This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Size: px
Start display at page:

Download "This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and"

Transcription

1 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier s archiving and manuscript policies are encouraged to visit:

2 Acta Biomaterialia 6 (2010) Contents lists available at ScienceDirect Acta Biomaterialia journal homepage: Corrosion fatigue behaviors of two biomedical Mg alloys AZ91D and WE43 In simulated body fluid X.N. Gu a,b, W.R. Zhou a,b, Y.F. Zheng a,b,c, *, Y. Cheng c, S.C. Wei c, S.P. Zhong c, T.F. Xi c, L.J. Chen d a State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing , China b Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing , China c Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing , China d School of Material Science and Engineering, Shengyang University of Technology, Shenyang , China article info abstract Article history: Received 27 March 2010 Received in revised form 16 July 2010 Accepted 20 July 2010 Available online 23 July 2010 Keywords: Fatigue Corrosion fatigue Magnesium alloy Biomedical metallic materials Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50 MPa at 10 7 cycles in air compared to 20 MPa at 10 6 cycles tested in SBF at 37 C. A fatigue limit of 110 MPa at 10 7 cycles in air was observed for extruded WE43 alloy compared to 40 MPa at 10 7 cycles tested in SBF at 37 C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test. Ó 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 1. Introduction Magnesium alloys have been widely studied recently for their potential applications as implant materials within bone or blood vessels [1 10]. Extensive investigations indicated that two types of magnesium alloy systems might satisfy the general requirements for biodegradable biomaterials, including good mechanical properties, biocompatibilities and biodegradation properties: (1) The AZ series alloy system: Witte et al. [2] first showed the gradual degradation process of gravity-cast AZ91 alloy within guinea pig femora and observed increased bone mass around the magnesium rods. Since then, many investigations for bulk AZ91 alloy [3,5], porous AZ91D alloy [6,7] and surface modified AZ91D alloy [8,9] have been carried out for the orthopedic application. For example, the degrading AZ91D alloy scaffold was found to promote both bone formation and resorption in a rabbit model [7], and even the fast degrading of an AZ91D scaffold exhibited good biocompatibility with an appropriate inflammatory host response [6]. * Corresponding author at: Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing , China. Tel./fax: address: yfzheng@pku.edu.cn (Y.F. Zheng). (2) WE series alloy system: Mario et al. [10] studied the in vivo corrosion of magnesium stents made of WE43 alloy, and their animal and clinical experimental results showed that the WE43 alloy stents possessed sufficient antiproliferative properties and drastically reduced the restenosis rate in comparison to conventional stainless steel stents [10]. The PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) clinical trial results [11] showed that magnesium alloy stents could achieve an immediate angiographic result similar to the result of other metal stents and could be safely degraded after 4 months. Although the recipe for AMS was a commercial secret of BIOTRONIK, the work of Waksman et al. [12] and Loos et al. [13] revealed that the AMS stent was constructed from magnesium alloy containing zirconium, yttrium and rare earth metals, which was similar to the composition of WE43 alloy. Implants that function as bone and blood vessels, including bone plates, screws and vascular stents, are usually used under severe cyclic loading conditions, such as tension, compression and bending. It has been found that a material very often fails at a cyclic load well below the threshold to produce failure by single application, which means a fatigue failure [14] /$ - see front matter Ó 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. doi: /j.actbio

