Corrosion and Its Control by Coatings

Size: px
Start display at page:

Download "Corrosion and Its Control by Coatings"

Transcription

1 Chapter 1 Corrosion and Its Control by Coatings Gordon P. Bierwagen Department of Polymers and Coatings, North Dakota State University, Fargo, ND Corrosion protection of metallic substrates has long been one of the key roles performed by organic coatings. Such coatings remain one of the most cost-effective means of providing practical protectionfromcorrosion to easily corrodible metallic (and sometimes non-metallic) structures and objects. This choice of a coating by (material + application cost) only has created a mentality so widespread that little basic research has been done in recent years towards significantly improving the performance of corrosion control coatings or developing new measurement methods for their assessment. There are several technical organizations besides the ACS to which the corrosion control by organic coatings is very important. The National Association of Corrosion Engineers (NACE), Steel Structures Painting Council (SSPC), the Electrochemical Society (ECS), and the Federation of Societies for Coatings Technology (FSCT) are all very much interested in this topic and hold regular symposia on this topic. But, this book based on a Symposium held by the ACS-Polymeric Materials: Science & Engineering (PMSE) Division is unique in the quality and insight into the chemistry of how and why coatings control corrosion, and illustrates the need for more PMSE Symposia in this area. During the sessions at which most of the chapters published in this book were presented orally, the attendance was quite high, indicating, even in oral presentation, these papers elicited a considerable interest with large attendance at the Symposium. From the user's point of view, corrosion control by coatings is very important, especially for those objects and items that are subject to environments that cause corrosion. Many users would like to have to paint/coat an object only once for corrosion protection, and then assume appearance and function will maintain. This, of course, does not occur, but when failure in corrosion protection of a coating occurs, the function of the coated object can be threatened. The main goal of users of corrosion protective coatings is to provide protection of the coated object as long as possible. Often this desire and need for corrosion protection by a coating extends beyond just the intact coating, as the user wishes the coating to protect areas of the coated object that have undergone minor damage in handling or use. Thus, the coating is not just a barrier layer between the object and its environment, but should 1998 American Chemical Society 1

2 2 also act to protect small, local areas of substrate exposed by damage, as well as stop the spread of the damage. A major difficulty for coating users is to assess the present state of protection against corrosion in a coated system after it has been exposed to its environment. Visual observation is very difficult for many parts of objects, and certain items, such as underground pipelines and storage tanks, are impossible to view without much special effort. A user would like to know a specific time to carefully check the performance of his corrosion protective system, either by a known lifetime of performance of the coating or by a measurement that can be made on an intact coating system that will predict remaining lifetime. Most coating users also desire a coating that generates no hazardous waste in application and removal. Developers/designers of corrosion protective coatings need new materials to replace hazardous materials in coatings and new test methods for evaluating new coatings and new materials. Many of the more efficient materials used in the past for corrosion control are considered to be toxic or hazardous. There is a considerable list, but recently the elimination of these materials makes it difficult to use past coating formulation practice as any guide to new developments. Working with totally new materials also makes lifetime prediction for new coatings very difficult, as there is no past history of performance to use as a guide for such predictions. Further, salt fog testing according to ASTM Β117 has been shown to be a poor predictor of performance^), but until very recently, no substitute has been put forth, and many coating specifications still require a certain performance in this test. Fundamental research on corrosion control by coatings has been addressing both the issues of new test methods and new materials. This has been difficult in an era where there has been decreasing support for long-term research. Within many companies, long-term research has been severely curtailed, especially among metal makers and coatings manufacturers. Support for fundamental research on corrosion control by coatings has been limited, but the focus both in government labs and academia has been to find better methods of predicting protective lifetimes. Coupling electrochemical methods and cyclic exposure methods has shown promise(2). Also, several questions remain unanswered: such as why and how do chromate pigments and pretreatments work, what can replace chromâtes - especially for protection of Al alloys, what gives true wet adhesion to metals in coatings, and what measurement(s) give the best predictions of in-field performance of coatings. However, the situation concerning corrosion control coatings is now rapidly changing. The long pending imposition of rules and regulations severely limiting or eliminating chromate-based metal pretreatments and chromate pigments in coatings is coming to pass. Restrictions on the handling of hazardous materials is making manufacture, application, and removal of coatings containing hexavalent chromium in either the coating pigmentation or in the metal pretreatment very difficult, soon to be almost impossible. For example, the US Air Force (USAF) has a goal of Cr-free (pretreatment + coating) systems by the year Current USAF aircraft coatings are based on SrCr04 pigmented primers and chromate-based anodizing as the aerospace aluminum alloy pretreatment. A new pretreatment and pigmentation paradigm is needed to replace the current Cr-based systems, especially for structural aerospace Al alloys.

3 3 Further, the ubiquitous continuous salt fog test for corrosion control performance by coatings is acknowledged by most workers in corrosion control assessment to be of little value for the prediction of the performance of environmentally compliant coating systems. Yet, most government and many commercial specifications for coatings have historically required passing up to 2000 hours of this test. Why such a test method, apparently designed for the assessment of lead and chromate based pigmentation of solvent-bome alkyd coatings, remains so widely incorporated into specifications in place today is a mystery to many and a problem for many users and suppliers of corrosion control coatings. Most of the newer environmentally compliant coating technologies such as powder coatings, high solids and water-borne systems perform worse in regular salt-spray testing than their equivalent solventbome coatings, but under use conditions, they perform better. This is being acknowledged in the move within users and manufacturers of corrosion control coatings in the shift to cyclic testing such as Prohesion and the objective predictive electrochemical methods of electrochemical impedance spectroscopy (EIS) and electrochemical noise methods (ENM). Corrosion Control by Coatings Corrosion of metal objects occurs by electrochemical reactions at the surface involving the oxidation of the metal in the presence of water, electrolyte and oxygen. Most metals, except for the so-called noble metals, are most stable as oxides under most ambient conditions. Coatings are often used as a protective layer over the metal substrate to prevent the substrate from oxidizing in a manner deleterious to the function and appearance of an object. They do so in several ways (5). First, they act as a barrier limiting the passage of current necessary to connect the areas of anodic and cathodic activity on the substrate. This occurs especially if the coating wets the substrate surface very well and has good adhesion in the presence of water and electrolyte. Coatings do not really stop oxygen sufficiently to make its concentration at the surface rate limiting, and they do not completely stop water ingress into coatings. However, a good barrier coating slows water and electrolyte penetration and is not displaced by water at the substrate/coating interface. Barrier properties can come mainly from the polymer or from pigment volume concentration effects. As pigments block diffusion of water and oxygen below the critical pigment volume concentration (CPVC), increasing the pigment volume concentrations improves the barrier property of coatings. If the CPVC is exceeded, even locally, voids allow easy passage of water to the substrate surface and the barrier properties are lost. Coatings that act as barriers usually give better protection as their film thickness increases (without imperfections) or they are applied in multiple layers. Second, coatings can act to release inhibitor materials that passivate the substrate or block the corrosion reactions. These are usually primer coatings that contain inhibitive pigments such as chromâtes, phosphates or molybdates. Coatings such as this will protect damaged areas of coatings by stopping corrosion reactions on local areas of the surface exposed by physical damage. Some coatings use soluble organic inhibitors, but these often leach out the film too rapidly to give long term protection.

