FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE

Size: px
Start display at page:

Download "FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE"

Transcription

1 FSI ANALYSIS OF TRAILING EDGE REGION COOLING IN HP STAGE TURBINE BLADE Harishkumar Kamat Chandrakant R Kini Engineering,Manipal Institute of Technology, Engineering,Manipal Institute of Technology, N Yagnesh Sharma Engineering, Manipal Institute of Technology, Abstract - Gas turbines play a vital role in the today s industrialized society, and as the demands for power increase, the power output and thermal efficiency of gas turbines must also increase. Modern high-speed aero-engines operate at elevated temperatures about 2000 K to achieve better cycle efficiencies. The internal cooling techniques of the gas turbine blade includes: jet impingement, rib turbulated cooling, and pin-fin cooling which have been developed to maintain the metal temperature of turbine blades within acceptable limits. Since FSI is the objective of this analysis, the blade loading corresponding to the static pressure as well as temperature field on the blades surfaces are obtained using CFD run. The output results are then used as structural boundary condition to solve FSI, using finite element method. The present work brings out thermal and structural deformation of the HP stage gas turbine blade. A parametric approach is used for varying the cooling duct geometry to optimize the cooling process. It is found from the FSI analysis that cooling passages having pin fins and aerofoil fins in the trailing edge region achieve maximum thermal performance in terms of cooling and in turn reduce structural distortion. Keywords - FSI analysis, Fins, Trailing edge cooling, blade deformation I. INTRODUCTION Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form, and are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine section. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500 C; however, this temperature exceeds the melting temperature of the metal blades. From Brayton cycle it is known that the increase in pressure ratio and turbine inlet temperature increases the gas turbine thermal efficiency. However, increasing the pressure ratio beyond a certain value at any given firing temperature can actually result in lowering the overall cycle efficiency. As TIT increases, the heat transferred to the blades in the 41

2 turbine also increases. The temperature level and variations on the turbine blade cause thermal stresses which must be limited to achieve reasonable durability goals [1]. II. COMPUTATIONAL DOMAIN FOR THE ANALYSIS In the trailing edge, fins are introduced into the cooling passage to improve cooling. Three shapes are analysed to determine which would provide maximum and efficient cooling and lower deformation [1]. A line is chosen along the blade surface which is at 70 % chord length to compare each design based on blade deformation along the line. A. Pin fin Three rows of pin fins are arranged in two patterns. The first includes fins arranged in an array, and in the second, fins are arranged in a staggered pattern as shown in Figure 1. Analysis is performed to determine the most effective pattern which would be followed for the other shapes. Based on the concept of increased surface area resulting in increased heat transfer, diameters of the fins are varied to determine the effect on thermal performance and blade deformation. Figure 1 (a) array arrangement of fins, (b) staggered arrangement of fins B. Triangular Fins Triangular fins are modelled by maintaining the crosssectional area constant. Additionally, the fins are arranged in four orientations to optimize airflow and provide the best thermal and structural performance. Study of orientation of fins is important since airflow can be studied which helps to analyse flow pattern, obstructions in flow, and the variation of turbulence. The orientations are shown in Figure 2. Figure 2 triangular fins - (a) orientation 1, (b) orientation 2, (c) orientation 3, (d) orientation 4 C. Airfoil fins Figure 3 airfoil fins - (a) orientation 1, (b) orientation 2,(c) orientation 3, (d) orientation 4 Airfoils are well known for their aerodynamics. Similar to the triangular fins, the airfoil fins are arranged in the same four orientations. The orientations are shown in Figure 3. Fins are created in the trailing edge to increase heat transfer, thus improving cooling. Three shapes and four orientations are analysed. Different models are compared based on blade deformation and airflow around the fins and within the blade. III.NUMERICAL MODEL AND SOLUTION PROCEDURE At the outset, a CFD analysis was performed on gas turbine cooling duct to capture temperature and pressure field related to cooling air medium present within the duct. This was followed by a finite element analysis of the gas turbine blade structure for steady state thermal cooling of the blade for which the results of CFD was used as thermal boundary condition to capture temperature stresses that are developed due to relatively hot blade [2].The steady state thermal analysis was carried out by importing the 3D gas turbine blade geometry into Workbench [3]. The blade is re-meshed with an unstructured mesh containing 3D tetrahedral elements. Surface thermal loads 42

3 corresponding to ambient convective boundary condition of the hot gas surrounding the blade as well as heat flux dissipated by the cooling ducts on the inside blade surface were imported from fluid flow analysis computed from CFD run. A convective boundary condition of hot gas with free stream temperature of 1561 K and convective heat transfer coefficient of 2028 W/m 2 K is applied to the blade surface [3-9].Further for the FSI analysis, a structural analysis was carried out by re-meshing the blade domain with an unstructured mesh containing 3D tetrahedral elements. The pressure loading over the blade surface due to ambient hot combustion gases were applied over the outer blade surface, whereas pressure loads at the interface from the cooling duct were imported from CFD run. The steady state blade temperatures were also imported in order to carry out static structural analysis. The hub being fixed to rotor disc is assumed to be fully constrained and the rated speed of the turbine blade was taken as 3600 rpm [2]. IV. RESULTS AND DISCUSSIONS A. Pin fin From Table II, it is seen that staggered arrangement of fins is better than that of array. This can be clearly justified by the path lines of air in the cooling channel. In an array arrangement of fins, when the incoming air comes in the contact with the first few rows of fins, velocity reduces and is unable to cool the fins which are further ahead. This causes higher temperatures at the top of the blade resulting in majority of the blade being hotter. However, in a staggered arrangement, fins are placed in a triangular manner which causes air to come in contact with the first few rows and divert outward (towards the adjacent columns of fins). This results in a cooler blade surface resulting in lower deformation of mm as seen in figure 5. Table II Comparison of blade deformation between array and staggered arrangement of fins Figure 5 Deformation of blade along the span of the blade Diameter Analysis: A diameter analysis is performed and from Table III it is found that 5mm provides the best thermal performance resulting in lower deformation. While 7 mm seems to be the best due to highest surface area, it resulted in the restriction of airflow due to narrow gaps between the fins resulting in marginal increase in total deformation. Hence, 5mm is better due to high surface area as well as smooth airflow around the fins resulting in marginal lower deformation as shown in figure 6. Table III Diameter analysis of pin fins 43