3 4606 X.N. Gu et al. / Acta Biomaterialia 6 (2010) For orthopedic implants, the ultimate implant failure is usually associated with the corrosion fatigue, which is the synergetic effect of electrochemical corrosion and cyclic mechanical loading [15,16]. For example, Azevedo [15] found the premature fracture of a titanium reconstruction plate for osteosynthesis was associated with a corrosion fatigue mechanism. For vascular devices, the failure of a stent due to fatigue may result in loss of radial support of the stented vessel or in perforation of the vessel by the stent struts. It was estimated that approximately two-thirds of the failures of vascular devices would result in patient death [14,17]. As documented in FDA Guidance Document 1545 [18] and ASTM-F [19], the in vitro fatigue of vascular stents should be measured using the fully processed and implant quality product through pulsatile methods which simulate the loading that stent will experience in vivo. Clearly, the fatigue of vascular stent is strongly dependent on the fatigue performance of the actual materials it is made of, as well as its pattern design. The corrosion fatigue of magnesium alloys have been studied concerning their engineering application in 3.5 wt.% NaCl (ph 5) [20,21], 5 wt.% NaCl (ph 6.59) [22] and 0.1N Na 2 B 4 O 7 (ph 9.3) [20]. Yet as a new type of potential biomedical metallic material, the corrosion fatigue behavior of magnesium alloys examined by the standard metallic biomaterial testing method in a physiological environment has not been done. In the present study, the fatigue and corrosion fatigue behaviors in SBF of the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were systematically investigated. 2. Experimental procedure 2.1. Preparation of materials The die-cast AZ91D alloy (89.59 wt.% Mg, 9.21 wt.% Al, 0.80 wt.% Zn, 0.34 wt.% Mn, 0.06 wt.% Si) was provided by Shengyang University of Technology, China. The extruded WE43 alloy (91.35 wt.% Mg, 4.16 wt.% Y, 3.80 wt.% RE, 0.36 wt.% Zr, 0.20 wt.% Zn, 0.13 wt.% Mn) was provided by Changchun Zhong-Ke-Xi-Mei Magnesium Alloy Co. Ltd., China, with an extrusion ratio of 10. The asreceived material was further machined into standard surfacesmooth fatigue samples according to ASTM-E [23] with a circular cross-section 5 mm in diameter and a gage length of 10 mm Microstructural characterization The experimental samples were polished and etched with a mixture of 1 g of oxalic acid, 1 ml of acetic acid, 1 ml of nitric acid and 98 ml of water, and observed with an environmental scanning electron microscope (ESEM; Quanta 200FEG). X-ray diffractometry (XRD; Rigaku DMAX 2400) using Cu Ka radiation was employed for the identification of the constituent phases in the experimental samples Tensile test The standard surface-smooth tensile samples of the experimental alloys were machined according to ASTM-E8-04 [24]. The tensile tests were carried out at a displacement rate of 1 mm min 1 by an Instron 3365 universal test machine. An average of at least three measurements was taken for each group Fatigue test Axial fatigue tests were conducted using a computer-controlled servo-hydraulic PLD-50KN testing machine with sinusoidal loading control, with a stress ratio of 1 and a frequency of 10 Hz. The fatigue test was continued until complete failure of the sample, unless the test was stopped when the sample did not fail up to 10 7 cycles. The maximum stress at which the sample has not failed at 10 7 cycles is defined as a fatigue limit in this study. At every load condition at least three samples were tested. The fatigue fracture surfaces were ultrasonically cleaned in ethanol and dried in air prior to the morphology observation. The ESEM was used to observe the fracture surfaces to locate the fatigue crack initiation site and help determining the fatigue fracture mechanism Corrosion fatigue test The medium used in the corrosion fatigue test was SBF (containing g l 1 NaCl, g l 1 NaHCO 3, g l 1 KCl, g l 1 K 2 HPO 4?3H 2 O, g l 1 MgCl 2?6H 2 O, g l 1 CaCl 2, g l 1 Na 2 SO 4 and g l 1 Tris (HOCH 2 ) 3 CNH 2, following the preparation procedure of Ref. [25]). An acrylic chamber attachment was self-designed and assembled on the PLD-50KN testing machine, which guaranteed the gage length of the sample was immersed in the SBF throughout the testing procedure. The SBF solution (2 l in total volume) was kept at 37 ± 1 C by a water bath, and circulated through the chamber by a pump. During the corrosion fatigue tests, the electrolyte was changed every 24 h. The electrolyte would be replaced for each new test. The release of magnesium and the alloying element into the electrolyte during the corrosion fatigue tests was examined by inductively coupled plasma atomic emission spectrometry (Leeman, Profile ICP-AES). The fatigue-fractured samples were immersed in 10 g l 1 CrO 3 solution to clean the corrosion product and then ultrasonically cleaned in distilled water. The corrosion fatigue fracture surfaces after the cleaning were observed with the ESEM. The static immersion test in SBF (2 l) under no load was also carried out and the ionreleasing concentration with the same immersion period as those of the corrosion fatigue samples were measured. The corrosion rate was calculated using the equation: v corr ¼ C Mg V At where C Mg is the Mg ion concentration, V is the electrolyte volume, A is the original surface area exposed to the electrolyte and t is the exposure time Statistical analysis Analysis of variance was used to evaluate the difference in the corrosion rate. Statistical significance was defined as Results 3.1. Mechanical properties, fatigue and corrosion fatigue of the diecast AZ91D alloy Fig. 1 shows the typical microstructure and tensile strength of the die-cast AZ91D alloy. As can be seen from Fig. 1a, the microstructure of the die-cast AZ91D alloy is composed of a(mg) matrix and Mg 17 Al 12 phase precipitating along the grain boundaries, with the average grain size of 250 lm. The yield strength, ultimate strength and elongation of the die-cast AZ91D alloy during tension are ± MPa, ± 4.85 MPa and 4.3 ± 0.48%, respectively, as deduced from Fig. 1c. Fig. 2 shows the stress life (S N) behaviors for the die-cast AZ91D alloy tested in air and in SBF at 37 C. It can be seen that the fatigue limit of the die-cast AZ91D alloy at 10 7 cycles is 50 MPa in air compared to 20 MPa at 10 6 cycles tested in SBF.