4 4 Third, coatings can provide cathodic protection to a substrate if they are formulated with a metal pigment that is more electroactive than the substrate. This is most commonly done with zinc powder used over steel or iron. Other metal powders that might provide cathodic protection are too reactive in particulate form (Mg) or form oxide films that prevent electrical contact between particles. The metal pigment volume concentration must exceed the CPVC to have all of the particles touching and also in contact with the metal surface. These are the so-called Zn-rich coatings often used as primers for steel objects where galvanizing cannot be used. This type of coating provides protection for damaged areas, but must be overcoated by a topcoat to keep the metal pigments from being directly oxidized by atmospheric exposure. Coatings Used for Corrosion Control There are many coatings on the market today that offer some form of corrosion protection to metal substrates. Major use areas where corrosion protective properties of coatings are a preeminent requirement for so-called Original Equipment Manufacture (OEM) or factory-applied coatings are: automotive coatings systems; appliance coatings; metal coil coatings; powder coatings for heavy duty use, especially pipeline coatings (usually identified as a class as fusion-bonded epoxy coatings); farm and construction equipment coatings; and general use coatings for objects used in exterior exposure, such as lawn furniture, metal window frames, etc. This list is not all-inclusive, but identifies major OEM areas where corrosion protection by coatings is important. Field applied coatings where corrosion protection is of primary concern are aircraft coatings, pipeline coatings in the field, marine coatings, railroad car coatings, the general area called industrial maintenance coatings - general purpose coatings for exterior protection- bridges, decks, industrial plants, storage tanks, exterior metal structures, etc. These coatings are often multiple layer systems with the primer coatings (first layer next to the metal substrate and its pretreatment) usually designed to provide the corrosion protection in damaged areas and the overcoat(s) providing barrier and UV protection to underlying layers. Polymers that are most successfully used for corrosion protective coatings are epoxybased materials; polyurethane based polymers, urethane topcoats over epoxy primers, some cross-linked polyester materials, and some melamine cross-linked polymers. One thing in common among these polymers is their ability to wet and adhere to metal oxides, plus their stability in the presence of water and basic conditions. Coatings that can be cross-linked at relatively high temperatures in thin films give relatively good performance. One other characteristic of successful corrosion protective coatings is that they can be applied in relatively defect free films. Film thickness uniformity is very important for corrosion protection (4). There is much informationfromsuppliers and trade publications about the relative merits of various coating systems, and it is suggested that the reader see these sources for details. Coating systems work successfully only when the metal surface is well cleaned. In factory use, when the metal often receives a pretreatment to form a protective oxide or related material. This is often done using chromate baths for Al alloys and phosphate-based pretreatment for steels. These baths are often acidic to remove prior surface oxides and leave a controlled oxide surface with chromate or phosphate incorporated. Again, this is a field with much information on field use available from

5 5 suppliers and trade literature. One issue that users of these pretreatments must face is environmental legislation, especially on waste material from these systems, which can be toxic, especially chromate baths. Dry pretreatments or environmentally benign systems that put down thin adherent protective layers are now being examined to replace earlier systems. Plasma cleaning and deposition as well as sol-gel chemistry are being examined, especially in systems with high maintenance and refinishing costs. In production, %ths of the coating line space and cost is often devoted to cleaning and pretreatment. Also, galvanizing is being used on many sheet steel systems, especially for automobile, siding and appliance use. This often provides a more uniform surface for coating than untreated steel, as well as providing cathodic protection to the steel. Measurement of Corrosion Protection by Coatings The area of corrosion protection by coatings is that is currently undergoing the most change is the area of testing of performance. It is safe to stick with proven tests, and many specifications have existing tests included. However, the single most used test method, the continuous salt spray test has significant weaknesses. It is in the process of being replaced by other tests, which have been shown to be better predictors of performance. As new technologies have developed to provide coatings that protect against corrosion while reducing VOC and the use of toxic pigments and inhibitors, older test methods have not been always able to identify correctly those new coatings, which provide improved protection. There is a new generation of test methods that have been developed that provide objective, numerical characterization of coating performance, or improved ranking types of tests that while still subjective, provide better prediction of new coating performance. The numerical test methods are based on electrochemical methods, and they include Electrochemical Impedance Spectroscopy (EIS) (5), and Electrochemical Noise Methods (ENM) (φ, among others. Many of the chapters of this book include work based on these methods, and how they are being used for the study of organic coatings over metals. Other developments in test protocols for determining coating performance against corrosion have included cyclic testing methods (7) such as the Prohesion cabinet test, alternating wet-dry cycling of coatings, and using UV exposure in the cyclic exposure of coatings. These exposures are now being coupled to some of the electrochemical methods just mentioned for more realistic studies of coating performance. Lifetime and Cost Issues in Coatings for Corrosion Protection As stated above, coatings remain one of the most cost-effective means of providing practical protection from corrosion to easily corrodible metallic (and sometimes nonmetallic) structures and objects. But often they are chose by initial investment cost only. The use of organic coatings for corrosion control (the term control is used because, in a thermodynamic sense, corrosion can never be eliminated, only controlled to a low enough rate as to be ignored) is so pervasive in our society that is too often taken for granted. Quality and effectiveness of corrosion control by coatings is assumed by many users to be low cost and easy to achieve. For these and

6 6 other reasons, users of corrosion control coatings often choose coatings only by (material + application) cost and appearance, not by cost effectiveness as measured by their true performance and lifetime of that performance. However, with high labor costs and difficulties in recoating large, buried, difficult to reach or complex objects, more sophisticated coatings users are focusing on the total costs of corrosion prevention and control. This leads to a realization that a coating system that provides long use life but is somewhat more expensive initially for initial application will pay for itself in reduced maintenance costs and reduced need for expensive recoating. The more this reasoning is followed in analyzing the cost of corrosion protection by coatings, the more the research into measuring and predicting the protective properties of coatings will be performed. Analyzing the coating by its initial cost alone makes a coating that significantly increases the lifetime of protection at a somewhat higher cost not well accepted in the marketplace. The payoff on developing systems based on true lifetime costs has been shown in the automobile industry, where the use of two sided galvanized steel + enhanced corrosion protective ED primers has raised the average lifetime until noticeable rust damage on cars to about 10 years. New Technologies New technologies and materials for corrosion protection by coatings are coming into the coatings science from other areas. The possibility of providing corrosion protection by incorporating the use of conductive polymers, such as doped polyaniline, is being actively pursues by researchers. The extension of the thin film technologies developed for the semi-conductor electronics industry to surface preparation of substrates for protective coatings is being pursued. Plasma cleaning and plasma deposition of thin films for subsequent coatings is being examined, as well as the use of sol-gel thinfilmsfor surface pretreatment. Both of these latter may replace Chromate-based pretreatments for metals. The in-situ sensing of the state of corrosion protection in a system by implanted electrodes, and some other nondestructive testing method is being considered by large users of coated metals as another way of doing maintenance on a need basis, not only on a regular cycle. Because of the cost of the objects that they protect and the large costs of maintenance and repainting, the corrosion protective properties of organic coatings are more important than ever. Any added lifetime of use of objects and materials that coatings can add is in actuality a significant contribution to the economy and the environment. Summary Corrosion protection is a key property of organic coatings, and their use for this purpose is a key contribution that coatings make to the world economy. If coatings continue to receive the minimal attention from the many users and developers of coatings that treat coatings for corrosion protection as almost commodities, the continued investment of coatings suppliers and research agencies will significantly slow. This will increase the burden that corrosion already has on our economy and also increase the need for maintenance and repair. If we continue and increase our investment in understanding and preventing corrosion by well designed new coatings,

