CHAPTER 5 DIFFUSION PROBLEM SOLUTIONS

Size: px
Start display at page:

Download "CHAPTER 5 DIFFUSION PROBLEM SOLUTIONS"

Transcription

1 CHAPTER 5 DIFFUSION PROBLEM SOLUTIONS 5.5 (a) Briefly explain the concept of a driving force. (b) What is the driving force for steady-state diffusion? (a) The driving force is that which compels a reaction to occur. (b) The driving force for steady-state diffusion is the concentration gradient.

2 5.6 The purification of hydrogen gas by diffusion through a palladium sheet was discussed in Section 5.3. Compute the number of kilograms of hydrogen that pass per hour through a 5-mm-thick sheet of palladium having an area of 0.20 m 2 at 500 C. Assume a diffusion coefficient of m 2 /s, that the concentrations at the highand low-pressure sides of the plate are 2.4 and 0.6 kg of hydrogen per cubic meter of palladium, and that steadystate conditions have been attained. This problem calls for the mass of hydrogen, per hour, that diffuses through a Pd sheet. It first becomes necessary to employ both Equations 5.1a and 5.3. Combining these expressions and solving for the mass yields M = JAt = DAt C x = ( m 2 /s)(0.20 m kg /m3 ) (3600 s/h) m = kg/h

3 5.11 Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be conducted at 1000 C. Use the diffusion data for -Fe in Table 5.2. In order to solve this problem it is first necessary to use Equation 5.5: C x C 0 C s C 0 = 1 erf x 2 Dt wherein, C x = 0.45, C 0 = 0.20, C s = 1.30, and x = 2 mm = m. Thus, C x C 0 C s C 0 = = = 1 erf x 2 Dt or x erf = = Dt By linear interpolation using data from Table 5.1 z Uerf(z) z z = From which z = = x 2 Dt Now, from Table 5.2, at 1000 C (1273 K)

4 D = ( m 2 148, 000 J/mol /s) exp (8.31 J/mol- K)(1273 K) Thus, = m 2 /s = m (2) ( m 2 /s) (t) Solving for t yields t = s = 19.7 h

5 5.15 For a steel alloy it has been determined that a carburizing heat treatment of 10-h duration will raise the carbon concentration to 0.45 wt% at a point 2.5 mm from the surface. Estimate the time necessary to achieve the same concentration at a 5.0-mm position for an identical steel and at the same carburizing temperature. This problem calls for an estimate of the time necessary to achieve a carbon concentration of 0.45 wt% at a point 5.0 mm from the surface. From Equation 5.6b, x 2 Dt = constant But since the temperature is constant, so also is D constant, and or x 2 t = constant x2 1 = x 2 2 t 1 t 2 Thus, (2.5 mm) 2 10 h = (5.0 mm)2 t 2 from which t 2 = 40 h

6 Factors That Influence Diffusion 5.16 Cite the values of the diffusion coefficients for the interdiffusion of carbon in both α-iron (BCC) and γ-iron (FCC) at 900 C. Which is larger? Explain why this is the case. Table 5.2, We are asked to compute the diffusion coefficients of C in both and iron at 900 C. Using the data in D = ( m 2 80, 000 J/mol /s) exp (8.31 J/mol- K)(1173 K) = m 2 /s D = ( m 2 148, 000 J/mol /s) exp (8.31 J/mol- K)(1173 K) = m 2 /s The D for diffusion of C in BCC iron is larger, the reason being that the atomic packing factor is smaller than for FCC iron (0.68 versus 0.74 Section 3.4); this means that there is slightly more interstitial void space in the BCC Fe, and, therefore, the motion of the interstitial carbon atoms occurs more easily.