4 Figure 6 Deformation of blade along the span of the blade for different diameters of pin fins Figure 7 Contours of deformation for pin fins having diameter 1 mm and 3 mm Figure 10 Contours of deformation for triangular fins having orientation 1 and 2 Figure 8 Contours of deformation for pin fins having diameter 5 mm and 7 mm Figure 7 and 8 shows contours of total deformation for pin fins having different diameters. B. Triangular Fins Table IV Comparison of blade deformation between orientations of triangular fins Figure 9 Deformation of blade along the span of the blade for different orientations of triangular fins Figure 11 Contours of deformation for triangular fins having orientation 3 and 4 The airflow patterns play a crucial role in determining the optimum orientation. While the aim is to reduce the highest temperature on the blade, it s also important to cool the entire blade surface. Therefore, orientation 3 proves to be the most effective orientation since it has resulted in lower deformation of as shown in table IV. It can be noted there is very negligible change in deformation for the different orientations of triangular fins as seen in figure 9.Figure 10 and 11 shows contours of total deformation for triangular fins having different orientations. C. Airfoil Fins Similar to triangular fins, it s difficult to decide the optimum orientation from pathline plots [1]. While orientation 3 was the best for triangular fins, it s not necessary that the same orientation would have the same effect on different shapes. This is because every shape diverts and directs flow in different patterns, thus making it important to analyse all orientations for every shape. For airfoil fins, from Table V it can be seen that orientation 4 provides the least deformation of the blade as seen in figure 12, hence orientation 4 is chosen as the optimum one. 44

5 Figure 12 Deformation of blade along the span of the blade for different orientations of aerofoil fins Table V Comparison of blade deformation between orientations of airfoil fins V. CONCLUSIONS It is seen that fins provide an augmented convective area for better heat dissipation and result in lower deformation. The fins also act as hindrances which disrupts the smooth flow of air, hence increasing turbulence. This increased turbulence improves heat dissipation rate resulting reduction in deformation. The shape and orientation of fins plays a major role in air flow patterns. This can greatly affect the heat dissipation rate as well as total deformation of the blade. The deformation plots have a wavy nature because of the presence of equally spaced fins within the blade. REFERENCES [1] Kini CR, Yalamarty SS, Mendonca RM, Sharma NY, Satish Shenoy B. CHT Analysis of Trailing Edge Region Cooling In HP Stage Turbine Blade, Indian Journal of Science and Technology,2016,9(6), pp [2] Kini CR, Sharma NY, Satish Shenoy B. Thermo- Structural Investigation of Gas Turbine Blade Provided with Helicoidal Passages, Indian Journal of Science and Technology, 2006, 9(6), pp [3] Kini CR, Shenoy B S, Sharma NY. Thermo-structural analysis of HP stage gas turbine blades having helicoidal cooling ducts, International Journal of Advancements in Mechanical and Aeronautical Engineering, 2014, 1(2), pp [4] Kini CR, Satish Shenoy B, Sharma NY.A Computational Conjugate Thermal Analysis of HP Stage Turbine Blade Cooling with Innovative Cooling Passage Geometries, Journal of Lecture Notes in Engineering and Computer Science, 2011 Jul, 2192 (1), pp [5] Kini CR, Satish Shenoy B, Sharma NY. Computational Conjugate Heat Transfer Analysis of HP Stage Turbine Blade Cooling: Effect of Turbulator Geometry in Helicoidal Cooling Duct, Proceedings of World Academy of Science Engineering and Technology Special Journal Issue, UK,2011, pp [6] Kini CR, Satish Shenoy B, Sharma NY, Numerical Analysis of Gas Turbine HP Stage Blade Cooling with New Cooling Duct Geometries, International Journal of Earth Sciences and Engineering, 2012,5(2), pp [7] Kini CR, Shenoy B S, Sharma NY. (in press), Effect of grooved cooling passage near the trailing edge region for HP stage gas turbine blade -A numerical investigation, Progress in Computational Fluid Dynamics, An International Journal, 2016 [8] Choi J, Mhetras S, Han J. Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models with Internal Perforated Blockages, Journal of heat transfer by ASME, 2008, 130(1), pp.13. [9] Li X, Wang T. Two phase flow simulation of mist film cooling on Turbine blades with conjugate internal cooling, Journal of Heat Transfer, 2008 Oct, 130(1), pp. 13. [10] Material Properties [Online]. Available: 20alloy%20105.pdf 45

NUMERICAL SIMULATION OF INTERNAL COOLING EFFECT OF GAS TURBINE BLADES USING V SHAPED RIBS

NUMERICAL SIMULATION OF INTERNAL COOLING EFFECT OF GAS TURBINE BLADES USING V SHAPED RIBS NUMERICAL SIMULATION OF INTERNAL COOLING EFFECT OF GAS TURBINE BLADES USING V SHAPED RIBS Harishkumar Kamat Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal

More information

Effect of Twisted Tape Inserts and Stacks on Internal Cooling of Gas Turbine Blades

Effect of Twisted Tape Inserts and Stacks on Internal Cooling of Gas Turbine Blades Indian Journal of Science and Technology, Vol 9(31), DOI: 10.17485/ijst/2016/v9i31/95978, August 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Effect of Twisted Tape Inserts and Stacks on Internal

More information

DESIGN AND ANALYSIS OF GAS TURBINE INTERNAL COOLING PASSAGE P.Sethunathan, S.Prathap, M. Prabakaran, S. Pawanraj, R. Siddharth

DESIGN AND ANALYSIS OF GAS TURBINE INTERNAL COOLING PASSAGE P.Sethunathan, S.Prathap, M. Prabakaran, S. Pawanraj, R. Siddharth ISSN 2320-9135 1 Volume 2, Issue 6, June 2014, Online: ISSN 2320-9135 DESIGN AND ANALYSIS OF GAS TURBINE INTERNAL COOLING PASSAGE P.Sethunathan, S.Prathap, M. Prabakaran, S. Pawanraj, R. Siddharth Assistant

More information

NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE

NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE S643 NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE by Yong-Hui XIE *, Dong-Ting YE, and Zhong-Yang SHEN School of Energy

