions (i) to (iv)

More information

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment. CORROSION WHAT IS CORROSION? Corrosion is the deterioration of a metal as a result of chemical reactions between it and the surrounding environment. Rusting is an example of corrosion, which is a spontaneous

More information

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY Unit 2 Metals Part 2 Metals differ in their reactivity with other chemicals and this influences their uses. Describe observable changes when metals react

More information

Page 1 of 15. Website: Mobile:

Page 1 of 15. Website:     Mobile: Question 1: Give an example of a metal which (i) is a liquid at room temperature. (ii) can be easily cut with a knife. (iii) is the best conductor of heat. (iv) is a poor conductor of heat. (i) Metal that

More information

Aluminium Occurrence

Aluminium Occurrence Aluminium Occurrence Aluminium is the most abundant ( 8.13 % ) metallic element in the earth s crust and after oxygen and silicon, the third most abundant of all elements in the crust. Because of its strong

More information

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore. 1 Two of the main uses of zinc are for galvanising and for making alloys. One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore. (a) Stage 1 Zinc

More information

Contact us:

Contact us: Class X Chapter 3 Metals and Non-metals Science Question 1: Give an example of a metal which (i) is a liquid at room temperature. (ii) can be easily cut with a knife. (iii) is the best conductor of heat.

More information

carbon dioxide hydrogen hydrogen chloride oxygen answer... [1] [1]

carbon dioxide hydrogen hydrogen chloride oxygen answer... [1] [1] 1 Anita investigates the electrolysis of concentrated sodium chloride solution (brine). Look at the diagram. It shows the apparatus she uses. gas X chlorine negative electrode positive electrode + (a)

More information

MT - SCIENCE & TECHNOLOGY - II (72) - SEMI PRELIM - I : PAPER - 5

MT - SCIENCE & TECHNOLOGY - II (72) - SEMI PRELIM - I : PAPER - 5 MT 07 00 MT - SCIENCE & TECHNOLOGY - II (7) - SEMI PRELIM - I : PAPER - 5 Time : Hours Semi Prelim - I : Model Answer Paper Max. Marks : 40 A.. (A) Fill in the blanks : () Variation gives rise to variety

More information

INTRODUCTION. Installed Capacity: The total installed capacity of the plant for the product will be as per details given below:- PRODUCT:

INTRODUCTION. Installed Capacity: The total installed capacity of the plant for the product will be as per details given below:- PRODUCT: INTRODUCTION Himalaya Alkalies& Chemicals ltd will setup Caustic soda Plant of 400 MTPD. The Plant site is situated in Village Johron, Kala Amb, Tehsil Nahan, District Sirmaur, Himachal Pradesh. It is

More information

SAMPLE PAGES PAGES. Extraction of metals from metal oxides. mixture of iron sand and coal are heated as they move down kiln, by force of gravity

SAMPLE PAGES PAGES. Extraction of metals from metal oxides. mixture of iron sand and coal are heated as they move down kiln, by force of gravity Unit 11.5 Metals and Non-metals Topic 3: Extraction of metals and corrosion In the previous two Topics we looked at the physical and chemical properties of metals. In Topic 3 we now examine how metals

More information

CHLOR-ALKALI INDUSTRY

CHLOR-ALKALI INDUSTRY CHLOR-ALKALI INDUSTRY The chlor-alkali industry represents of three major industrial chemicals: Soda ash (sodium carbonate-na 2 CO 3 ) Caustic soda (sodium hydroxide-naoh) Chlorine (Cl 2 ) These chemicals

More information

Learn Chemistry. Starter for Ten 9. Redox. Registered Charity Number

Learn Chemistry. Starter for Ten 9. Redox.  Registered Charity Number Learn Chemistry Starter for Ten 9. Redox Developed by Dr Kristy Turner, RSC School Teacher Fellow 2011-2012 at the University of Manchester, and Dr Catherine Smith, RSC School Teacher Fellow 2011-2012

More information

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY 1. What is matrix? The ore is generally associated with rock impurities like clay, sand etc. called gangue or matrix 2. What is mineral? The natural

More information

GraspIT AQA GCSE Chemical changes

GraspIT AQA GCSE Chemical changes A. Reactivity of metals The reactivity series, metal oxides and extractions 1. Three metals, X, Y and Z were put into water. The reactions are shown below: a) Use the diagrams to put metals X, Y and Z

More information

ICSE-Science 2 (Chemistry) 1996

ICSE-Science 2 (Chemistry) 1996 ICSE-Science 2 (Chemistry) 1996 Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

The forces between iodine molecules are stronger 1. (b) anything in range +30 to It contains ions which can move 1. (f) hydrogen iodine 1 [6]

The forces between iodine molecules are stronger 1. (b) anything in range +30 to It contains ions which can move 1. (f) hydrogen iodine 1 [6] M.(a) The forces between iodine molecules are stronger (b) anything in range +30 to +20 (c) Brown (d) 2 I + Cl 2 I 2 + 2 Cl (e) It contains ions which can move (f) hydrogen iodine [6] Page 2 M2.(a) giant

More information

UNIT- 6 PRINCIPLES AND PROCESSES OF EXTRACTION OF METALS.