7 5.20 The activation energy for the diffusion of carbon in chromium is 111,000 J/mol. Calculate the diffusion coefficient at 1100 K (827 C), given that D at 1400 K (1127 C) is m 2 /s. To solve this problem it first becomes necessary to solve for D 0 from Equation 5.8 as D 0 = D exp Q d RT = ( m 2 111,000 J /mol /s)exp (8.31 J/mol- K)(1400 K) = m 2 /s Now, solving for D at 1100 K (again using Equation 5.8) gives D = ( m 2 111, 000 J/mol /s)exp (8.31 J/mol- K)(1100 K) = m 2 /s

8 5.21 The diffusion coefficients for iron in nickel are given at two temperatures: T (K) D (m 2 /s) (a) Determine the values of D 0 and the activation energy Q d. (b) What is the magnitude of D at 1100ºC (1373 K)? (a) Using Equation 5.9a, we set up two simultaneous equations with Q d and D 0 as unknowns as follows: ln D 1 lnd 0 Q d R 1 T 1 ln D 2 lnd 0 Q d R 1 T 2 Now, solving for Q d in terms of temperatures T 1 and T 2 (1273 K and 1473 K) and D 1 and D 2 ( and m 2 /s), we get Q d = R ln D 1 ln D 2 1 T 1 1 T 2 = (8.31 J/mol- K) ln ( ) ln ( ) K K = 252,400 J/mol Now, solving for D 0 from Equation 5.8 (and using the 1273 K value of D) D 0 = D 1 exp Q d RT 1

9 = ( m 2 252, 400 J/mol /s)exp (8.31 J/mol- K)(1273 K) = m 2 /s (b) Using these values of D 0 and Q d, D at 1373 K is just D = ( m 2 252, 400 J/mol /s)exp (8.31 J/mol - K)(1373 K) = m 2 /s Note: this problem may also be solved using the Diffusion module in the VMSE software. Open the Diffusion module, click on the D0 and Qd from Experimental Data submodule, and then do the following: 1. In the left-hand window that appears, enter the two temperatures from the table in the book (viz and 1473, in the first two boxes under the column labeled T (K). Next, enter the corresponding diffusion coefficient values (viz. 9.4e-16 and 2.4e-14 ). 3. Next, at the bottom of this window, click the Plot data button. 4. A log D versus 1/T plot then appears, with a line for the temperature dependence for this diffusion system. At the top of this window are give values for D 0 and Q d ; for this specific problem these values are m 2 /s and 252 kj/mol, respectively 5. To solve the (b) part of the problem we utilize the diamond-shaped cursor that is located at the top of the line on this plot. Click-and-drag this cursor down the line to the point at which the entry under the Temperature (T): label reads The value of the diffusion coefficient at this temperature is given under the label Diff Coeff (D):. For our problem, this value is m 2 /s.

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence 4-4 Impurities in Solids 4.4 In this problem we are asked to cite which of the elements listed form with Ni the three possible solid solution types. For complete substitutional solubility the following

More information

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal.

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. The circles represent atoms: (a) To what crystal system does the unit cell belong? (b) What would

More information

Chapter 5: Diffusion. Introduction

Chapter 5: Diffusion. Introduction Chapter 5: Diffusion Outline Introduction Diffusion mechanisms Steady-state diffusion Nonsteady-state diffusion Factors that influence diffusion Introduction Diffusion: the phenomenon of material transport

More information

Chapter 5: Diffusion

Chapter 5: Diffusion Chapter 5: Diffusion ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Chapter 5: Diffusion

Chapter 5: Diffusion Chapter 5: Diffusion ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Aeronautical Engineering Department

Aeronautical Engineering Department Jordan University of Science and Technology Engineering collage Aeronautical Engineering Department Manual for: Material Science and Engineering / 8th edition Ahmed Mustafa El-Khalili CHAPTER 5 DIFFUSION

More information

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases?

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? Diffusion in Solids ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Preparation of Materials Lecture 6

Preparation of Materials Lecture 6 PY3090 Preparation of Materials Lecture 6 Colm Stephens School of Physics PY3090 6 iffusion iffusion Mass transport by atomic motion Mechanisms Gases & Liquids random (Brownian) motion Solids vacancy diffusion

More information

PY2N20 Material Properties and Phase Diagrams

PY2N20 Material Properties and Phase Diagrams PYN0 Material Properties and Phase iagrams Lecture 7 P. Stamenov, Ph School of Physics, TC PYN0-7 iffusion iffusion Mass transport by atomic motion Mechanisms Gases & Liquids random (Brownian) motion Solids