More information

Heat Transfer Analysis of Gas Turbine Rotor Blade Cooling Through Staggered Holes using CFD

Heat Transfer Analysis of Gas Turbine Rotor Blade Cooling Through Staggered Holes using CFD Heat Transfer Analysis of Gas Turbine Rotor Blade Cooling Through Staggered Holes using CFD Priyanka Singh* * M. Tech Student Department of Mechanical Engineering Millennium Institute of Technology Bhopal(M.P)

More information

ANALYSIS OF TURBINE BLADE COOLING USING RIBS

ANALYSIS OF TURBINE BLADE COOLING USING RIBS ANALYSIS OF TURBINE BLADE COOLING USING RIBS 1 J. EUNICE JENNIFER, 2 A. KANDHAN, 3 S.SHINY, 4 BIKASH KUMAR MONDAL Department of Aeronautical Engineering, KCG College of Technology, KCG Nagar, Rajiv Gandhi

More information

Evaluating Performance of Steam Turbine using CFD

Evaluating Performance of Steam Turbine using CFD Evaluating Performance of Steam Turbine using CFD Sivakumar Pennaturu Department of Mechanical Engineering KL University, Vaddeswaram, Guntur,AP, India Dr P Issac prasad Department of Mechanical Engineering

More information

MODERN PRACTICES FOR MEASUREMENT OF GAS PATH PRESSURES AND TEMPERATURES FOR PERFORMANCE ASSESSMENT OF AN AXIAL TURBINE

MODERN PRACTICES FOR MEASUREMENT OF GAS PATH PRESSURES AND TEMPERATURES FOR PERFORMANCE ASSESSMENT OF AN AXIAL TURBINE Review of the Air Force Academy No.1 (33)/2017 MODERN PRACTICES FOR MEASUREMENT OF GAS PATH PRESSURES AND TEMPERATURES FOR PERFORMANCE ASSESSMENT OF AN AXIAL TURBINE Daniel OLARU, Valeriu VILAG, Gheorghe

More information

Design and Analysis of Gas Turbine Blade with Varying Pitch of Cooling Holes

Design and Analysis of Gas Turbine Blade with Varying Pitch of Cooling Holes Design and Analysis of Gas Turbine Blade with Varying Pitch of Cooling Holes Lalit Dhamecha #1, Shubham Gharde *2, Ganraj More #3, M.J.Naidu *4 #1 Department of Mechanical Engineering Smt. Kashibai Navale

More information

ANALYSIS OF COOLING TECHNIQUES OF A GAS TURBINE BLADE

ANALYSIS OF COOLING TECHNIQUES OF A GAS TURBINE BLADE ANALYSIS OF COOLING TECHNIQUES OF A GAS TURBINE BLADE G. Anil Kumar 1, Dr. I.N. Niranjan Kumar 2, Dr. V. Nagabhushana Rao 3 1 M.Tech Marine Engineering and Mechanical Handling, Andhra University College

More information

Behaviour of Secondary Coolant Flow on the Turbine Blade Surface

Behaviour of Secondary Coolant Flow on the Turbine Blade Surface Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 124 DOI: 10.11159/htff16.124 Behaviour of Secondary

More information

CFD ANALYSIS OF SOLAR HEATER WATER PIPE WITH DIFFERENT INCLINATION

CFD ANALYSIS OF SOLAR HEATER WATER PIPE WITH DIFFERENT INCLINATION International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249-6890; ISSN(E): 2249-8001 Vol. 4, Issue 2, Apr 2014, 55-62 TJPRC Pvt. Ltd. CFD ANALYSIS OF

More information

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD Ruchi Khare, Vishnu Prasad and Sushil Kumar Ruchi Khare Vishnu Prasad Sushil Kumar Abstract: The testing of physical

More information

THEORETICAL ANALYSIS OF GAS TURBINE BLADE BY FINITE ELEMENT METHOD

THEORETICAL ANALYSIS OF GAS TURBINE BLADE BY FINITE ELEMENT METHOD THEORETICAL ANALYSIS OF GAS TURBINE BLADE BY FINITE ELEMENT METHOD B. Deepanraj*, P. Lawrence** and G. Sankaranarayanan*** *Department of Mechanical Engineering, Adhiparasakthi Engineering College, Melmaruvathur,

More information

Blade number effect for a ducted wind turbine

Blade number effect for a ducted wind turbine Journal of Mechanical Science and Technology (8) 984~99 Journal of Mechanical Science and Technology www.springerlink.com/content/738-494x DOI.7/s6-8-743-8 Blade number effect for a ducted wind turbine

More information

STUDY OF HEAT TRANSFER THROUGH RECTANGULAR DUCT IN A GAS TURBINE

STUDY OF HEAT TRANSFER THROUGH RECTANGULAR DUCT IN A GAS TURBINE International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 5, May 2017, pp. 490 495, Article ID: IJMET_08_05_052 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtyp

More information

Structural & Thermal Analysis of Gas Turbine Blade at Varying Operating Conditions

Structural & Thermal Analysis of Gas Turbine Blade at Varying Operating Conditions Volume-5, Issue-3, June-2015 International Journal of Engineering and Management Research Page Number: 24-28 Structural & Thermal Analysis of Gas Turbine Blade at Varying Operating Conditions R.D.V.Prasad

More information

EFFECT OF COMBINED HOLE CONFIGURATION ON FILM COOLING WITH AND WITHOUT MIST INJECTION

EFFECT OF COMBINED HOLE CONFIGURATION ON FILM COOLING WITH AND WITHOUT MIST INJECTION THERMAL SCIENCE: Year 2018, Vol. 22, No. 5, pp. 1923-1931 1923 EFFECT OF COMBINED HOLE CONFIGURATION ON FILM COOLING WITH AND WITHOUT MIST INJECTION by Ke TIAN a, Jin WANG a*, Chao LIU a, Jakov BALETA

More information

Methods for Evaluating Advanced Electronics Cooling Systems

Methods for Evaluating Advanced Electronics Cooling Systems A W H I T E WP AH PIE TR EF R OP MA AP N ES YR S, I N C. Methods for Evaluating Advanced Electronics Cooling Systems Hossam Metwally, PhD Senior Consulting Engineer, Electronics Industry Fluent Inc. ABSTRACT