7 7 everyone will benefit. One can see this effect already in the drastically increased lifetimes against corrosion of cars and household appliances vs years ago, effects due to a combination of improved substrates and coatings. The symposium contains a good number of papers examining these newer test methods, showing the value of electrochemical testing in combination of cyclic exposure testing, and also, showing how environmentally compliant coatings are rapidly displacing regular coatings in corrosion control use. Many of the chapters of this symposium book are devoted to the electrochemical testing of coatings, and the examination of the test methods with respect to predicting coating lifetimes, or at least ranking coatings within a cohort of candidate coatings. These papers are Chapters 1-8, 11-12, 14, 34. The emphasis within these papers is to improve numerical ranking of corrosion performance; to develop measurement tools that provide insight into what is happening at the metal/coating interface, as well as within the coating during exposure; and to provide insight into the mechanisms that lead to the failure of the protection the coating affords to the metal. Some of the issues addressed in these papers are what is the proper exposure for the testing, what should the composition of the immersion electrolyte be for electrochemical testing, and what accelerating factors are valid to give failure within a laboratory test procedure in a manner that properly emulates field service failure. The statistics of sampling to predict coating failure is also considered (Ch. 18). Localized measurement methods for examination of defect areas in coatings are also described, including scanning acoustic microscopy (Ch. 10), localized electrochemical impedance spectroscopy (Ch. 2.), and SEM. These are all utilized to give insight into local failures in the coatings. There is also a paper discussing the relationship between defects, localfluctuationsin film thicknesses and other coating properties, and corrosion protection (Ch. 16). Another paper gives predictive modeling for the formation of a common local defect noted in corrosion failure of coatings, blister formation (Ch. 17). Several papers address the important issue of water uptake and diffusion in protective coatings, and how water transport in coatings and its effects on coating properties is a key issue that requires attention vis a vis corrosion control (Ch 12-13). Several papers consider new thin-film technologies for corrosion protection. One paper (Ch. 21) considers self-assembled monolayers and multi-layers asfilmsfor the protection of copper. Two papers address the formation of thin plasma-polymer protective layers for improvement of the subsequent adhesion of thicker, standard corrosion protective films (Ch ). Another examines the properties of electropolymerized thinfilms (Ch. 23). There were also two papers addressing the still yet unresolved issues about the potential corrosion protection afforded by poly(aniline) films to metals (Ch ). This latter is an area of extreme interest, because there have been indications that chemically doped conductive poly(aniline) can provide corrosion protection without the need for pigmentation, but solely due to electrochemical effects. Two papers address the issues of microbial induced corrosion and its assessment in coated systems (Ch ) The other papers consider a diverse range of problems in the use of corrosion protective coatings. There are two papers that consider the specific problems of aircraft protective coatings (Ch. 23 & 24), and one paper focusing on the protection of concrete (Ch. 27), a topic closed allied to the protection of metals. Also examined

8 8 are coatings for use in oil fields (Ch. 15) and marine anti-corrosion coatings (Ch. 28). There are also papers that address issues of the development of substitutes for chromâtes in pigmentation (Ch. 32 & 33) and metal pretreatment (Schulman paper), new polymer matrices for corrosion protective coatings (Ch. 29), environmentally compliant coatingsfromnatural products (34), and a chapter on M0S2 in protective poly(ethylene) films. Organizing and participating in this symposium has been a very satisfying experience for me, and I wish to take this opportunity to thank all of the presenters of papers at the symposium and those that prepared the papers that make up the chapters of this book for their contributions. I wish to thank ACS Books for the opportunity to organize and publish this symposium and the help that they have provided in making this book possible. Literature Cited (1). Skerry, B.S & Simpson, C.H. "Accelerated Test Method for Assessing Corrosion and Weathering of Paints for Atmospheric Corrosion," Corrosion 1993, 49B (2) ASTM D5894, Annual Book of ASTM Standards; Amer. Soc. Testing & Materials, West Conshohaken, PA, (3) Bierwagen, G.P. "Reflections on Corrosion Control by Coatings," Prog. Organic Coatings 1996, 28, (4) Bierwagen, G P. "Defects & Heterogeneities in Corrosion Protective Organic Coatings Films and Their Effects on Performance" ACS Symposium Book, Corrosion and Its Control By Coatings, G.P. Bierwagen, ed. (5) Fredrizzi, L.; Deflorian, F.; Boni, G.; Bonora, P.L. and Pasini, E. "EIS Study of Environmentally Friendly Coil Coating Performances," Prog. Org. Coatings 1996, 29, (6) Mills, D. J.; Bierwagen, G. P.; Tallman, D.E. and Skerry, B.S. "Investigation of Anticorrosive Coatings by the Electrochemical Noise Method," Material Perf., 1995, 34, 33. (7) Appleman, B.R. "Cyclic Accelerated Testing: The Prospects for Improved Coating Performance Evaluation" J. Protective Coatings & Linings Nov. 1989, And Appleman, B.R., "Survey of Accelerated Test Methods for Anti- Corrosive Coating Performance" J. Coatings Tech. 1990, 62, (#787),

Anticorrosive Coatings

Anticorrosive Coatings Anticorrosive Coatings Joerg Sander 1 Introduction 1.1 Why corrosion-protective coatings 1.2 Literature 2 Corrosion protection coatings 2.1 Principles of function 2.1.1 Electrochemistry of corrosion inhibition

More information

Real time mapping of corrosion activity under coatings

Real time mapping of corrosion activity under coatings Progress in Organic Coatings 41 (2001) 266 272 Real time mapping of corrosion activity under coatings M.Khobaib,1,A.Rensi 2,T.Matakis,M.S.Donley Air Force Research Laboratories, Materials and Manufacturing

More information

Nathan Kofira Technical Development Manager

Nathan Kofira Technical Development Manager Nathan Kofira Technical Development Manager Overview 1 2 3 Types of Corrosion in Coatings Mechanisms of Corrosion Corrosion Inhibitor Selection 4 Formulating with Anti-Corrosives 5 Temporary Rust Prevention

More information

Performance Attributes of Organic Corrosion Inhibitors

Performance Attributes of Organic Corrosion Inhibitors Performance Attributes of Organic Corrosion Inhibitors Additives 2012 Conference September 12-13, 2012 Sheraton Inner Harbor Baltimore, MD Nathan Kofira Technical Development Manager Overview 1 2 3 Requirements

More information

Corrosion. Lab. of Energy Conversion & Storage Materials. Produced by K. B. Kim

Corrosion. Lab. of Energy Conversion & Storage Materials. Produced by K. B. Kim Corrosion 대기환경에의한금속소재 (organic film coated steel) 의퇴화현상평가연구 Lab. of Energy Conversion & Storage Materials Produced by K. B. Kim Introduction AC Impedance Spectroscopy Application of AC Impedance to Corrosion

More information

Table 2: Salt fog exposure testing Epoxy Salt fog exposure

Table 2: Salt fog exposure testing Epoxy Salt fog exposure ALUMINUM PHOSPHATE TECHNOLOGY ANTI-CORROSION APPLICATION DESCRIPTION Worldwide, the direct cost of corrosion is estimated to be more than $1.8T, which amounts to 3-4% of the GDP of industrialized countries.