4 X.N. Gu et al. / Acta Biomaterialia 6 (2010) Fig. 1. XRD patterns of (a) die-cast AZ91D and (b) extruded WE43 alloys (with SEM image of the microstructure as inset), and tensile stress strain curves of (c) die-cast AZ91D and (d) extruded WE43 alloys. Fig. 3 shows the typical high-cycle fatigue fracture surfaces of the die-cast AZ91D alloy tested in air, which are typically comprised of three morphologically distinct zones: the crack initiation zone Fig. 2. S N curves for die-cast AZ91D at room temperature in air and in SBF at 37 C. The experiment was run for cycles. (Fig. 3b), the crack propagation zone (Fig. 3c) and the final stage overload zone (Fig. 3d). It shows similar crack initiation morphology (Fig. 3b) to that observed for AZ91D [26] and as-rolled AZ31 alloy [27], described as transgranular or intergranular cracks. In addition, the extremely low number of cycles to failure of the die-cast AZ91D alloy samples is linked to the entrapped inclusions or casting pores, some of which can even be seen by eye on the fracture surface. Fig. 4 shows a typical high-cycle fatigue fracture surface after cleaning the corrosion products on the surface of the die-cast AZ91D alloy samples tested in SBF. Different from the fatigue fracture surface in air, the failure of the samples tested in SBF is attributed to the formation of the corrosion pit, which is visible in the crack nucleation region on the sample surface (arrowed in Fig. 4b). Various sizes of deep corrosion pits, ranging from 10 to 200 lm (arrowed in Fig. 4b), are observed on both the fracture surface and the sample cylinder surface. The crack growth images for die-cast AZ91D tested in SBF are similar to those tested in air. The overload zone of the die-cast AZ91D alloy shows a brittle fracture surface feature, as shown in Fig. 4d. Fig. 5 shows the corrosion rate of the die-cast AZ91D alloy immersed in static electrolyte and under a cyclic load in circulating SBF. The corrosion rate of the die-cast AZ91D alloy sample is calculated from the measured Mg concentration in electrolyte incubating samples under cyclic loads or no load for the same immersion period. It can be seen that the die-cast AZ91D alloy exhibits a