More information

Steady State Thermal & Structural Analysis Of Gas Turbine Blade Cooling System

Steady State Thermal & Structural Analysis Of Gas Turbine Blade Cooling System Steady State Thermal & Structural Analysis Of Gas Turbine Blade Cooling System R D V Prasad 1, G Narasa Raju 2, M S SSrinivasa Rao 3, N Vasudeva Rao 4 PG Student 1, Assoc.Prof 2, Sr. Asst.Prof 3,Asst.Prof

More information

Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine

Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine M. D. Barringer K. A. Thole Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 M. D. Polanka Air Force Research Laboratory, Turbines Branch,

More information

Heat Transfer Analysis of Gas Turbine Rotor Blade. Through Staggered Holes Using CFD

Heat Transfer Analysis of Gas Turbine Rotor Blade. Through Staggered Holes Using CFD Heat Transfer Analysis of Gas Turbine Rotor Blade Through Staggered Holes Using CFD Priyanka Singh*, O P Shukla** * M. Tech Student Department of mechanical engineering Millennium Institute of technology

More information

THERMAL ANALYSIS OF A GAS TURBINE BLADE

THERMAL ANALYSIS OF A GAS TURBINE BLADE THERMAL ANALYSIS OF A GAS TURBINE BLADE N.VINAY KUMAR 1, P.RAJU 2 AND P.SRINIVASULU 3 1 M.tech (te) student Department of mechanical engineering, vaagdevi college of engineering Boolikunta, warangal,telangana,

More information

Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques

Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques Research Journal of Engineering Sciences ISSN 2278 9472 Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques Abstract Mishra A.K., Nawal S. and Thundil

More information

Modelling Of Gas Turbine Rotor Blade with Internal Cooling Passages

Modelling Of Gas Turbine Rotor Blade with Internal Cooling Passages Modelling Of Gas Turbine Rotor Blade with Internal Cooling Passages Ganesh Cheemanapalle 1, S Praveen Kumar 2, Sreenivasulu Bezawada 3 1 M.Tech Scholar, Department of Mechanical, Madanapalle Institute

More information

Design and Fatigue Analysis of Turbine Rotor Blade by Using F.E.M

Design and Fatigue Analysis of Turbine Rotor Blade by Using F.E.M Design and Fatigue Analysis of Turbine Rotor Blade by Using F.E.M Murali. K M.Tech Student, (Machine Design), Mechanical Engineering Department, Sarada Institute of Science Technology and management. ABSTRACT:

More information

FLUID STRUCTURE INTERACTION MODELLING OF WIND TURBINE BLADES BASED ON COMPUTATIONAL FLUID DYNAMICS AND FINITE ELEMENT METHOD

FLUID STRUCTURE INTERACTION MODELLING OF WIND TURBINE BLADES BASED ON COMPUTATIONAL FLUID DYNAMICS AND FINITE ELEMENT METHOD Proceedings of the 6th International Conference on Mechanics and Materials in Design, Editors: J.F. Silva Gomes & S.A. Meguid, P.Delgada/Azores, 26-30 July 2015 PAPER REF: 5769 FLUID STRUCTURE INTERACTION

More information

Study of a Supercritical CO 2 Turbine with TIT of 1350 K for Brayton Cycle with 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane

Study of a Supercritical CO 2 Turbine with TIT of 1350 K for Brayton Cycle with 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane Study of a Supercritical CO 2 Turbine with TIT of 1350 K for Brayton Cycle with 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane Joshua Schmitt, Rachel Willis, David Amos, Jay Kapat Center for

More information

Augmented Heat Transfer of Internal Blade Tip Wall by Pin-fin Arrays

Augmented Heat Transfer of Internal Blade Tip Wall by Pin-fin Arrays Group Seminar,, Division of Heat Transfer, LTH, Nov 13, 2008 Augmented Heat Transfer of Internal Blade Tip Wall by Pin-fin Arrays Gongnan Xie Supervised by Prof. Bengt Sundén, Division of Heat Transfer,

More information

Large Eddy Simulation of temperature distribution in an aero engine annular combustor with a swirler and Nanoparticle injection

Large Eddy Simulation of temperature distribution in an aero engine annular combustor with a swirler and Nanoparticle injection Large Eddy Simulation of temperature distribution in an aero engine annular combustor with a swirler and Nanoparticle injection 1 Vishnu Sasidharan, 2 Arun Kumar A.R Assistant professor Department of Aeronautical

More information

Analysis of Natural Convention Heat Transfer Enhancement in Finned Tube Heat Exchangers

Analysis of Natural Convention Heat Transfer Enhancement in Finned Tube Heat Exchangers Invention Journal of Research Technology in Engineering & Management (IJRTEM) ISSN: 2455-3689 www.ijrtem.com ǁ Volume 1 ǁ Issue 7 ǁ Analysis of Natural Convention Heat Transfer Enhancement in Finned Tube

More information

Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers APCOM & ISCM 11-14 th December, 2013, Singapore Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers *E. Sauret¹, S. C. Saha¹, and Y. T. Gu¹ 1 School of Chemistry, Physics and Mechanical

More information

Comparative Analysis of Different Orifice Geometries for Pressure Drop

Comparative Analysis of Different Orifice Geometries for Pressure Drop IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X Comparative Analysis of Different Orifice Geometries for Pressure Drop C. R. Sanghani

More information

EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD

EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD EVALUTION OF EROSION WEAR OF CETRIFUGAL PUMP USING CFD Satish kumar Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, (India) ABSTRACT Centrifugal pumps are extensively

More information

Heat transfer enhancement in fire tube boiler using hellically ribbed tubes

Heat transfer enhancement in fire tube boiler using hellically ribbed tubes Heat transfer enhancement in fire tube boiler using hellically ribbed tubes Miss Simantini Balasaheb Kute --------------------------------------------------------***-------------------------------------------------------------