More information

10/7/ :43 AM. Chapter 5. Diffusion. Dr. Mohammad Abuhaiba, PE

10/7/ :43 AM. Chapter 5. Diffusion. Dr. Mohammad Abuhaiba, PE 10/7/2013 10:43 AM Chapter 5 Diffusion 1 2 Why Study Diffusion? Materials of all types are often heat-treated to improve their properties. a heat treatment almost always involve atomic diffusion. Often

More information

11/2/2018 7:57 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE

11/2/2018 7:57 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Diffusion 1 2 Bonus Outsource a software for heat treatment Install the software Train yourself in using the software Apply case studies on the software Present your work in front of your colleagues

More information

10/8/2016 8:29 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE

10/8/2016 8:29 PM. Chapter 5. Diffusion. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 5 Diffusion 1 2 Home Work Assignments 10, 13, 17, 21, 27, 31, D1 Due Tuesday 18/10/2016 3 rd Exam on Sunday 23/10/2016 3 Why Study Diffusion? Materials of all types are often heattreated to improve

More information

atoms = 1.66 x g/amu

atoms = 1.66 x g/amu CHAPTER 2 Q1- How many grams are there in a one amu of a material? A1- In order to determine the number of grams in one amu of material, appropriate manipulation of the amu/atom, g/mol, and atom/mol relationships

More information

Student Name: ID Number:

Student Name: ID Number: Student Name: ID Number: DEPARTMENT OF MECHANICAL ENGINEERING CONCORDIA UNIVERSITY MATERIALS SCIENCE - MECH 1/ - Sections T & X MIDTERM 003 Instructors: Dr. M.Pugh & Dr. M.Medraj Time Allowed: one (1)

More information

diffusion is not normally subject to observation by noting compositional change, because in pure metals all atoms are alike.

diffusion is not normally subject to observation by noting compositional change, because in pure metals all atoms are alike. 71 CHAPTER 4 DIFFUSION IN SOLIDS 4.1 INTRODUCTION In the previous chapters we learnt that any given atom has a particular lattice site assigned to it. Aside from thermal vibration about its mean position

More information

Question Grade Maximum Grade Total 100

Question Grade Maximum Grade Total 100 The Islamic University of Gaza Industrial Engineering Department Engineering Materials, EIND 3301 Final Exam Instructor: Dr. Mohammad Abuhaiba, P.E. Exam date: 31/12/2013 Final Exam (Open Book) Fall 2013

More information

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr)

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr) 1 st Semester 1431/1432 3 rd Mid-Term Exam (1 hr) Question 1 a) Answer the following: 1. Do all metals have the same slip system? Why or why not? 2. For each of edge, screw and mixed dislocations, cite

More information

CHAPTER 5: DIFFUSION IN SOLIDS

CHAPTER 5: DIFFUSION IN SOLIDS CHAPTER 5: DIFFUSION IN SOLIDS ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

MSE 230 Fall 2007 Exam II

MSE 230 Fall 2007 Exam II 1 Purdue University School of Materials Engineering MSE 230 Fall 2007 Exam II November 8, 2007 Show All ork and Put Units on Answers Name: KEY Unique name or email : Recitation Day and Time: Recitation

More information

Homework #4 PROBLEM SOLUTIONS

Homework #4 PROBLEM SOLUTIONS Homework #4 PROBLEM SOLUTIONS 4.2 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations (4.1) and (4.2) as follows: N V N exp Q V kt N

More information

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials FINAL EXAMINATION (CLOSED BOOK)

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials FINAL EXAMINATION (CLOSED BOOK) Department of Mechanical Engineering University of Saskatchewan ME32.3 Engineering Materials FINAL EXAMINATION (CLOSED BOOK) Instructor: I. N. A. Oguocha Date: 17 December, 200. Time: 3 Hours Reading Time:

More information

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit.