More information

TECHNICAL INFORMATION MEMORANDUM

TECHNICAL INFORMATION MEMORANDUM UNCLASSIFIED NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION PATUXENT RIVER, MARYLAND TECHNICAL INFORMATION MEMORANDUM REPORT NO: NAWCADPAX/TIM-2018/20 WATER-REDUCIBLE EPOXY PRIMERS WITH IMPROVED BARRIER PROPERTIES

More information

Prevention Strategies Design and Coatings

Prevention Strategies Design and Coatings Lecture 14 Prevention Strategies Design and Coatings Keywords: Corrosion Prevention, Designs, Protective Coatings. There are a number of methods to control corrosion. The choice of any one control technique

More information

Corrosion Inhibitors

Corrosion Inhibitors Corrosion Inhibitors ICL\ Advanced Additives Quality / REACH Statement / Responsible Care As the global leader providing HALOX corrosion inhibitors to the paint and coatings market, ICL\ Advanced Additives

More information

Understanding the Basics of Electrocoat. Kelly Moore Development Chemist

Understanding the Basics of Electrocoat. Kelly Moore Development Chemist Understanding the Basics of Electrocoat Kelly Moore Development Chemist Overview Why and When to Use Electrocoat How Does Electrocoat Work? Selecting the Right Electrocoat Technology The Future of Electrocoat

More information

Accelerated Performance Evaluation of Railcar Coatings: A State of the Art Update

Accelerated Performance Evaluation of Railcar Coatings: A State of the Art Update Accelerated Performance Evaluation of Railcar Coatings: A State of the Art Update Brian Skerry The Sherwin-Williams Company October 4 th, 2016 Omaha, Nebraska RSI/CMA 2016 1 Testing Paints Fitness for

More information

4.1. Introduction to Painted, Metallic-Coated, Steel Sheet Products REV 1.3 DEC GalvInfoNote. Introduction. Why Do Paints Improve Product Life?

4.1. Introduction to Painted, Metallic-Coated, Steel Sheet Products REV 1.3 DEC GalvInfoNote. Introduction. Why Do Paints Improve Product Life? 4. Prepainted Metallic-Coated Steel Sheet GalvInfoNote 4.1 Introduction Introduction to Painted, Metallic-Coated, Steel Sheet Products REV 1.3 DEC 2017 Paint is usually considered to be a means of making

More information

Thermal Spray Coating

Thermal Spray Coating Thermal Spray Coating for Corrosion Protection Presented by: John Crowe, PCS What You Need To Know PRESENTATION TOPICS Corrosion Basics Thermal Spray Coating-What It Is & What It Does Advantages & Disadvantages

More information

Methods of Corrosion Control. Corrosion Control or Corrosion Management?

Methods of Corrosion Control. Corrosion Control or Corrosion Management? Corrosion Control or Corrosion Management? Corrosion control is a process aimed at reducing the corrosion rate to a tolerable level (or predictable limits) Corrosion control focuses mainly on (i) materials

More information

Modeling the Performance of Protective Coatings in Marine Service. J. Peter Ault and James A. Ellor Elzly Technology Company

Modeling the Performance of Protective Coatings in Marine Service. J. Peter Ault and James A. Ellor Elzly Technology Company Modeling the Performance of Protective Coatings in Marine Service J. Peter Ault and James A. Ellor Elzly Technology Company Abstract Despite improvement in organic coating technology, accurate prediction

More information

Hot Dip Galvanizing for Steel Corrosion Projection (fabricated steel items) By Mike Ainsley International Zinc Association (IZA)

Hot Dip Galvanizing for Steel Corrosion Projection (fabricated steel items) By Mike Ainsley International Zinc Association (IZA) Hot Dip Galvanizing for Steel Corrosion Projection (fabricated steel items) By Mike Ainsley International Zinc Association (IZA) Steel is and will continue to be one of the most important materials for

More information

Inhibispheres Technology

Inhibispheres Technology Inhibispheres Technology Dr. Andy Noble-Judge Coating Formulation Specialist andynoble@ceramisphere.com 1 Overview Introduction to Ceramisphere Encapsulation technology Inhibispheres Products Protection

More information

4.1. Introduction to Painted, Metallic-Coated, Steel Sheet Products Rev 1.2 Mar GalvInfoNote. Introduction. Why Do Paints Improve Product Life?

4.1. Introduction to Painted, Metallic-Coated, Steel Sheet Products Rev 1.2 Mar GalvInfoNote. Introduction. Why Do Paints Improve Product Life? 4. Prepainted Metallic-Coated Steel Sheet GalvInfoNote 4.1 Introduction Introduction to Painted, Metallic-Coated, Steel Sheet Products Rev 1.2 Mar 2013 Paint is usually considered to be a means of making

More information

Agenda ISO Corrosion Protection Of steel Structures

Agenda ISO Corrosion Protection Of steel Structures Introduction to Control Corrosion in line with ISO 12944 latest edition 2018 Agenda ISO 12944 Corrosion Protection Of steel Structures Introduction to Jotun Cost Of Corrosion Corrosion mechanism Introduction

More information

OUTLINE ATMOSPHERIC CORROSION INTEGRITY MANAGMENT

OUTLINE ATMOSPHERIC CORROSION INTEGRITY MANAGMENT ATMOSPHERIC CORROSION INTEGRITY MANAGMENT Michael Surkein ExxonMobil Development Company Houston, TX AUCSC OUTLINE 1. ATMOSPHERIC CORROSION DOT REGULATIONS REGARDING ATMOSPHERIC CORROSION CONTROL CAUSES

More information

High Performance Coating Options for Field Restoration of Factory Coil & Extrusion Coatings

High Performance Coating Options for Field Restoration of Factory Coil & Extrusion Coatings High Performance Coating Options for Field Restoration of Factory Coil & Extrusion Coatings Durability + Design Webinar Presented by: Andy Kalafatis Sales and Technical Manager Gary Edgar Sales and Technical

More information

Laboratory Testing of Three Above Ground Paint Systems for Canadian Applications

Laboratory Testing of Three Above Ground Paint Systems for Canadian Applications Laboratory Testing of Three Above Ground Paint Systems for Canadian Applications Amal Al-Borno, Mick Brown Charter Coating Service (2000) Ltd. #6, 4604 13 th Street N.E. Calgary, AB, Canada T2E 6P1 Robert

More information

Environmental concerns include the presence of oxygen, moisture (water), contact with dissimilar metals, and chemicals.

Environmental concerns include the presence of oxygen, moisture (water), contact with dissimilar metals, and chemicals. Construction Concern: Corrosion Article and photos by Gregory Havel May 9, 2018 Corrosion of a metal can be defined as its degrading from a reaction with its environment. This degradation can cause weakening

More information

Corrosion Management at Dassault-Aviation Challenges & Perspectives

Corrosion Management at Dassault-Aviation Challenges & Perspectives Corrosion Management at Dassault-Aviation Challenges & Perspectives Dr Philippe VAUTEY VP executive expert airframe technologies development Head of new Technologies, Materials and Testing department Dassault

More information

Coil Coating Topcoat Systems Clark Higginbotham, The Valspar Corporation December, 2004

Coil Coating Topcoat Systems Clark Higginbotham, The Valspar Corporation December, 2004 #8 Coil Coating Topcoat Systems Clark Higginbotham, The Valspar Corporation December, 2004 The objective of this paper is to provide a practical chemistry background for the differentials observed in our

More information

Boris Miksic (President/CEO Cortec Corporation) Co-Autohors: Dr. Margarita Kharshan (V.P. of Cortec R&D), Ron Camp (Cortec Coating Chemist)

Boris Miksic (President/CEO Cortec Corporation) Co-Autohors: Dr. Margarita Kharshan (V.P. of Cortec R&D), Ron Camp (Cortec Coating Chemist) Water based Coatings Powered by NANO VpCI Boris Miksic (President/CEO Cortec Corporation) Co-Autohors: Dr. Margarita Kharshan (V.P. of Cortec R&D), Ron Camp (Cortec Coating Chemist) Abstract: Today s water-borne

More information

PROSPECTUS. Electrocoat

PROSPECTUS. Electrocoat Electrocoat PROSPECTUS www.electrocoat.org Discover more about the electrocoat process and how it might be the answer to your questions about coating performance applied cost reduction environmental compliance

More information

Iron is found in an oxidized state and is mined from the ground as an iron ore.