More information

AEROTHERMAL PERFORMANCE OF PARTIAL AND CAVITY SQUEALER TIP IN A LINEAR TURBINE CASCADE

AEROTHERMAL PERFORMANCE OF PARTIAL AND CAVITY SQUEALER TIP IN A LINEAR TURBINE CASCADE Journal of Thermal Engineering CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING ISTANBUL 2016 ICAME2016 11-13 May 2016, Yildiz Technical University, Istanbul, Turkey AEROTHERMAL PERFORMANCE OF PARTIAL

More information

INVESTIGATION OF FLOW CHARACTERISTICS OF HELLER-TYPE COOLING TOWERS WITH DIFFERENT COOLING DELTA ANGLES

INVESTIGATION OF FLOW CHARACTERISTICS OF HELLER-TYPE COOLING TOWERS WITH DIFFERENT COOLING DELTA ANGLES PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 47, NO. 2, PP. 143 150 (2003) INVESTIGATION OF FLOW CHARACTERISTICS OF HELLER-TYPE COOLING TOWERS WITH DIFFERENT COOLING DELTA ANGLES Nimród KAPÁS Department

More information

SIEMENS SGT-800 INDUSTRIAL GAS TURBINE ENHANCED TO 47MW. DESIGN MODIFICATIONS AND OPERATION EXPERIENCE

SIEMENS SGT-800 INDUSTRIAL GAS TURBINE ENHANCED TO 47MW. DESIGN MODIFICATIONS AND OPERATION EXPERIENCE Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air GT2008 June 9-13, 2008, Berlin, Germany GT2008-50087 SIEMENS SGT-800 INDUSTRIAL GAS TURBINE ENHANCED TO 47MW. DESIGN MODIFICATIONS AND OPERATION

More information

CFD ANALYSIS OF HEAT TRANSFER AND CHARACTERISTICS OF SWIRL FLOW JET IMPINGEMENT COOLING

CFD ANALYSIS OF HEAT TRANSFER AND CHARACTERISTICS OF SWIRL FLOW JET IMPINGEMENT COOLING Int. J. Chem. Sci.: 14(S2), 2016, 560-568 ISSN 0972-768X www.sadgurupublications.com CFD ANALYSIS OF HEAT TRANSFER AND CHARACTERISTICS OF SWIRL FLOW JET IMPINGEMENT COOLING VARUN BHASKAR, M. PRABHAHAR,

More information

Recent Studies in Turbine Blade Cooling

Recent Studies in Turbine Blade Cooling International Journal of Rotating Machinery, 10(6): 443 457, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490503978 Recent Studies in Turbine Blade

More information

FE ANALYSIS OF RUNNER BLADE FOR WELLS TURBINE

FE ANALYSIS OF RUNNER BLADE FOR WELLS TURBINE Int. J. Mech. Eng. & Rob. Res. 2014 Kevin A Patel and Devendra A Patel, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 3, July 2014 2014 IJMERR. All Rights Reserved FE ANALYSIS OF RUNNER

More information

CHAPTER-1 INTRODUCTION

CHAPTER-1 INTRODUCTION CHAPTER-1 INTRODUCTION 1.1 COOLING OF ELECTRONIC EQUIPMENTS: In general, the sole objective of improving the cooling of electronic systems is to increase cooling capacity. The failure rate of electronic

More information

Subjects: Turbine cooling; General trends and systems; Internal cooling

Subjects: Turbine cooling; General trends and systems; Internal cooling 16.50 Lecture 29 Subjects: Turbine cooling; General trends and systems; Internal cooling Turbine cooling trends: As we have learned from our performance analyses for turbojets and turbofans, the thrust

More information

NUMERICAL INVESTIGATION OF FLOW AND TEMPERATURE CHARACTERISTICS ENHANCEMENT IN TUBOANNULAR COMBUSTOR

NUMERICAL INVESTIGATION OF FLOW AND TEMPERATURE CHARACTERISTICS ENHANCEMENT IN TUBOANNULAR COMBUSTOR Int. J. Engg. Res. & Sci. & Tech. 2016 S K MD Azharuddin et al., 2016 Research Paper ISSN 2319-5991 www.ijerst.com Vol. 5, No. 3, August 2016 2016 IJERST. All Rights Reserved NUMERICAL INVESTIGATION OF

More information

Effects of shaft supporting structure on performance test of axial flow fan

Effects of shaft supporting structure on performance test of axial flow fan IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effects of shaft supporting structure on performance test of axial flow fan To cite this article: R Ma et al 2016 IOP Conf. Ser.:

More information

EFFECT OF SYMMETRICAL COMPOUND-ANGLE IN COMBINED-HOLE FILM COOLING

EFFECT OF SYMMETRICAL COMPOUND-ANGLE IN COMBINED-HOLE FILM COOLING EFFECT OF SYMMETRICAL COMPOUND-ANGLE IN COMBINED-HOLE FILM COOLING Haswira Hassan and Kamil Abdullah Center for Energy and Industrial Environmental Studies, Faculty of Mechanical and Manufacturing Engineering,

More information

Computational Modeling of Counter Flow Heat Exchanger for LMTD Analysis

Computational Modeling of Counter Flow Heat Exchanger for LMTD Analysis Computational Modeling of Counter Flow Heat Exchanger for LMTD Analysis Shuvam Mohanty 1, Shofique Uddin Ahmed 2 1, 2 Student, M. Tech, Department Of Mechanical Engineering, Amity University Gurgaon, Haryana

More information

Three-Dimensional Numerical Simulation of a Model Wind Turbine

Three-Dimensional Numerical Simulation of a Model Wind Turbine Three-Dimensional Numerical Simulation of a Model Wind Turbine N. Tabatabaei 1, M.J. Cervantes 1,2, C. Trivedi 2, J-O Aidanpää 1 1 Luleå University of Technology, Sweden 2 Norwegian University of Science

More information

Heat Transfer Simulation of Impinging Jet with Finned Heat Sink

Heat Transfer Simulation of Impinging Jet with Finned Heat Sink Heat Transfer Simulation of Impinging Jet with Finned Heat Sink Shivakumar H 1, Krishnamurthy K N 2, Akashdeep B.N 3 Department of Thermal power Engineering, M.Tech student 1, Assistant professor 2, VTU

More information

CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS

CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS T. FUKUE 1, C. SPITAS 2, M. DWAIKAT 3 and M. ISHIZUKA 4 1 Department