5 4608 X.N. Gu et al. / Acta Biomaterialia 6 (2010) Fig. 3. SEM images showing that the fatigue fracture surface morphology of the die-cast AZ91D alloy failed over 10 6 cycles in air. (a) Overall fracture surface; (b) crack initiation site; (c) crack propagation site; (d) overload site. significantly increasing corrosion rate (p < 0.05) under a cyclic load, while the corrosion rate increases with the increasing cyclic load Mechanical properties, fatigue and corrosion fatigue of the extruded WE43 alloy Fig. 1b shows the microstructure of the extruded WE43 alloy, indicating that the grain size ranges from 10 to 30 lm. Besides the matrix a(mg) phase identified from the XRD pattern of the extruded WE43 alloy, many Nd-rich and Y-rich precipitation was visible in the SEM microstructure (insets in Fig. 1b), which was identified as Mg 24 Y 5,Mg 41 Nd 5 and Mg 12 Nd phases in a previous investigation [28]. The tensile test results (Fig. 1d) indicate that the yield strength, ultimate tensile strength and elongation are ± 2.89 MPa, ± 4.39 MPa and ± 5.3%, respectively. Fig. 6 shows the S N behavior for the extruded WE43 alloy tested in air and in SBF at 37 C. The corrosion fatigue limit of the extruded WE43 alloy is obviously lower than the fatigue limit of the extruded WE43 alloy (40 vs. 110 MPa). Fig. 7 shows SEM images of typical high-cycle fatigue fracture surfaces of the extruded WE43 alloy samples. It can be seen that the crack nucleation region of the extruded WE43 alloy is relatively flat with a pore (marked by an arrow in Fig. 7b). The crack growth picture (as shown in Fig. 7c) indicates a transgranular fracture mode with a plastically deformed zone. In the overload zone, relative flat regions as well as dimples with sizes of a few microns are observed (Fig. 7d), indicating the ductile fracture mode of the extruded WE43 alloy sample. Fig. 8 shows typical high-cycle fatigue fracture surfaces after cleaning the corrosion products on the surface of the extruded WE43 alloy sample tested in SBF at 37 C. Clearly, the failure of the extruded WE43 alloy samples can be attributed to the formation of the corrosion pit, resulting in the crack nucleation region visible in Fig. 8b. The corrosion pits on the extruded WE43 alloy sample are relatively shallow and the overload zone of the extruded WE43 alloy sample exhibits a dimpled fracture surface (Fig. 8d), the dimples of which are more shallow than on that tested in air. Fig. 9 shows the corrosion rate of the extruded WE43 alloy immersed in static electrolyte and tested under a cyclic load in circulating SBF. It can be seen that the corrosion rate of fatigue samples increases significantly (p < 0.05) under a cyclic load and that this variation becomes more obvious under higher cyclic loads, e.g. under 120 MPa. 4. Discussion 4.1. Factors influencing the fatigue and corrosion fatigue of biomedical magnesium alloys Alloying Alloying influences the mechanical and corrosion properties of magnesium and thus influences the fatigue and corrosion fatigue behaviors. Al and Zn increase the tensile strength and alloying with Al in general improves the corrosion resistance due to the effect of continuous b-phase barriers [29]. In this study, severe localized corrosion was observed for die-cast AZ91D alloy during the corrosion fatigue test (Fig. 4b) and serious pitting corrosion was also reported for its in vivo corrosion measurement [30]. Y and Nd elements form eutectic systems of limited solubility with magnesium, which imparts a significant increase in strength through precipitation hardening [31]. In addition, the presence of Y and Nd

6 X.N. Gu et al. / Acta Biomaterialia 6 (2010) Fig. 4. SEM images showing that the fatigue fracture surface morphology of the die-cast AZ91D alloy after removing the surface corrosion product failed over 10 5 cycles in SBF at 37 C. (a) Overall fracture surface; (b) crack initiation site; (c) crack propagation site; (d) overload site. The inset in (b) shows a profile SEM image of the corrosion fatigue sample examined at a tilt angle of 45. Fig. 5. The corrosion rate of the die-cast AZ91D alloy immersion in static electrolyte and under a cyclic load in circulating SBF. * p < improves the tendency of magnesium to passivation in Na 2 SO 4 and NaCl solutions [32]. However, the amount of these alloying elements added should be conservative since elemental Al is a neurotoxicant [33] and releasing Al ions leads to defective bone mineralization [34], which as a consequence retards the formation of chemical bonds to implants [35]. In addition, it was reported that elements Nd and Y distributed mainly at the implantation site [2], which might be not tolerated by the human body. Fig. 6. S N curves for extruded WE43 alloy at room temperature in air and in SBF at 37 C. The experiment was run for cycles Microstructure The fatigue life usually correlates inversely with the fatigue crack nucleation pore in both as-cast [36,37] and wrought Mg alloy materials [38], and this acts as stress concentration. The release of stress may result in slip bands and microcracks, and may thus accelerate the initiation and growth of cracks [26,37 39]. In addition, the fatigue life is also influenced by the grain size of the magnesium alloy. The extruded WE43 alloy has a substantially smaller