Iron is found in an oxidized state and is mined from the ground as an iron ore. Iron is found in an oxidized state and is mined from the ground as an iron ore. Energy is used to convert this iron oxide into steel. Ore is loaded into a blast furnace where heat energy removes the oxygen

More information

Chapter 16 Corrosion and Degradation of Materials

Chapter 16 Corrosion and Degradation of Materials Chapter 16 Corrosion and Degradation of Materials Concept Check 16.1 Question: Would you expect iron to corrode in water of high purity? Why or why not? Answer: Iron would not corrode in water of high

More information

OVERVIEW OF CORROSION PROTECTION ALLOY MP-ACQ FASTENER COATING SYSTEM FOR USE IN ACQ-PRESSURE TREATED LUMBER

OVERVIEW OF CORROSION PROTECTION ALLOY MP-ACQ FASTENER COATING SYSTEM FOR USE IN ACQ-PRESSURE TREATED LUMBER OVERVIEW OF CORROSION PROTECTION ALLOY MP-ACQ FASTENER COATING SYSTEM FOR USE IN ACQ-PRESSURE TREATED LUMBER Arnold Satow, President Satow Global Technologies, LLC Corrosion is the electrochemical reaction

More information

TECHNICAL BULLETIN. The following photographs were taken prior to samples being subjected to testing. J&L BOSS HOG EXTRA Improved Floor Panel

TECHNICAL BULLETIN. The following photographs were taken prior to samples being subjected to testing. J&L BOSS HOG EXTRA Improved Floor Panel TECHNICAL BULLETIN CORROSION RESISTANCE TESTING ON HOG FLOORING: J&L vs. the Competition There are numerous manufacturers today providing hog flooring for agricultural applications. Each manufacturer offers

More information

Accelerated Testing and Durability. Qualifying your Industrial Anticorrosive Coatings

Accelerated Testing and Durability. Qualifying your Industrial Anticorrosive Coatings Accelerated Testing and Durability Qualifying your Industrial Anticorrosive Coatings Overview Static Test Methods Cyclic Test Methods Exterior Exposure Comparison of Accelerated Testing Evaluating a Coating

More information

THE CORROSION PROBLEM

THE CORROSION PROBLEM THE CORROSION PROBLEM COMMON TYPES OF CORROSION 2 The nation s crumbling transportation infrastructure, and the lack of funding it receives, is making headlines on a daily basis these days. While there

More information

Coating Types. Coating Systems. Coating Basics. Why coatings are used Component of coatings Methods of protection Service environment

Coating Types. Coating Systems. Coating Basics. Why coatings are used Component of coatings Methods of protection Service environment Coating Basics Why coatings are used Component of coatings Methods of protection Service environment Coating types Curing mechanism Design characteristics Limitations Suitable Use Coating Systems Coating

More information

Zinc Silicate (Inorganic)

Zinc Silicate (Inorganic) Product code: 477-041: part A 477-042: part B General description: Two-component, zinc-ethyl silicate-. Forms a continuous coat of metallic zinc that provides cathodic protection to metal (as in hot galvanization).

More information

Generic Product Index

Generic Product Index Generic Product Index Epoxy Coatings Epoxy Tank Lining Paint High build amine adduct cured. Excellent for internal coating of storage tanks containing kerosene fuel-jp4. EC01 Special Hi-Build Epoxy Polyamine

More information

Corrosion, Coatings and Hydropower

Corrosion, Coatings and Hydropower Corrosion, Coatings and Hydropower Steve Reiber, Ph.D. sreiber@hdrinc.com The Pat Tillman Bridge: Under Construction 2009 Completed 2011 Acknowledgements Materials kindly supplied by: Society for Protective

More information

The fast lane to failure

The fast lane to failure 1 The fast lane to failure Two different tests of anticorrosive properties (salt fog spray and a cyclic impedance test called ACET) have been used to evaluate two-layer coating systems for aeronautical

More information

A Novel Approach to Corrosion Inhibitors for Coatings

A Novel Approach to Corrosion Inhibitors for Coatings A Novel Approach to Corrosion Inhibitors for Coatings Amanda Adams, Sr. Project Chemist Andy Balgeman, Project Chemist Shonda Prince, Project Assistant Theresa Kretz, Intern Student Established in 1972

More information

Film Properties and Formulation Considerations for Corrosion Resistance in Styrenated Acrylic Metal Coatings

Film Properties and Formulation Considerations for Corrosion Resistance in Styrenated Acrylic Metal Coatings Film Properties and Formulation Considerations for Corrosion Resistance in Styrenated Acrylic Metal Coatings. Eastern Coatings Show - 2017 Allen Bulick*, Chris LeFever, Glenn Frazee, Kailong Jin, Matt

More information

Novel Corrosion Control Coating Utilizing Carbon Nanotechnology

Novel Corrosion Control Coating Utilizing Carbon Nanotechnology Novel Corrosion Control Coating Utilizing Carbon Nanotechnology Susan A. Drozdz U.S. Army Engineer Research and Development Center Todd Hawkins Tesla NanoCoatings Limited Report Documentation Page Form

More information

Using SSPC Coating Material Standards

Using SSPC Coating Material Standards SSPC: The Society for Protective Coatings Using SSPC Coating Material Standards Coating Selection SSPC coating material standards contain requirements for the performance of various types of coatings when

More information

Protective Coatings for Underground Utility Concrete Structures. By: John E. Davis Inside Sales & Marketing Specialist: Sauereisen, Inc.

Protective Coatings for Underground Utility Concrete Structures. By: John E. Davis Inside Sales & Marketing Specialist: Sauereisen, Inc. Protective Coatings for Underground Utility Concrete Structures By: John E. Davis Inside Sales & Marketing Specialist: Sauereisen, Inc. As our cities and municipalities grow older, the utility and wastewater

More information

STEEL SURFACE PREPARATION

STEEL SURFACE PREPARATION Technical Note STEEL SURFACE PREPARATION (For purposes of this Technote, painting and coating are interchangeable. Also, this Technote deals with carbon steel, stainless steel, and other ferrous metals

More information

Axle Surface Coatings IMechE Seminar 2014

Axle Surface Coatings IMechE Seminar 2014 Excellence In All We Do Axle Surface Coatings IMechE Seminar 2014 Page 1 Axle Surface Coatings Alternatives to current UK practices UK axle surface coatings Limitations of UK axle surface coatings Alternative

More information

PRODUCT GUIDE: ZINC-RICH COATINGS. Version:

PRODUCT GUIDE: ZINC-RICH COATINGS. Version: PRODUCT GUIDE: ZINC-RICH COATINGS Version: 08.07.17 305 Zinc Rich Epoxy Polyamide Primer Description: 305 is a user friendly zinc-rich epoxy primer formulated for use as a primer under acrylic, epoxy,