More information

UTSR Summer Fellowship at GE Energy Gas Turbine Aero Group NEXT GENERATION GAS TURBINE (NGGT) AERO RIG

UTSR Summer Fellowship at GE Energy Gas Turbine Aero Group NEXT GENERATION GAS TURBINE (NGGT) AERO RIG UTSR Summer Fellowship at GE Energy Gas Turbine Aero Group NEXT GENERATION GAS TURBINE (NGGT) AERO RIG Juan Hincapie University of Louisiana at Lafayette Mentor: Neil Ristau Manager: Gunnar Siden 1 INTRODUCTION

More information

Abstract. 1. Introduction

Abstract. 1. Introduction CFD Analysis of Splayed Pin Fin Heat Sink for Electronic Cooling Agnihothra Sarma O 1, A Ramakrishna 2 PG Student 1, Professor 2 Department of Mechanical Engineering, BVC Engineering College, Odalarevu

More information

DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD

DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD PANKAJ JIVAN PATEL 1, KAILAS TUKARAM PATIL 2, MANKALAL HIRAJI PATIL 3 1 Student, Department of Mechanical Engineering, P.S.G.V.P.

More information

Coupled Thermal Structural Finite Element Analysis for Exhaust Manifold of an Off-road Vehicle Diesel Engine

Coupled Thermal Structural Finite Element Analysis for Exhaust Manifold of an Off-road Vehicle Diesel Engine Coupled Thermal Structural Finite Element Analysis for Exhaust Manifold of an Off-road Vehicle Diesel Engine Sweta Jain, AlkaBani Agrawal Abstract This paper present the Sequential Coupled Thermal - Structural

More information

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps Vishnu R Nair 1, Shinas K V 2, Souganth Sugathan Manjhiparambil 3 Student, Department of Mechanical Engineering, IES College of Engineering,

More information

Numerical Analysis of Heat Pipe Fin Stack by Delta Wing Vortex Generator

Numerical Analysis of Heat Pipe Fin Stack by Delta Wing Vortex Generator Numerical Analysis of Heat Pipe Fin Stack by Delta Wing Vortex Generator #1 Diksha D Nadkarni, #2 Dr.R.R.Arakerimath 1 Student, Mechanical Department, Pune University, India 2 Professor, Mechanical Department,

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Applying CFD to Characterize Gear Response During Intensive Quenching Process Andrew Banka & Jeff Franklin - Airflow Sciences Corporation Zhichao Li & B. Lynn Ferguson

More information

Heat Optimisation of Processor Cooling by Varying casing Material

Heat Optimisation of Processor Cooling by Varying casing Material e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 702-706(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

Performance Improvement on Water-cooled Cold-Plate

Performance Improvement on Water-cooled Cold-Plate Proceedings of the 4th WSEAS International Conference on Heat and Mass Transfer, Gold Coast, Queensland, Australia, January 17-19, 2007 104 Performance Improvement on Water-cooled Cold-Plate SHYAN-FU CHOU,

More information

Structural Design and Analysis of Gas Turbine Blade using CAE tools

Structural Design and Analysis of Gas Turbine Blade using CAE tools Structural Design and Analysis of Gas Turbine Blade using CAE tools Nithin Kumar K C 1, Tushar Tandon 2, Praveen Silori 3, Amir Shaikh 4 Assistant Professor 1, UG students 2, 3, Professor 4 Department

More information

Numerical Analysis to Predict the Aerodynamic Performance of Tilt Wing of a Solar Powered UAV

Numerical Analysis to Predict the Aerodynamic Performance of Tilt Wing of a Solar Powered UAV Numerical Analysis to Predict the Aerodynamic Performance of Tilt Wing of a Solar Powered UAV Dr. S. Thanigaiarasu Associate Professor Department of Aerospace Engineering Madras Institute of Technology

More information

Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics

Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics Nilesh N Patil Student Department Mechanical of Engineering D.K.T.E S Textile and Engineering Institute,

More information

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment HEAT TRANSFER ANALYSIS AND OPTIMIZATION OF FINS BY VARIATION IN GEOMETRY 1 MAYANK JAIN, 2 MAHENDRA SANKHALA, 3 KANHAIYA PATIDAR, 4 LOKESH AURANGABADKAR 1,2,3 Student, Medicaps University, Indore (M.P.)

More information

CRHT VII. Design and CFD analysis of Pico- hydro Turgo turbine. Paper no. CRHT17-11

CRHT VII. Design and CFD analysis of Pico- hydro Turgo turbine. Paper no. CRHT17-11 Proceedings of the International Symposium on Current Research in Hydraulic Turbines CRHT VII April 04, 2016, Turbine Testing Lab, Kathmandu University, Dhulikhel, Nepal Paper no. CRHT17-11 Design and

More information

Experimental Analysis of Heat Transfer Enhancement Using Fins in Pin Fin Apparatus

Experimental Analysis of Heat Transfer Enhancement Using Fins in Pin Fin Apparatus Experimental Analysis of Heat Transfer Enhancement Using Fins in Pin Fin Apparatus Allan Harry Richard.T.L Dept of Mechanical Engineering Kings College Of Engineering Thanjavur, India allhelan@gmail.com

More information

Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System

Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System Journal of Energy and Power Engineering 7 (2013) 66-73 D DAVID PUBLISHING Investigating Two Configurations of a Heat Exchanger in an Indirect Heating Integrated Collector Storage Solar Water Heating System

More information

Improving cooling effectiveness of gas turbines through design exploration

Improving cooling effectiveness of gas turbines through design exploration 50 Improving cooling effectiveness of gas turbines Energy Improving cooling effectiveness of gas turbines through design exploration Jens Dickhoff - B&B-AGEMA Masahide Kazari and Ryozo Tanaka - Kawasaki

More information

MODELING A SHROUD FOR THE WIND TURBINE AND CARRYING A FLUID FLOW ANALYSIS USING CFD SOFTWARE PACKAGE

MODELING A SHROUD FOR THE WIND TURBINE AND CARRYING A FLUID FLOW ANALYSIS USING CFD SOFTWARE PACKAGE MODELING A SHROUD FOR THE WIND TURBINE AND CARRYING A FLUID FLOW ANALYSIS USING CFD SOFTWARE PACKAGE Dr. E. S. Prakash 1, Dr. Madhukeshwara N 2, Veeresh G. Gunjalli 3, Dadapeer D 4 1 Professor, Studies