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. (1) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. The next page is left blank for your use, but no partial will

More information

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution 3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices

More information

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Always motivate your answers All sub-questions have equal weight in the assessment Question 1 Precipitation-hardening aluminium alloys are, after

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

3. A copper-nickel diffusion couple similar to that shown in Figure 5.1a is fashioned. After a 700-h heat treatment at 1100 C (1373 K) the

3. A copper-nickel diffusion couple similar to that shown in Figure 5.1a is fashioned. After a 700-h heat treatment at 1100 C (1373 K) the ENT 145 Tutorial 3 1. A sheet of steel 1.8 mm thick has nitrogen atmospheres on both sides at 1200 C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen

More information

HOMEWORK 6. solutions

HOMEWORK 6. solutions HOMEWORK 6. SCI 1410: materials science & solid state chemistry solutions Textbook Problems: Imperfections in Solids 1. Askeland 4-67. Why is most gold or siler jewelry made out of gold or siler alloyed

More information

J = D C A C B x A x B + D C A C. = x A kg /m 2

J = D C A C B x A x B + D C A C. = x A kg /m 2 1. (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. (a) With vacancy diffusion, atomic

More information

MSE 230 Fall 2003 Exam II

MSE 230 Fall 2003 Exam II Purdue University School of Materials Engineering MSE 230 Fall 2003 Exam II November 13, 2003 Show All Work and Put Units on Answers Name: Key Recitation Day and Time: Recitation Instructor s Name: 1 2

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

Development of Pd Cu Membranes for Hydrogen Separation

Development of Pd Cu Membranes for Hydrogen Separation Development of Pd Cu Membranes for Hydrogen Separation Shahrouz Nayebossadri, John Speight, David Book School of Metallurgy & Materials University of Birmingham www.hydrogen.bham.ac.uk The Hydrogen & Fuel

More information

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Slip Systems 8.3 (a) Compare planar densities (Section 3.15 and Problem W3.46 [which appears on the book s Web site]) for the (100),

More information

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals 1496T_c06_131-173 11/16/05 17:06 Page 166 166 Chapter 6 / Mechanical Properties of Metals IMPORTANT TERMS AND CONCEPTS Anelasticity Design stress Ductility Elastic deformation Elastic recovery Engineering

More information

CHAPTER 4 DIFFUSIVITY AND MECHANISM

CHAPTER 4 DIFFUSIVITY AND MECHANISM 68 CHAPTER 4 DIFFUSIVITY AND MECHANISM 4.1 INTRODUCTION The various elements present in the alloys taken for DB joining diffuse in varying amounts. The diffusivity of elements into an alloy depends on

More information

DICTRA A tool for diffusion simulations

DICTRA A tool for diffusion simulations Page 1 of 6 DICTRA A tool for diffusion simulations 1 Introduction DICTRA is a general software package for simulation of DIffusion Controlled TRAnsformations in multicomponent alloys. The DICTRA software

More information

Binary Phase Diagrams - II

Binary Phase Diagrams - II Binary Phase Diagrams - II Note the alternating one phase / two phase pattern at any given temperature Binary Phase Diagrams - Cu-Al Can you spot the eutectoids? The peritectic points? How many eutectic

More information

Diffusion phenomenon

Diffusion phenomenon Module-5 Diffusion Contents 1) Diffusion mechanisms and steady-state & non-steady-state diffusion 2) Factors that influence diffusion and nonequilibrium transformation & microstructure Diffusion phenomenon

More information

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS MODULE ONE CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS CRYSTAL STRUCTURE Metallic crystal structures; BCC, FCC and HCP Coordination number and Atomic Packing Factor (APF) Crystal imperfections:

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. 315 Problems 1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. (a) Find the temperature and partial pressure of O 2 where Ni(s), Ni(l), and NiO(s) are in equilibrium.