More information

Imagine A World Without Corrosion. - Sue Wang, AnCatt

Imagine A World Without Corrosion. - Sue Wang, AnCatt Imagine A World Without Corrosion - Sue Wang, AnCatt Corrosion has long been believed as a non-stoppable natural force: silent but powerful The direct corrosion cost trillions of dollars annually, or 3-5%

More information

Carla Sofia Jorge dos Reis

Carla Sofia Jorge dos Reis OPTIMISATION OF AN ANTICORROSION COATING PROCESS USING THE CATHODIC ELECTRODEPOSITION METHOD IN THE AUTOMOTIVE INDUSTRY Carla Sofia Jorge dos Reis INSTITUTO SUPERIOR TÉCNICO UNIVERSIDADE TÉCNICA DE LISBOA

More information

Analysis of PAINTED ALUMINUM HOOD AND ASSOCIATED CORROSION AT HEM

Analysis of PAINTED ALUMINUM HOOD AND ASSOCIATED CORROSION AT HEM DRIVEALUMINUM Analysis of PAINTED ALUMINUM HOOD AND ASSOCIATED CORROSION AT HEM October 2017 Summary Version ALUMINUM HOOD CORROSION Analysis of Painted Aluminum Hood and Associated Corrosion at Hem HOOD

More information

AkzoNobel Aerospace Coatings. Aerospace Sustainability trends. Visit KIVI NIRIA November 20th 2012

AkzoNobel Aerospace Coatings. Aerospace Sustainability trends. Visit KIVI NIRIA November 20th 2012 AkzoNobel Aerospace Coatings Aerospace Sustainability trends Visit KIVI NIRIA November 20th 2012 Michela Fusco, Market Segment Manager Maintenance Aerospace Coatings Global market size is 250 million¹

More information

inhibispheres FUTURE PROOF YOUR COATINGS inhibispheres

inhibispheres FUTURE PROOF YOUR COATINGS inhibispheres inhibispheres FUTURE PROOF YOUR COATINGS inhibispheres ABOUT US Ceramisphere Pty Ltd is a privately owned microencapsulation company based in Sydney, Australia. We have been operating since 2007 using

More information

Repairing Untopcoated IOZ Coatings

Repairing Untopcoated IOZ Coatings Repairing Untopcoated IOZ Coatings Answer Sinisa Ozanic, IMC Engineering S.r.l., Genoa, Italy: Zinc coatings are widely used because of their versatility, resistance to corrosion and abrasion, and ease

More information

Corrosion and Protection of Metal in the Seawater Desalination

Corrosion and Protection of Metal in the Seawater Desalination IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Corrosion and Protection of Metal in the Seawater Desalination To cite this article: Xiangyu Hou et al 018 IOP Conf. Ser.: Earth

More information

Product Data Sheet AkzoNobel Powder Coatings Interpon APP 120 (EL140G)

Product Data Sheet AkzoNobel Powder Coatings Interpon APP 120 (EL140G) AkzoNobel Powder Coatings Product Data Sheet AkzoNobel Powder Coatings Interpon APP 120 (EL140G) Product Description Interpon APP 120 is a powder coating primer,totally free of Zinc, that is designed to

More information

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment. CORROSION WHAT IS CORROSION? Corrosion is the deterioration of a metal as a result of chemical reactions between it and the surrounding environment. Rusting is an example of corrosion, which is a spontaneous

More information

NEW AIRCRAFT PRETREATMENT & WASH PRIMER SYSTEM. Angel Green Cortec Corporation 4119 White Bear Parkway White Bear Lake, MN

NEW AIRCRAFT PRETREATMENT & WASH PRIMER SYSTEM. Angel Green Cortec Corporation 4119 White Bear Parkway White Bear Lake, MN Paper No. 0 20 NEW AIRCRAFT PRETREATMENT & WASH PRIMER SYSTEM Angel Green Cortec Corporation 4119 White Bear Parkway White Bear Lake, MN 551 agreen@cortecvci.com ABSTRACT Today s Department of Defense

More information

Warranties for Architectural Metal Coatings: A Comparative Review

Warranties for Architectural Metal Coatings: A Comparative Review October 2009 Warranties for Architectural Metal Coatings: A Comparative Review For architects, specifiers, consultants and building owners, the only protection from these potential liabilities is a strong,

More information

Corrosion Control and Cathodic Protection Data Sheet

Corrosion Control and Cathodic Protection Data Sheet Data Sheet CORROSION CONTROL Corrosion control is the application of engineering principles and procedures to minimise corrosion to an acceptable level by the most economical method. It is rarely practical

More information

WEATHERING AND CORROSION TESTING IN THE AUTOMOTIVE INDUSTRY: AN OVERVIEW OF TODAY S REQUIREMENTS. Andy Francis, Q-Lab Corporation

WEATHERING AND CORROSION TESTING IN THE AUTOMOTIVE INDUSTRY: AN OVERVIEW OF TODAY S REQUIREMENTS. Andy Francis, Q-Lab Corporation WEATHERING AND CORROSION TESTING IN THE AUTOMOTIVE INDUSTRY: AN OVERVIEW OF TODAY S REQUIREMENTS Andy Francis, Q-Lab Corporation 17M-0479 1 Weathering and Corrosion Weathering (Atmospheric) Corrosion Changes

More information

A Breakthrough in Metal Corrosion Protection Technology

A Breakthrough in Metal Corrosion Protection Technology A Breakthrough in Metal Corrosion Protection Technology Evonik: A Partner of Choice Evonik Degussa Corporation is a modern industrial group with a leading position in many of today s growth markets. Thanks

More information

Development of Chromate-free Pre-painted Steel Sheets, Edge-red-rust-resistant VIEWKOTE

Development of Chromate-free Pre-painted Steel Sheets, Edge-red-rust-resistant VIEWKOTE Technical Report NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT No. 108 MARCH 2015 UDC 669. 14-408. 2 : 669. 55 ' 71 ' 721 Development of Chromate-free Pre-painted Steel Sheets, Edge-red-rust-resistant

More information

BULLETIN TECHNICAL SERVICES DEPARTMENT. No. 96 Aug (Rev1-9/16/15) (Rev2 03/15/18)

BULLETIN TECHNICAL SERVICES DEPARTMENT. No. 96 Aug (Rev1-9/16/15) (Rev2 03/15/18) TECHNICAL SERVICES DEPARTMENT BULLETIN UL and NEC Requirements for Corrosion Protection of Galvanized Steel Conduit and Electrical Metallic Tubing No. 96 Aug. 2008 (Rev1-9/16/15) (Rev2 03/15/18) When selecting

More information

CHEMICAL SPECIFICATIONS OF ZINC AND ZINC ALUMINUM ALLOYS: TABLE 1 TABLE 1

CHEMICAL SPECIFICATIONS OF ZINC AND ZINC ALUMINUM ALLOYS: TABLE 1 TABLE 1 TECHNICAL BULLETIN CORROSION RESISTANCE OF ZINC And Zinc Alloys CHEMICAL SPECIFICATIONS OF ZINC AND ZINC ALUMINUM ALLOYS: TABLE 1 PROPERTIES OF ZINC ALLOYS The Mechanical and physical properties of the

More information

Maximum Rust Protection!