More information

HEAT TRANSFER AUGMENTATION BY PLATE FIN HEAT EXCHANGER USING CFD TECHNIQUES A REVIEW

HEAT TRANSFER AUGMENTATION BY PLATE FIN HEAT EXCHANGER USING CFD TECHNIQUES A REVIEW HEAT TRANSFER AUGMENTATION BY PLATE FIN HEAT EXCHANGER USING CFD TECHNIQUES A REVIEW Vishal Kumar Parashar 1, Chetan Jaiswal 2 1 M. Tech Scholar, 2 Associate Professor, Aravali Institute of Technical Studies,

More information

Publishable Final Activity Report

Publishable Final Activity Report Project AST5-CT-2006-030874 PUBLISHABLE - Publishable Final Activity Report Work Package No. : Work Package Title : all Task : 5.1 Report No. : Author(s) : Partner (No.) : 1 Project Co-ordination and Exploitation

More information

Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink

Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink Yu Xiaoling, Wang Qianlong, Feng Quanke School of Energy and Power Engineering, Xi an Jiaotong University, Xi an

More information

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern)

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) *4063218* [4063] 218 T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) Time : 3 Hours Marks : 100 Instructions : 1) Answer any three questions from each Section.

More information

ANSYS Combustion Analysis Solutions - Overview and Update

ANSYS Combustion Analysis Solutions - Overview and Update ANSYS Combustion Analysis Solutions - Overview and Update Gilles Eggenspieler ANSYS, Inc. 1 Agenda Overview of Combustion Analysis Solution Reduced Order Models Finite Rate Models Pollutant Models Examples

More information

Numerical Analysis of Solar Updraft Tower with Solar Load applied to Discrete Ordinate Model

Numerical Analysis of Solar Updraft Tower with Solar Load applied to Discrete Ordinate Model Numerical Analysis of Solar Updraft Tower with Solar Load applied to Discrete Ordinate Model Vinamra Kumar Rastogi 1 B. Tech. Student, Department of Mechanical and Manufacturing Engineering, Maanipal Institute

More information

Performance Analysis for Natural Draught Cooling Tower & Chimney through Numerical Simulation

Performance Analysis for Natural Draught Cooling Tower & Chimney through Numerical Simulation Performance Analysis for Natural Draught Cooling Tower & Chimney through Numerical Simulation Kanteyya A 1, Kiran Kumar Rokhade 2 Assistant Professor, Department of Mechanical Engineering, HKESSLN College

More information

ME 404: Gas Turbines Team 7 Final Report Nick Rados, Karan Sandhu, Ryan Cranston, Sean Fitzpatrick

ME 404: Gas Turbines Team 7 Final Report Nick Rados, Karan Sandhu, Ryan Cranston, Sean Fitzpatrick ME 404: Gas Turbines Team 7 Final Report Nick Rados, Karan Sandhu, Ryan Cranston, Sean Fitzpatrick NEO 1.0 Acknowledgments Our team used a compilation of references including the textbook, Elements of

More information

DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE

DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE Dr. Ruchi Khare, Dr. Vishnu Prasad, Mitrasen Verma Department of Civil Engineering M.A. National Institute of Technology Bhopal,India ruchif4@rediffmail.com

More information

Design and Analysis of 3D Blades for Wells Turbine

Design and Analysis of 3D Blades for Wells Turbine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Design and Analysis of 3D Blades for Wells Turbine Shyjo Johnson Saintgits

More information

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector Proceedings of the International Conference on Heat Transfer and Fluid Flow Prague, Czech Republic, August 11-12, 2014 Paper No. 171 Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

More information

Unsteady Flow Numerical Simulation of Vertical Axis Wind Turbine

Unsteady Flow Numerical Simulation of Vertical Axis Wind Turbine Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2014) 000 000 www.elsevier.com/locate/procedia APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology,

More information

EFFECTS OF LoD AND PoD IN COMBINED-HOLE FILM COOLING

EFFECTS OF LoD AND PoD IN COMBINED-HOLE FILM COOLING EFFECTS OF LoD AND PoD IN COMBINED-HOLE FILM COOLING Haswira Hassan and Kamil Abdullah Center for Energy and Industrial Environmental Studies, Faculty of Mechanical and Manufacturing Engineering, Universiti

More information

CFD and Wind Tunnel Study of the Performance of a Multi- Directional Wind Tower with Heat Transfer Devices

CFD and Wind Tunnel Study of the Performance of a Multi- Directional Wind Tower with Heat Transfer Devices Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 1692 1697 The 7 th International Conference on Applied Energy ICAE2015 CFD and Wind Tunnel Study of the Performance of

More information

2. LITERATURE SURVEY. Page 822

2. LITERATURE SURVEY. Page 822 Analysis of Gas Turbine Rotor Blade by Using F.E.M B.T.Naik Assistant Professor &HOD, Dept of Mechanical Engineering, Abhinav Hi-Tech College of Engineering, Hyderabad, T.S, India. Abstract: Withstanding

More information

Numerical analysis on the effect of varying number of diffuser vanes on impeller - diffuser flow interaction in a centrifugal fan

Numerical analysis on the effect of varying number of diffuser vanes on impeller - diffuser flow interaction in a centrifugal fan ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 63-71 Numerical analysis on the effect of varying number of diffuser vanes on impeller - diffuser flow interaction

More information

Design And Optimization Of A Combustion Chamber Through The Analysis Of Flow Patterns

Design And Optimization Of A Combustion Chamber Through The Analysis Of Flow Patterns Design And Optimization Of A Combustion Chamber Through The Analysis Of Flow Patterns P. Martinez-Torres, A. Clemente-Mendoza, L. Moreno-Pacheco Postgraduate Studies and Investigation Section National

More information

AUTOMOTIVE COMPACT SURPERCHARGE-AIR INTERCOOLER NUMERICAL ANALYSIS. Abstract. 1. Introduction