More information

Introduction to Point Defects. Version 2.1. Andrew Green, MATTER John Humphreys, UMIST/University of Manchester Ross Mackenzie, Open University

Introduction to Point Defects. Version 2.1. Andrew Green, MATTER John Humphreys, UMIST/University of Manchester Ross Mackenzie, Open University Introduction to Point Defects Version 2.1 Andrew Green, MATTER John Humphreys, UMIST/University of Manchester Ross Mackenzie, Open University October 1997 Assumed Pre-knowledge This module has been developed

More information

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K)

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Crystal Defects Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Real crystal - all crystals have some imperfections - defects, most atoms are

More information

The Phase Diagram module

The Phase Diagram module The module Use the module to generate various types of phase diagrams for systems containing stoichiometric phases as well as solution phases, and any number of system components. The module accesses the

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

N = N A Al A Al. = ( atoms /mol)(2.62 g /cm 3 ) g /mol. ln N v = ln N Q v kt. = kt ln v. Q v

N = N A Al A Al. = ( atoms /mol)(2.62 g /cm 3 ) g /mol. ln N v = ln N Q v kt. = kt ln v. Q v 4.3 alculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 (773 K) is 7.57 10 23 m -3. The atomic weight and density (at 500 ) for aluminum

More information

CHEMICAL POTENTIAL APPROACH TO DIFFUSION-LIMITED MICROSTRUCTURE EVOLUTION

CHEMICAL POTENTIAL APPROACH TO DIFFUSION-LIMITED MICROSTRUCTURE EVOLUTION CHEMICAL POTENTIAL APPROACH TO DIFFUSION-LIMITED MICROSTRUCTURE EVOLUTION M.A. Fradkin and J. Goldak Department of Mechanical & Aerospace Engineering Carleton University, Ottawa K1S 5B6 Canada R.C. Reed

More information

Chapter 16 Corrosion and Degradation of Materials

Chapter 16 Corrosion and Degradation of Materials Chapter 16 Corrosion and Degradation of Materials Concept Check 16.1 Question: Would you expect iron to corrode in water of high purity? Why or why not? Answer: Iron would not corrode in water of high

More information

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C).

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). Iron-Carbon Phase Diagram Its defined as:- A map of the temperature at which different phase changes occur on very slow heating and cooling in relation to Carbon content. is Isothermal and continuous cooling

More information

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). The Fe-C phase diagram is a fairly complex one, but we will only consider the steel part of the diagram, up to around 7% Carbon. Fe-Carbon

More information

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram Steels: alloys of Iron (Fe) and Carbon (C). Fe-C phase diagram is complex. Will only consider the steel part of the diagram, up to around 7% Carbon. University

More information

Chapter 4: Imperfections (Defects) in Solids

Chapter 4: Imperfections (Defects) in Solids Chapter 4: Imperfections (Defects) in Solids ISSUES TO ADDRESS... What types of defects exist in solids? How do defects affect material properties? Can the number and type of defects be varied and controlled?

More information

8 The intermetallic diffusion mechanism in composite Pd

8 The intermetallic diffusion mechanism in composite Pd 8 The intermetallic diffusion mechanism in composite Pd membranes 8.1 Introduction Intermetallic diffusion is the migration of the elements in the porous metal support (mostly Fe, Cr and Ni) into the Pd

More information

Phase Transformation of Materials

Phase Transformation of Materials 2009 fall Phase Transformation of Materials 10.08.2009 Eun Soo Park Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Contents for previous class Interstitial

More information

A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL

A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL A DISLOCATION MODEL FOR THE PLASTIC DEFORMATION OF FCC METALS AN ANALYSIS OF PURE COPPER AND AUSTENITIC STEEL Background In the bcc model for work hardening in single phase materials, see (6), it is assumed

More information

CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS

CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS 9.17 A 90 wt% Ag-10 wt% Cu alloy is heated to a temperature within the β + liquid phase region. If the composition of the liquid phase is 85 wt% Ag, determine:

More information

LN Introduction to Solid State Chemistry. Lecture Notes No. 9 DIFFUSION

LN Introduction to Solid State Chemistry. Lecture Notes No. 9 DIFFUSION 3.091 Introduction to Solid State Chemistry Lecture Notes No. 9 DIFFUSION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Sources for Further Reading:

More information

Development of Microstructure in Eutectic Alloys

Development of Microstructure in Eutectic Alloys CHAPTER 10 PHASE DIAGRAMS PROBLEM SOLUTIONS Development of Microstructure in Eutectic Alloys 10.16 Briefly explain why, upon solidification, an alloy of eutectic composition forms a microstructure consisting