7 4610 X.N. Gu et al. / Acta Biomaterialia 6 (2010) Fig. 7. SEM images showing that the fatigue fracture surface morphology of the extruded WE43 alloy failed over 10 6 cycles in air. (a) Overall fracture surface; (b) crack initiation site; (c) crack propagation site; (d) overload site. The inset in (d) shows an enlarged SEM image of the overload site. grain size than does the die-cast AZ91D alloy, and thus greater fatigue strength. This may be attributed to the reduced grain size after extrusion, leading to inhibited crack initiation, inhibited dislocation motion and an increase in the number of barriers to early crack propagation [40]. This finding is in agreement with the results that the fatigue life of AZ91E and AZ31 alloys decreases with increasing grain size [37,40] The surrounding environment In this work, the fatigue strength of the experimental samples tested in SBF was much lower than those tested in air. This phenomenon was also observed for AZ31, AZ61 and AM50 alloys, which showed decreased fatigue strength tested in NaCl than those tested in air at the same stress level [18,20]. Previous work [41,42] suggested that the corrosion behavior of magnesium alloy in SBF was much more complicated considering the rapid passivation effect of HCO 3 and the influence of the Tris buffer. Rettig and Virtanen [43] indicated that the corrosion rate of extruded WE43 alloy in m-sbf was significantly higher than that in NaCl. Also, the dynamic circulating electrolyte contributes to the corrosion of magnesium alloy. It was reported that the degradation behavior of as-cast AM60B alloy was different when tested under static and dynamic conditions [44] Cyclic loading The magnesium alloy sample under constraining conditions has a higher dissolution rate than that in the free state because of the well-known stress corrosion phenomenon. Here we observed that the corrosion rate of the die-cast AZ91D alloy in the corrosion fatigue test was about 7 8 times that tested in static SBF, and the corrosion rate of the extruded WE43 alloy in the corrosion fatigue test was about 4 12 times that tested in static SBF. On the one hand, this can be attributed to the deformation state of alloys under fatigue test. Eliezer et al. [45] found a 7-fold and a 1.5-fold increase in the dissolution rate of strained AZ91D and AM50 alloy, respectively, with the plastic strain growth from 0% to 4%. On the other hand, under cyclic loading, cumulative plastic strains, the formation of extrusions and intrusions due to persistent slip bands would break the corrosion product film, and thus the condensed electrolyte droplets would penetrate into the underlying sample through the crevice caused by the breakdown of the layer and the crevice corrosion that occurred [46,47]. The stress concentration occurs at the root of the pit and enhances the growth of the corrosion pit to the critical pit size at which the stress intensity factor reaches the threshold for fatigue cracking [48]. Furthermore, the fatigue testing mode (e.g. axial and rotating fatigue) also influences the fatigue behavior of magnesium alloy. Miyashita et al. [49] found that at 10 7 cycles extruded AZ61 alloy exhibits about 30 MPa higher fatigue strength when tested by rotating bending fatigue mode than when tested by axial loading fatigue; the ratio between fatigue life under axial loading and that under rotating bending was about 0.77, which was attributed to the small crack growth behavior and the difference in strain Comparison of fatigue property among magnesium alloys and other biomaterials Fig. 10a illustrates the fatigue strength of the die-cast AZ91D, extruded WE43 and other Mg alloys for biomedical application, including AZ31 [2], AZ61 [5] and AM50 [50] at 10 6 cycles tested