UNIT- 6 PRINCIPLES AND PROCESSES OF EXTRACTION OF METALS. UNIT- 6 PRINCIPLES AND PROCESSES OF EXTRACTION OF METALS. I. ONE MARK QUESTIONS: 1. Name an important ore of Aluminium. Ans: Bauxite 2. Give the composition of copper pyrites. A: CuFeS2 3. What is meant

More information

Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems

Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems Rosanna Santorelli, Adrian Schervan UHDENORA SpA Via Bistolfi 35, 2123 Milano - Italy Alessandro

More information

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Determine the half reactions for each cell and the cell voltage or minimum theoretical voltage. 1. Zn / Mg electrochemical

More information

Chemistry Test Paper

Chemistry Test Paper Chemistry Test Paper [Time:1 1 hrs] [M. Marks : 80] 2 Answers to this paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is

More information

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF LEARNING OUTCOMES Define the concept and process of water treatment. Describe the concept of coagulation, flocculation, and sedimentation

More information

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE-2005

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER ICSE-2005 MR D HR UV AS HE R ICSE BOA RD PAP ER 200 5 1 ICSE-2005 Section A (40 Marks) (Attempt all questions from this section) Question 1 (a) Write balanced equation s for the following reactions: - [5] (i) Potassium

More information

Chapter 5. Oxidation Reduction Chemistry

Chapter 5. Oxidation Reduction Chemistry Chapter 5. Oxidation and Reduction Redox Terminology Oxidation Number Rules Determination of Oxidation Numbers from Electronegativities The Difference Between Oxidation Number and Formal Charge Periodic

More information

1. Which of the given statements about the reaction below are incorrect?

1. Which of the given statements about the reaction below are incorrect? 1. Which of the given statements about the reaction below are incorrect? 2PbO(s) + C(s) 2Pb(s) + CO 2 (g) a. Lead is getting reduced b. Carbon dioxide is getting oxidised c. Carbon is getting oxidised

More information

ELECTROCHEMISTRY: ELECTROPLATING

ELECTROCHEMISTRY: ELECTROPLATING ELECTROCHEMISTRY: ELECTROPLATING Hello, I m Hafizah, a chemistry teacher from Muar Science School in Malaysia. We are going to discuss about an interesting chemistry topic related to electroplating but

More information

Chapter 3 Metals and Non-metals

Chapter 3 Metals and Non-metals Chapter 3 Metals and Non-metals Intext Questions On Page 40 Question 1: Give an example of a metal which (i) (ii) (iii) (iv) Is a liquid at room temperature Can be easily cut with a knife. Is the best

More information

Q1. From the following list of substances, choose the substances which meet the description given in parts (i) to (v) below :

Q1. From the following list of substances, choose the substances which meet the description given in parts (i) to (v) below : Questions:- Q1. From the following list of substances, choose the substances which meet the description given in parts (i) to (v) below : Ammonium chloride, ammonium nitrate, chlorine, dilute hydrochloric

More information

Topic 9 National 4 Chemistry Summary Notes. Metals and Alloys. Materials

Topic 9 National 4 Chemistry Summary Notes. Metals and Alloys. Materials Topic 9 National 4 Chemistry Summary Notes Metals and Alloys LI 1 Materials Materials are all substances and include: metals ceramics plastics natural substances novel substances. Materials can be used

More information

Corrosion Control and Cathodic Protection Data Sheet

Corrosion Control and Cathodic Protection Data Sheet Data Sheet CORROSION CONTROL Corrosion control is the application of engineering principles and procedures to minimise corrosion to an acceptable level by the most economical method. It is rarely practical

More information

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit 6 GENERAL PRINCIPLES AND PROCE PR OCESSE SSES S OF ISOLATION ISOL OF ELEMENTS I. Multiple Choice Questions (Type-I) 1. In the extraction of chlorine by electrolysis of brine. oxidation of Cl ion to

More information

Electrochemistry. The Extraction of Aluminium from Bauxite Electrolysis of Molten Aluminium Oxide

Electrochemistry. The Extraction of Aluminium from Bauxite Electrolysis of Molten Aluminium Oxide The Extraction of Aluminium from Bauxite Electrolysis of Molten Aluminium Oxide What are some industrial applications of electrolysis? The metallic element aluminium has played an essential role in 20

More information

A. Lemon juice makes the water more conducting as it conducts electricity. But when the lemon juice is not added to it, the conductivity will be low.