More information

Hydrogen isotopes permeation in a fluoride molten salt for nuclear fusion blanket

Hydrogen isotopes permeation in a fluoride molten salt for nuclear fusion blanket J. Plasma Fusion Res. SERIES, Vol. (5) Hydrogen isotopes permeation in a fluoride molten salt for nuclear fusion blanket Akira Nakamura, Satoshi Fukada and Ryosuke Nishiumi Department of Advanced Energy

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 5. Diffusion Learning objectives: - To know the

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

C β = W β = = = C β' W γ = = 0.22

C β = W β = = = C β' W γ = = 0.22 9-15 9.13 This problem asks us to determine the phases present and their concentrations at several temperatures, as an alloy of composition 52 wt% Zn-48 wt% Cu is cooled. From Figure 9.19: At 1000 C, a

More information

Chapter 5. Imperfections in Solids

Chapter 5. Imperfections in Solids Chapter 5 Imperfections in Solids Chapter 5 2D Defects and Introduction to Diffusion Imperfections in Solids Issues to Address... What types of defects arise in solids? Can the number and type of defects

More information

Thermo-Calc Graphical Mode Examples

Thermo-Calc Graphical Mode Examples Thermo-Calc Graphical Mode Examples 1 1 Introduction These examples are for the graphical mode of Thermo-Calc; there is a separate set of examples for the console mode. The examples are stored without

More information

Q. 1 Q. 5 carry one mark each.

Q. 1 Q. 5 carry one mark each. Q. 1 Q. 5 carry one mark each. Q.1 If I were you, I that laptop. It s much too expensive. (A) won t buy (C) wouldn t buy (B) shan t buy (D) would buy Q.2 He turned a deaf ear to my request. What does the

More information

Diffusion & Crystal Structure

Diffusion & Crystal Structure Lecture 5 Diffusion & Crystal Structure Diffusion of an interstitial impurity atom in a crystal from one void to a neighboring void. The impurity atom at position A must posses an energy E to push the

More information

Continuous Cooling Diagrams

Continuous Cooling Diagrams Continuous Cooling Diagrams Isothermal transformation (TTT) diagrams are obtained by rapidly quenching to a given temperature and then measuring the volume fraction of the various constituents that form

More information

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) 1 Structural Imperfections A perfect crystal has the lowest internal energy E Above absolute zero

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

CHAPTER 9 PHASE DIAGRAMS

CHAPTER 9 PHASE DIAGRAMS CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS 9.14 Determine the relative amounts (in terms of mass fractions) of the phases for the alloys and temperatures given in Problem 9.8. 9.8. This problem asks that

More information

The Predom module -O 2. at different temperatures) One-metal

The Predom module -O 2. at different temperatures) One-metal The Predom module Use Predom to calculate and plot isothermal 1-, 2- and 3-metal predominance area diagrams. Predom makes exclusively use of compound databases. Table of Contents Section 1 Section 2 Section

More information

STUDY OF ALUMINA IN AUSTENITIC STAINLESS STEELS. A Thesis CHUNG JUIWANG

STUDY OF ALUMINA IN AUSTENITIC STAINLESS STEELS. A Thesis CHUNG JUIWANG STUDY OF ALUMINA IN AUSTENITIC STAINLESS STEELS A Thesis by CHUNG JUIWANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements

More information

CARBON DIFFUSION COEFFICIENT IN ALLOYED FERRITE

CARBON DIFFUSION COEFFICIENT IN ALLOYED FERRITE Materials Physics and Mechanics 39 (2018) 111-119 Received: November 1, 2017 ARBON DIFFUSION OEFFIIENT IN ALLOYED FERRITE Alexander A. Vasilyev, Pavel A. Golikov Peter the Great St.Petersburg Polytechnic

More information

Chapter 10, Phase Transformations

Chapter 10, Phase Transformations Chapter Outline: Phase Transformations Heat Treatment (time and temperature) Microstructure Kinetics of phase transformations Homogeneous and heterogeneous nucleation Growth, rate of the phase transformation