Maximum Rust Protection! ZERO-RUST Zero Rust is a direct-to-metal, phenolic modified alkyd rust and corrosion control coating, which controls rust and corrosion by putting down an impermeable barrier at the steel level. Its dielectric

More information

Protective Coatings for Steel and Concrete Bridge Components

Protective Coatings for Steel and Concrete Bridge Components Protective Coatings for Steel and Concrete Bridge Components Bobby Meade Greenman Pedersen Inc., Sudhir Palle University of Kentucky Theodore Hopwood II University of Kentucky Content from Two Research

More information

Corrosion and Thermal Insulation in Hot areas A New Approach

Corrosion and Thermal Insulation in Hot areas A New Approach Corrosion and Thermal Insulation in Hot areas A New Approach Mike Mitchell International Protective Coatings Stoneygate Lane, Felling, Gateshead, Tyne & Wear, England Fax No: + 44 (0)191 438 1709 E-mail:

More information

Property Test/Standard Description. calculated US EPA method 24 (tested) (CARB(SCM)2007, SCAQMD rule 1113, Hong Kong)

Property Test/Standard Description. calculated US EPA method 24 (tested) (CARB(SCM)2007, SCAQMD rule 1113, Hong Kong) Approved 23680;1551 1,2 23680 epoxy mastic ^(ValidationDate) 1 Product description This is a two component amine cured epoxy mastic coating. It is a surface tolerant, high solids product. It is aluminum

More information

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected Corrosion of platinum (Pt) in HCl Now if we place a piece of Pt in HCl, what will happen? Pt does not corrode does not take part in the electrochemical reaction Pt is a noble metal Pt acts as a reference

More information

TABLE OF CONTENTS INTRODUCTION PRODUCT INDEX TECHNICAL DATA SHEETS

TABLE OF CONTENTS INTRODUCTION PRODUCT INDEX TECHNICAL DATA SHEETS TABLE OF CONTENTS INTRODUCTION PRODUCT INDEX TECHNICAL DATA SHEETS APPLICATION GUIDE RECOMMANDATIONS INTRODUCTION THE HISTORY, TECHNOLOGY ADVANTAGES, AND BENEFITS OF ONE-COMPONENT, MOISTURE-CURE, POLYURETHANE

More information

AvantGuard Redefining anti-corrosion

AvantGuard Redefining anti-corrosion vantguard Redefining anti-corrosion vantguard Redefining anti-corrosion Hempel introduces vantguard, a new innovative anti-corrosion technology based on activated Zinc and locked in to our new range of

More information

05030 METAL FINISHES/09800 SPECIAL COATINGS ZRC COLD GALVANIZING COMPOUND

05030 METAL FINISHES/09800 SPECIAL COATINGS ZRC COLD GALVANIZING COMPOUND 05030 METAL FINISHES/09800 SPECIAL COATINGS ZRC COLD GALVANIZING COMPOUND By ZRC Worldwide 145 Enterprise Drive, Marshfield, MA 02050 Tel: 781-319-0400; Fax: 781-319-0404; E-mail: info@zrcworldwide.com

More information

PRIMERS & SURFACE PREPARATION GUIDE

PRIMERS & SURFACE PREPARATION GUIDE PRIMERS & SURFACE PREPARATION GUIDE Era Polymers Primers & Surface Preparation Guide 1 There are three responses when looking at a coated surface yes, no, and WOW! Wow is the one to aim for. Era Polymers

More information

Frank D. Rea Director of Coatings Services / Chief Chemist

Frank D. Rea Director of Coatings Services / Chief Chemist State of the Union Cleaning and Painting Steel Bridges Frank D. Rea Director of Coatings Services / Chief Chemist CURRENT PRACTICES AND MATERIALS LESSONS LEARNED THE LATEST CURRENT PRACTICES AND MATERIALS

More information

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES

Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES Materials of Engineering ENGR 151 CORROSION ELECTRICAL PROPERTIES more anodic (active) more cathodic (inert) GALVANIC SERIES Ranking of the reactivity of metals/alloys in seawater Platinum Gold Graphite

More information

05030 METAL FINISHES/09800 SPECIAL COATINGS COLD GALVANIZING COMPOUND

05030 METAL FINISHES/09800 SPECIAL COATINGS COLD GALVANIZING COMPOUND 05030 METAL FINISHES/09800 SPECIAL COATINGS COLD GALVANIZING COMPOUND By ZRC Worldwide 145 Enterprise Drive, Marshfield, MA 02050 Tel: 781-319-0400; Fax: 781-319-0404; E-mail: info@zrcworldwide.com Web:

More information

CONCRETE STEPS, HANDRAILS, AND SAFETY RAIL

CONCRETE STEPS, HANDRAILS, AND SAFETY RAIL CONCRETE STEPS, HANDRAILS, AND SAFETY RAIL PART 1 - GENERAL 1.01 SECTION INCLUDES A. Concrete Steps B. Handrails C. Safety Rail 1.02 DESCRIPTION OF WORK A. Construction of concrete steps. B. Furnishing

More information

PRETREATMENT. Economic product solutions for metal pretreatment.

PRETREATMENT. Economic product solutions for metal pretreatment. PRETREATMENT Economic product solutions for metal pretreatment www.kluthe.com 2 PRETREATMENT TABLE OF CONTENTS KLUTHE AT A GLANCE 4 CHEMICAL PRETREATMENT 6 DEGREASING AND PICKLING PRODUCTS 8 ZINC PHOSPHATATION

More information

MINIMIZING POLLUTION FROM CHEMICAL PRETREATMENT PROCESSES

MINIMIZING POLLUTION FROM CHEMICAL PRETREATMENT PROCESSES MINIMIZING POLLUTION FROM CHEMICAL PRETREATMENT PROCESSES Copyright Ron Joseph & Associates, Inc. All rights rwerved. January 1991. part of this publication may be reproduced or distributed in any form

More information

Corrosion. Cause of Corrosion: Electrochemical Mechanism of Corrosion (Rusting of Iron)

Corrosion. Cause of Corrosion: Electrochemical Mechanism of Corrosion (Rusting of Iron) Corrosion Any process of deterioration (or destruction) and consequent loss of a solid metallic material, through an unwanted (or unintentional) chemical or electrochemical attack by its environment, starting

More information

An Introduction to STEEL-IT Brand Coatings and Instructions For Their Proper Application

An Introduction to STEEL-IT Brand Coatings and Instructions For Their Proper Application An Introduction to STEEL-IT Brand Coatings and Instructions For Their Proper Application September 13, 2017 Table of Contents TOPIC PAGE Introduction Typical uses of STEEL-IT Brand Coatings 1 STEEL-IT:

More information

Technical Note SALES. Page

Technical Note SALES. Page 1 C Technical Note SALES Title Corrosion and Hardware Recommendations for Treated Wood What affects the choice of hardware for treated wood? Maintaining the structural integrity of the fastener or connector

More information

Strength in unity. Quelle/Publication: European Coatings Journal. Seite/Page:

Strength in unity. Quelle/Publication: European Coatings Journal. Seite/Page: 1 Strength in unity A waterborne hybrid protective coating system has been developed which provides very high salt spray resistance with very low VOC levels Careful selection of the binder system was required

More information

CATHODIC PROTECTION FOR SOIL STEEL BRIDGES 1

CATHODIC PROTECTION FOR SOIL STEEL BRIDGES 1 ARCHIWUM INSTYTUTU INŻYNIERII LĄDOWEJ Nr 23 ARCHIVES OF INSTITUTE OF CIVIL ENGINEERING 2017 CATHODIC PROTECTION FOR SOIL STEEL BRIDGES 1 Karol BZDAWKA PhD, Viacon sp. z o.o. Cathodic Protection (CP) was