A. Lemon juice makes the water more conducting as it conducts electricity. But when the lemon juice is not added to it, the conductivity will be low. Chapter 14-Chemical Effects of Electric Current Topicwise Assignment Chemical Effects of Electric Current Do Liquids Conduct Electricity? A. 1. Yes 2. Yes 3. Lemon juice is a good conductor. 4. The ends

More information

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I)

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. In the extraction of chlorine by electrolysis of brine. (i) (ii) (iii) (iv) oxidation of Cl ion to chlorine gas occurs. reduction of Cl ion to chlorine gas occurs.

More information

Materials are all substances and include metals, ceramics and plastics as well as natural and new substances.

Materials are all substances and include metals, ceramics and plastics as well as natural and new substances. National 4 Materials It is hard to imagine life without mobile gadgets such as iphones, ipads and MP3 players. Yet twenty years ago these handy gadgets such as the mobile phone where bigger and cost five

More information

GraspIT AQA GCSE Chemical changes

GraspIT AQA GCSE Chemical changes A. Reactivity of metals The reactivity series, metal oxides and extractions 1. Three metals, X, Y and Z were put into water. The reactions are shown below: a) Use the diagrams to put metals X, Y and Z

More information

Group A Good Earth School Naduveerapattu Chemistry Worksheet Class X Metallurgy (1) Name a metal which has the following properties.

Group A Good Earth School Naduveerapattu Chemistry Worksheet Class X Metallurgy (1) Name a metal which has the following properties. Group A Good Earth School Naduveerapattu Chemistry Worksheet Class X Metallurgy (1) Name a metal which has the following properties. 1. Is a liquid at ordinary temperatures. 2. Has a low boiling point

More information

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE W.S.51. Chemical reactions. All of the different materials around us have been formed by chemical reactions from about one hundred simple elements. The diagram below shows a chemical reaction between the

More information

On-Site Sodium Hypochlorite Generation Equipment

On-Site Sodium Hypochlorite Generation Equipment On-Site Sodium Hypochlorite Generation Equipment Water Arabia - 2015 Electrolysis A Process that decomposes a chemical compound into its elements or produces a new compound by the action of an electrical

More information

UNIT-I ELECTROCHEMISTRY PART-A

UNIT-I ELECTROCHEMISTRY PART-A UNIT-I ELECTROCHEMISTRY PART-A 1. What is electrochemistry? 2. What do you understand by electrode potential? 3. Define E.M.F of an electrochemical cell? 4. Define (a) Single electrode potential (b) Standard

More information

CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR

CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR www.chemnium.com R ALL FOR BETTER WATER SODIUM HYPOCHLORITE NACLO APPLICATION Tap Water Disinfection Food & Beverage Processing Disinfection Waste Water Treatment

More information

Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3

Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3 Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3 p.1/9 When freshly cut, potassium has a shiny surface and it reacts vigorously with water, giving

More information

3 Metals and Non-Metals

3 Metals and Non-Metals 3 Intext Questions On Page 40 Question 1. Give an example of a metal which (i) is a liquid at room temperature. (ii) can be easily cut with a knife. (iii) is the best conductor of heat. (iv) is a poor

More information

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes.

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes. Edexcel GCSE Chemistry Topic 4: Extracting metals and equilibria Obtaining and using metals Notes 4.1 Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions

More information

CHEMISTRY. SECTION I (40 Marks) Attempt all questions from this Section

CHEMISTRY. SECTION I (40 Marks) Attempt all questions from this Section CEMISTRY SCIENCE Paper 2 (One hour and a half) Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent

More information

New Technologies for Hypo Production

New Technologies for Hypo Production New Technologies for Hypochlorite Production By: Brent Hardman, P.E. 740 E. Monroe Road, St. Louis, MI 48880 www.powellfab.com New Technologies for Hypo Production Benefits of Chemistry Advantages Production

More information

Industrial processes. Examples of calcination processes include the following:

Industrial processes. Examples of calcination processes include the following: Industrial processes The process of calcination derives its name from the Latin calcinare (to burn lime) due to its most common application, the decomposition of calcium carbonate (limestone) to calcium

More information

Only a small concentration of this Sodium Hypochlorite is required to combat marine fouling, 0.1 to 0.3 ppm.