AUTOMOTIVE COMPACT SURPERCHARGE-AIR INTERCOOLER NUMERICAL ANALYSIS. Abstract. 1. Introduction AUTOMOTIVE COMPACT SURPERCHARGE-AIR INTERCOOLER NUMERICAL ANALYSIS G. Starace, E. Carluccio, D. Laforgia Università degli studi di Lecce, Dipartimento di Ingegneria dell Innovazione via per Arnesano, 73100,

More information

REVIEW OF STRUCTURAL AND THERMAL ANALYSIS OF GAS TURBINE BLADE

REVIEW OF STRUCTURAL AND THERMAL ANALYSIS OF GAS TURBINE BLADE Int. J. Mech. Eng. & Rob. Res. 2014 G D Ujade and M B Bhambere, 2014 Review Article ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 2, April 2014 2014 IJMERR. All Rights Reserved REVIEW OF STRUCTURAL AND THERMAL

More information

REVIEW OF STRUCTURAL AND THERMAL ANALYSIS OF GAS TURBINE BLADE

REVIEW OF STRUCTURAL AND THERMAL ANALYSIS OF GAS TURBINE BLADE Int. J. Mech. Eng. & Rob. Res. 2014 G D Ujade and M B Bhambere, 2014 Review Article ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 2, April 2014 2014 IJMERR. All Rights Reserved REVIEW OF STRUCTURAL AND THERMAL

More information

A Study of Twin Co- and Counter-Rotating Vertical Axis Wind Turbines with Computational Fluid Dynamics

A Study of Twin Co- and Counter-Rotating Vertical Axis Wind Turbines with Computational Fluid Dynamics The 16th World Wind Energy Conference, Malmö, Sweden. June 12-15, 217. A Study of Twin Co- and Counter-Rotating Vertical Axis Wind Turbines with Computational Fluid Dynamics PENG, Hua Yi* and LAM, Heung

More information

CFD Analysis of Pelton Runner

CFD Analysis of Pelton Runner International Journal of Scientific and Research Publications, Volume 4, Issue 8, August 2014 1 CFD Analysis of Pelton Runner Amod Panthee *, Hari Prasad Neopane **, Bhola Thapa ** * Turbine Testing Lab,

More information

Available online at ScienceDirect. Procedia Engineering 99 (2015 )

Available online at   ScienceDirect. Procedia Engineering 99 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (2015 ) 734 740 APISAT2014, 2014 Asia-Pacific International Symposium on Aerospace Technology, APISAT2014 Unsteady Flow Numerical

More information

Structural and Thermal Finite Element Analysis of Gas Turbine Rotor Blade

Structural and Thermal Finite Element Analysis of Gas Turbine Rotor Blade Structural and Thermal Finite Element Analysis of Gas Turbine Rotor Blade Guntukula Srikanth MLR Institute of Technology, Hyderabad. Dinesh Bajaj MLR Institute of Technology, Hyderabad. K.S.Naidu MLR Institute

More information

EasyChair Preprint. Resolving the Non-Productive Periods of Solar Chimney by Integrating with Waste-to-Energy Plant

EasyChair Preprint. Resolving the Non-Productive Periods of Solar Chimney by Integrating with Waste-to-Energy Plant EasyChair Preprint 159 Resolving the Non-Productive Periods of Solar Chimney by Integrating with Waste-to-Energy Plant Ali Habibollahzade, Ehsan Houshfar, Amir Mohammad Behzadi, Ehsan Gholamian and Mehdi

More information

ME 215. Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY. Mechanical Engineering Department. Open Systems-Control Volumes (CV)

ME 215. Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY. Mechanical Engineering Department. Open Systems-Control Volumes (CV) ME 215 Mass and Energy Analysis of Control Volumes CH-6 ÇANKAYA UNIVERSITY Mechanical Engineering Department Open Systems-Control Volumes (CV) A CV may have fixed size and shape or moving boundaries Open

More information

BOUNDARY SETTING IN SIMULATING GREENHOUSE VENTILATION BY FLUENT SOFTWARE

BOUNDARY SETTING IN SIMULATING GREENHOUSE VENTILATION BY FLUENT SOFTWARE BOUNDARY SETTING IN SIMULATING GREENHOUSE VENTILATION BY FLUENT SOFTWARE Cuiping Hou 1, 2, Chengwei Ma 1,2,* 1 College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing,

More information

NUMERICAL INVESTIGATION ON PITCH DISTANCE, COMPOUND ANGLE AND TURBULENCE INTENSITY OFDOUBLE CYLINDRICAL FILM COOLING HOLE GEOMETRY

NUMERICAL INVESTIGATION ON PITCH DISTANCE, COMPOUND ANGLE AND TURBULENCE INTENSITY OFDOUBLE CYLINDRICAL FILM COOLING HOLE GEOMETRY NUMERICAL INVESTIGATION ON PITCH DISTANCE, COMPOUND ANGLE AND TURBULENCE INTENSITY OFDOUBLE CYLINDRICAL FILM COOLING HOLE GEOMETRY Hazim Fadli Aminnuddin and Kamil Abdullah Center for Energy and Industrial

More information

Evolution of Spanwise-Hole Blade Cooling in Industrial Combustion Turbines

Evolution of Spanwise-Hole Blade Cooling in Industrial Combustion Turbines THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 92-GT-397 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings

More information

Review on Heat Transfer Enhancement Using the Wavy Fin

Review on Heat Transfer Enhancement Using the Wavy Fin ISSN 395-161 ISSN 395-161 Review on Heat Transfer Enhancement Using the Wavy Fin #1 Urade A. R., # Dunakhe Y.D, #3 Nikam N.R., #4 Pharate G.M., #5 Tingare S.V. 1 a.r.urade@gmail.com #1 Assistant Professor,

More information

Analysis on the influence of rotational speed to aerodynamic performance of vertical axis wind turbine

Analysis on the influence of rotational speed to aerodynamic performance of vertical axis wind turbine Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 245 250 International Conference on Advances in Computational Modeling and Simulation Analysis on the influence of rotational speed

More information

heat exchanger modelling for generator ventilation systems

heat exchanger modelling for generator ventilation systems heat exchanger modelling for generator ventilation systems This paper discusses how the heat exchanger/cooler is modelled using CFD (Computational Fluid Dynamics) as a porous medium and the associated

More information