More information

M-PP AUTODEPOSITION 966 COATINGS AND UV CURABLE POWDER COATINGS. Todd Coggins Henkel Corporation Mike Knoblauch Keyland Polymer UV Powder

M-PP AUTODEPOSITION 966 COATINGS AND UV CURABLE POWDER COATINGS. Todd Coggins Henkel Corporation Mike Knoblauch Keyland Polymer UV Powder M-PP AUTODEPOSITION 966 COATINGS AND UV CURABLE POWDER COATINGS Todd Coggins Henkel Corporation Mike Knoblauch Keyland Polymer UV Powder Abstract Bonderite M-PP 966 coating has achieved high levels of

More information

Waterbased Range Protective coating solutions that cover your needs

Waterbased Range Protective coating solutions that cover your needs PROTECTIVE COATINGS SIGMA COATINGS Waterbased Range Protective coating solutions that cover your needs Sigma AquaCover 400 Sigma AquaCover 200 Sigma AquaCover 45 Sigma AquaCover 40 Sigma AquaCover 35 Sigma

More information

SIGMAZINC 160. Revision of March 2007 DESCRIPTION. two component moisture curing inorganic zinc (ethyl) silicate primer PRINCIPAL CHARACTERISTICS

SIGMAZINC 160. Revision of March 2007 DESCRIPTION. two component moisture curing inorganic zinc (ethyl) silicate primer PRINCIPAL CHARACTERISTICS 5 pages Revision of March 2007 DESCRIPTION PRINCIPAL CHARACTERISTICS COLOURS AND GLOSS BASIC DATA AT 20 C Mass density Volume solids VOC (supplied) Recommended dry film thickness Theoretical spreading

More information

Keith Legg. Rowan Technology Group, Libertyville, IL , 3/2012 Granta EMIT

Keith Legg. Rowan Technology Group, Libertyville, IL , 3/2012 Granta EMIT Keith Legg Rowan Technology Group, Libertyville, IL 847-680-9420, klegg@rowantechnology.com 3/2012 Granta EMIT Classifying more and more chemicals as SVHCs Chemicals drop from market as soon as put forward

More information

SIGMAZINC 158. Revision of September 2008 DESCRIPTION. two component moisture curing zinc (ethyl) silicate primer PRINCIPAL CHARACTERISTICS

SIGMAZINC 158. Revision of September 2008 DESCRIPTION. two component moisture curing zinc (ethyl) silicate primer PRINCIPAL CHARACTERISTICS 5 pages Revision of September 2008 DESCRIPTION PRINCIPAL CHARACTERISTICS COLOURS AND GLOSS BASIC DATA AT 20 C Mass density Volume solids VOC (supplied) Recommended dry film thickness Theoretical spreading

More information

Chromate-free inhibitor and non-chrome fuel tank coatings

Chromate-free inhibitor and non-chrome fuel tank coatings Chromate-free inhibitor and non-chrome fuel tank coatings Dr. Jeannine E. Elliott Dr. Ron Cook 2009 ASETS Defense Sept 2, 2009 Research Research Inc. Inc. Wheat Wheat Ridge, Ridge, CO CO 80033 80033 www.tda.com

More information

Silicate- or epoxy zinc primers The superior protection

Silicate- or epoxy zinc primers The superior protection Abstract The application of zinc-rich primers on ferrous substrates is a very efficient method of anticorrosion protection. It is a known fact that to achieve a long life coating system you need a zinc

More information

Solutions. for Severe Corrosion

Solutions. for Severe Corrosion Solutions for Severe Corrosion Linas Mazeika, President, 3L&T Inc., USA, reveals how to prevent equipment corrosion caused by hot combustion gases in a cement plant. Summary The serious economic consequences

More information

Corrosion Resistance of Aluminum

Corrosion Resistance of Aluminum All Aluminum Technical Traits of Great Passion Corrosion Resistance of Aluminum An All Aluminum Technical Journal January 2008 Physical properties are defined by ASTM testing standards, The Aluminum Association

More information

More than just a Zinc Phosphate. Zinc Phosphate ZP 10

More than just a Zinc Phosphate. Zinc Phosphate ZP 10 More than just a Zinc Phosphate Zinc Orthophosphate Hydrate Corrosion can be inhibited by chemical and/or electrochemical (Active Pigments) or physical (Barrier Pigments) processes of anticorrosive pigments.

More information

A NEW APPROACH TO THE PROBLEM OF CORROSION CONTROL IN MARINE ENVIRONMENT. By Boris A. Miksic. Published: November-December 1975 Marine Equipment News

A NEW APPROACH TO THE PROBLEM OF CORROSION CONTROL IN MARINE ENVIRONMENT. By Boris A. Miksic. Published: November-December 1975 Marine Equipment News A NEW APPROACH TO THE PROBLEM OF CORROSION CONTROL IN MARINE ENVIRONMENT By Boris A. Miksic Published: November-December 1975 Marine Equipment News Boris A. Miksic is a senior research engineer with Northern

More information

Implication of Atmospheric Wetness Levels on Corrosion at a Coating Defect during Accelerated Testing

Implication of Atmospheric Wetness Levels on Corrosion at a Coating Defect during Accelerated Testing Implication of Atmospheric Wetness Levels on Corrosion at a Coating Defect during Accelerated Testing James F. Dante Southwest Research Institute ASETS Defense 8/28/2012 Report Documentation Page Form

More information

UNIT-I ELECTROCHEMISTRY PART-A

UNIT-I ELECTROCHEMISTRY PART-A UNIT-I ELECTROCHEMISTRY PART-A 1. What is electrochemistry? 2. What do you understand by electrode potential? 3. Define E.M.F of an electrochemical cell? 4. Define (a) Single electrode potential (b) Standard

More information

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series A Faculty of Chemical Technology 16 (2010)

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series A Faculty of Chemical Technology 16 (2010) SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series A Faculty of Chemical Technology 16 (2010) ANTICORROSION PROPERTIES OF ION- EXCHANGABLE PIGMENTS IN EPOXIDE COATINGS Štěpán OBRDLÍK 1, Andréa KALENDOVÁ

More information

PREMATURE FAILURE OF REPAINTED EPOXY ON THE BOTTOM PLATE OF A MAIN FUEL OIL TANK - A CASE STUDY 1

PREMATURE FAILURE OF REPAINTED EPOXY ON THE BOTTOM PLATE OF A MAIN FUEL OIL TANK - A CASE STUDY 1 PREMATURE FAILURE OF REPAINTED EPOXY ON THE BOTTOM PLATE OF A MAIN FUEL OIL TANK - A CASE STUDY 1 M. Mobin and A.U. Malik Saline Water Desalination Research Institute Saline Water Conversion Corporation

More information

Computer Aided Corrosion Prevention.

Computer Aided Corrosion Prevention. Computer Aided Corrosion Prevention Robrecht.Belis@elsyca.com Agenda Introduction Corrosion on BIW Corrosion on exterior decorative parts Galvanic Corrosion Ecological impact Corrosion? Introduction of

More information

DENROSS NE Specialized Cleaning & Coating Services

DENROSS NE Specialized Cleaning & Coating Services DENROSS NE Specialized Cleaning & Coating Services Pulp & Paper Mill Asset Preservation Maintenance Cleaning & Coating 1 Denross NE Headquartered in Lewiston, Maine, Von Mehl Company, Inc - Denross group

More information