Only a small concentration of this Sodium Hypochlorite is required to combat marine fouling, 0.1 to 0.3 ppm. ECOLCELL R electrochlorination system combats both macro and micro marine fouling in the seawater lines on board ships, oil-rigs and power plants. Marine fouling, shellfish, seaweed, slime, bacteria, etc

More information

Extraction of metals

Extraction of metals For more awesome resources, visit us at www.savemyexams.co.uk/ Extraction of metals Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic Metals

More information

Reactivity Series. Question Paper. Cambridge International Examinations. Score: /39. Percentage: /100

Reactivity Series. Question Paper. Cambridge International Examinations. Score: /39. Percentage: /100 Reactivity Series Question Paper Level Subject Exam oard Topic Sub-Topic ooklet O Level hemistry ambridge International Examinations Metals Reactivity Series Question Paper Time llowed: 47 minutes Score:

More information

DURATION: 1 hour 30 minutes

DURATION: 1 hour 30 minutes 1 Our country, our future 545/1 S4 CHEMISTRY Exam 14 PAPER 1 DURATION: 1 hour 30 minutes Instructions - This paper consists of 50 compulsory objective questions - Answer the questions by writing the correct

More information

Corrosion and Corrosion Protection

Corrosion and Corrosion Protection TALAT Lecture 1252 Corrosion and Corrosion Protection 17 pages, 15 Figures Advanced level prepared by M H Jacobs Interdisciplinary Research Centre in Materials The University of Birmingham, UK Objectives:

More information

CHEMISTRY. SCIENCE Paper 2. (Two hours) You will not be allowed to write during the first 15 minutes.

CHEMISTRY. SCIENCE Paper 2. (Two hours) You will not be allowed to write during the first 15 minutes. CHEMISTRY SCIENCE Paper 2 (Two hours) Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

CHAPTER 3 METALS AND NON-METALS About 118 elements are known today. There are more than 90 metals, 22 non metals and a few metalloids. Sodium (Na), potassium (K), magnesium(mg), aluminium(al), calcium(ca),

More information

DURATION: 1 hour 30 minutes

DURATION: 1 hour 30 minutes Exam 11 Our country, our future 545/1 S4 CHEMISTRY PAPER 1 DURATION: 1 hour 30 minutes Instructions to candidates type 1. This paper consists of 50 objective type questions. Attempt all questions. 2. Indicate

More information

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s), 1. Which change in oxidation number represents oxidation? A) Sn 2+ (aq) Sn 4+ (aq) B) Sn 2+ (aq) Sn(s) C) Sn 4+ (aq) Sn 2+ (aq) D) Sn 4+ (aq) Sn(s) E) Sn(s) Sn 2 (aq) 2. In the reaction Sn 2+ (aq) + 2

More information

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem Thermodynamics and Electrode Potential ME 472-062 Copyright Dr. Zuhair M. Gasem Corrosion Science and Engineering 2 Corrosion Science Engineering: corrosion forms, and controlling methods Chpater2 Thermodynamics

More information

Oxidation and Reduction

Oxidation and Reduction Oxidation and Reduction An oxidation reaction is one in which oxygen is added to a substance. Example: Methane is oxidised when it burns in air. Oxygen is added to the carbon in methane, forming carbon

More information

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives Distribution Review Corrosion Control Corrosion Control Training Objectives To gain an understanding of: Corrosion control vocabulary The factors affecting corrosion Methods used to control corrosion Alkalinity

More information

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals.

Extracting and using metals. ores. native. Only the most unreactive metals such as gold and platinum are found as native metals. Extracting and using metals Only the most unreactive metals such as gold and platinum are found as native metals. ores All the other metals we use are extracted from their ores by chemical processes. native

More information

KULLEĠĠ SAN BENEDITTU Boys Secondary, Kirkop

KULLEĠĠ SAN BENEDITTU Boys Secondary, Kirkop KULLEĠĠ SAN BENEDITTU Boys Secondary, Kirkop Mark HALF-YEARLY EXAMINATION 2013/2014 Junior Lyceum Programme FORM 4 CHEMISTRY TIME: 1h 30min Question 1 2 3 4 5 6 7 Global Mark Max. Mark 10 16 15 11 8 20

More information

Today! Demonstrations of Redox Chemistry! Electrochemistry! electrons moving about! equilibrium with a control knob! The disappearing Aluminum Rod!

Today! Demonstrations of Redox Chemistry! Electrochemistry! electrons moving about! equilibrium with a control knob! The disappearing Aluminum Rod! Today! Electrochemistry! electrons moving about! equilibrium with a control knob! Redox chemistry! oxidation and reduction! Demonstrations of Redox Chemistry! The disappearing Aluminum Rod! Alkali Metals

More information