More information

Correlation of the Effects of Alloying Elements on the Hardenability of Steels to the Diffusion Coefficients of Elements in Fe

Correlation of the Effects of Alloying Elements on the Hardenability of Steels to the Diffusion Coefficients of Elements in Fe International Journal of Materials Science and Applications 27; 6(4): 2-26 http://www.sciencepublishinggroup.com/j/ijmsa doi:.648/j.ijmsa.2764.6 ISSN: 2327-2635 (Print); ISSN: 2327-2643 (Online) rrelation

More information

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids Why are defects important? Imperfections in Solids Defects have a profound impact on the various properties of materials: Production of advanced semiconductor devices require not only a rather perfect

More information

Lecture 20: Eutectoid Transformation in Steels: kinetics of phase growth

Lecture 20: Eutectoid Transformation in Steels: kinetics of phase growth Lecture 0: Eutectoid Transformation in Steels: kinetics of phase growth Today s topics The growth of cellular precipitates requires the portioning of solute to the tips of the precipitates in contact with

More information

Phase Diagram. Today s Topics. The iron carbon phase diagram Details of iron iron carbide phase diagram Classification of iron carbon alloys

Phase Diagram. Today s Topics. The iron carbon phase diagram Details of iron iron carbide phase diagram Classification of iron carbon alloys MME 291: Lecture 07 Iron Iron Carbide Phase Diagram Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics The iron carbon phase diagram Details of iron iron carbide phase diagram Classification

More information

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as EXERCISES KJM5120 Chapter 5; Diffusion 1. Random (self) diffusion a) The self-diffusion coefficient of a metal with cubic structure can be expressed as 1 n D = s 6 t 2 where n/t represents the jump frequency

More information

Phase Diagram. Today s Topics. The iron carbon phase diagram Details of iron iron carbide phase diagram Classification of iron carbon alloys

Phase Diagram. Today s Topics. The iron carbon phase diagram Details of iron iron carbide phase diagram Classification of iron carbon alloys MME 291: Lecture 07 Iron Iron Carbide Phase Diagram Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics The iron carbon phase diagram Details of iron iron carbide phase diagram Classification

More information

A RESEARCH ON THE CALCULATION OF GRAPHITIZATION ABILITY OF GRAY CAST IRONS

A RESEARCH ON THE CALCULATION OF GRAPHITIZATION ABILITY OF GRAY CAST IRONS Iranian Journal of Materials Science & Engineering Vol. 9, Number 4, December 01 A RESEARH ON HE ALULAION OF GRAPHIIZAION ABILIY OF GRAY AS IRONS M. Sheikholeslami 1,* and S. M. A Boutorabi * Mehran.sheikholeslami@gmail.com

More information

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations

Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations Phase Diagrams, Solid Solutions, Phase Strengthening, Phase Transformations Components and Phases Components: The elements or compounds that are mixed initially (Al and Cu). Phases: A phase is a homogenous,

More information

Part IB Paper 3: MATERIALS. Examples Paper 3 : Materials Processing - fssued 01 Controlling Microstructure and Properties

Part IB Paper 3: MATERIALS. Examples Paper 3 : Materials Processing - fssued 01 Controlling Microstructure and Properties ENGINEERING TRIPOS Part IB Paper 3: MATERIALS SECOND YEAR Examples Paper 3 : Materials Processing - fssued 01 Controlling Microstructure and Properties -1 NOV 2')13 Straightforward questions are marked

More information

Part III : Nucleation and growth. Module 4 : Growth of precipitates and kinetics of nucleation and growth. 4.1 Motivating question/phenomenon

Part III : Nucleation and growth. Module 4 : Growth of precipitates and kinetics of nucleation and growth. 4.1 Motivating question/phenomenon Part III : Nucleation and growth Module 4 : Growth of precipitates and kinetics of nucleation and growth 4.1 Motivating question/phenomenon In Figure. 20 we show, schematically, a morphology of precipitates

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

PROPERTIES OF MATERIALS IN ELECTRICAL ENGINEERING MIME262 MID-TERM EXAM

PROPERTIES OF MATERIALS IN ELECTRICAL ENGINEERING MIME262 MID-TERM EXAM MID-TERM EXAM, Oct 16 th, 008 DURATION: 50 mins Version CLOSED BOOK McGill ID Name All students must have one of the following types of calculators: CASIO fx-115, CASIO fx-991, CASIO fx-570ms SHARP EL-50,

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

Lecture 12: High Temperature Alloys

Lecture 12: High Temperature Alloys Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia Course A, Metals and Alloys Lecture 12: High Temperature Alloys Metallic materials capable of operating at ever increasing temperatures are

More information

Oxidation of Iron, Silicon and Manganese

Oxidation of Iron, Silicon and Manganese 08 Oxidation of Iron, Silicon and Manganese AkMB Rashid Professor, Department of MME BUET, Dhaka Today s Topics Oxidation of iron Oxidation and reduction of silicon Oxidation and reduction of manganese

More information

Lecture 25: Principles of degassing

Lecture 25: Principles of degassing Lecture 25: Principles of degassing Contents Introduction Principles Side reactions General considerations Fluid flow in degassing Material balance in de gassing Key words: Degassing, gases in steel, ladle

More information

EXCESS HEAT AND UNEXPECTED ELEMENTS FROM ELECTROLYSIS OF HEAVY WATER WITH TITANIUM CATHODES. R. Kopecek and J. Dash 1

EXCESS HEAT AND UNEXPECTED ELEMENTS FROM ELECTROLYSIS OF HEAVY WATER WITH TITANIUM CATHODES. R. Kopecek and J. Dash 1 Kopecek, R. and J. Dash, Excess Heat and Unexpected Elements from Electrolysis of Heavy Water with Titanium Cathodes. J. New Energy, 1996. 1(3): p. 46. EXCESS HEAT AND UNEXPECTED ELEMENTS FROM ELECTROLYSIS

More information

19. H, S, C, and G Diagrams Module

19. H, S, C, and G Diagrams Module HSC 8 - HSC Diagrams November 5, 4 43-ORC-J (8 9. H, S, C, and G Diagrams Module The diagram module presents the basic thermochemical data for the given species in graphical format. Eight different diagram

More information

CE 115 Introduction to Civil Engineering Graphics and Data Presentation Application in CE Materials

CE 115 Introduction to Civil Engineering Graphics and Data Presentation Application in CE Materials CE 115 Introduction to Civil Engineering Graphics and Data Presentation Application in CE Materials Dr. Fouad M. Bayomy, PE Professor of Civil Engineering University of Idaho Moscow, ID 83844-1022 Graphics

More information

Yield Strength Estimation For Stainless Steel Using Plane Strain Compression Test

Yield Strength Estimation For Stainless Steel Using Plane Strain Compression Test Australian Journal of Basic and Applied Sciences, 4(12): 6312-6318, 21 ISSN 1991-8178 Yield Strength Estimation For Stainless Steel Using Plane Strain Compression Test Aiyedun P.O., Nwaneto F.N, Adeleke

More information

Machining - Cutting Tool Life. ver. 1

Machining - Cutting Tool Life. ver. 1 Machining - Cutting Tool Life ver. 1 1 Overview Failure mechanisms Wear mechanisms Wear of ceramic tools Tool life Machining conditions selection 2 Tool Wear Zones chip shear zone cutting tool Crater wear

More information

Effects of Magnetic Field Intensity on Carbon Diffusion Behavior in Pure Iron in α-fe temperature region

Effects of Magnetic Field Intensity on Carbon Diffusion Behavior in Pure Iron in α-fe temperature region Effects of Magnetic Field Intensity on Carbon Diffusion Behavior in Pure Iron in α-fe temperature region Y Wu, H. H. Li, G.S. Duan, X Zhao To cite this version: Y Wu, H. H. Li, G.S. Duan, X Zhao. Effects

More information

atoms g/mol

atoms g/mol CHAPTER 2 ATOMIC STRUCTURE 2 6(a) Aluminum foil used for storing food weighs about 0.05 g/cm². How many atoms of aluminum are contained in this sample of foil? In a one square centimeter sample: number

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information