8 X.N. Gu et al. / Acta Biomaterialia 6 (2010) Fig. 8. SEM images showing that the fatigue fracture surface morphology of the extruded WE43 alloy after removing the surface corrosion product failed over 10 5 cycles in SBF at 37 C. (a) Overall fracture surface; (b) crack initiation site; (c) crack propagation site; (d) overload site. The inset in (b) shows an SEM profile image of the corrosion fatigue sample examined at a tilt angle of 45. Fig. 9. The corrosion rate of the extruded WE43 alloy immersion in static electrolyte and under a cyclic load in circulating electrolyte. * p < in air and corrosion medium. Bhuiyan et al. [22] evaluated the reduction rate of fatigue strength for extruded AZ61 magnesium alloy by the ratio of (r LH r CE )/r LH, where r LH is the fatigue limit under low humidity condition and r CE is that under corrosion medium. Similarly, the effect of corrosion medium on fatigue strength of the present Mg alloys can be evaluated by using the reduction rate of fatigue strength (RRFS), as (r air r SBF )/r air, where r air is the fatigue strength tested in air and r SBF is the fatigue strength tested in SBF at the same number of cycles to failure. Correspondingly, the RRFS values are 67% for die-cast AZ91D in SBF, 33% for extruded WE43 in SBF, 48% for extruded AZ61 in 5 wt.% NaCl solution, and 30% for both extruded AM50 and AZ31 in 3.5 wt.% NaCl solution. From these comparisons, the fatigue data for Mg alloys under corrosion medium falls in a widely scatter band (RRFS = 30 67%) and the die-cast AZ91D seems to be more sensitive to the corrosion medium. Fig. 10b compares the fatigue strength of magnesium alloys with some clinically used biomaterials tested in a physiological environment. It can be seen that magnesium alloy shows a relatively wide fatigue strength range, which is much lower than that of alumina [51], Ti alloy [52,53] and ISO stainless steel [54] but indicates a higher fatigue strength than that of calcium phosphate bone cement [55]. Moreover, the high range of fatigue strength for magnesium alloy is comparable with that of 316L stainless steel [52] and also much greater than that of polymer [56 58]. For permanent implants, many fatigue fracture failure cases have been reported over the years of clinical application [15,16]. Biodegradable biomaterials should exist in vivo only for a certain period, thus it can be assumed that the biomaterial should possess the desired strength until it has served its purpose. For bone, typical strains are microstrain for normal walking, which equates to MPa, assuming the Young s modulus to be 17GPa [59]. It was reported that the mechanical properties of implants should last for 1 3 months. Since the normal walking cycle

9 4612 X.N. Gu et al. / Acta Biomaterialia 6 (2010) Fig. 10. (a) Comparison of the fatigue strength of die-cast AZ91D, extruded WE43 and other Mg alloys for biomedical application at 10 6 cycles tested in air and in corrosion medium. Note that uniaxial tension compression fatigue was conducted for extruded AZ61 alloy in Ref. [22] with a frequency of 20 Hz and a stress ratio of 1 in 5 wt.% NaCl solution, whereas a rotating beam-type fatigue was conducted for extruded AM50 and AZ31 alloy in Ref. [21] with a frequency of 30 Hz and a stress ratio of 1 in 3.5 wt.% NaCl solution. (b) Fatigue strength of Mg alloys and some clinically used biomaterials tested in a physiological environment [21,22,51 59]. Note that the fatigue strength of the polymer was tested in air. is repeated about 2 million times per year [59], the important service period ranges from to cycles. The predicted fatigue strength of the extruded WE43 alloy ranges from 103 MPa for cycles to 99 MPa for cycles, with a corrosion fatigue limit of 40 MPa, which are higher than the physiological strength ( MPa) and bone fatigue strength (23 30 MPa) [59]. In the case of the die-cast AZ91D alloy, the strength threshold of 25.5 MPa appears at cycles, or nearly 1.5 months, which means that the fatigue strength or corrosion resistance still needs to be improved further. 5. Conclusions (1) The fatigue strength of the die-cast AZ91D in air was 50 MPa. The fracture mode of the die-cast AZ91D alloy was brittle fracture. The corrosion fatigue strength of the die-cast AZ91D alloy in SBF was much lower than that in air, being 20 MPa at 10 6 cycles. (2) The fatigue strength of the extruded WE43 alloy in air was 110 MPa. The initiation of the crack was attributed to micropores in the samples. The fracture mode of the extruded WE43 alloy was toughness fracture. The corrosion fatigue strength of the extruded WE43 alloy in SBF was 40 MPa at 10 7 cycles. (3) Under cyclic loading in SBF, both the die-cast AZ91D and extruded WE43 alloys showed increased corrosion rate. Their corrosion rates increased with increasing cyclic loading. (4) The fatigue life of the die-cast AZ91D and extruded WE43 alloys was mainly related to their alloying elements, microstructures, surrounding environment and cyclic loading. Under the combined conditions of cyclic loading and a corrosive environment, the crack initiated from the corrosion pit with the release of stress concentration. Acknowledgements This work was supported by the Research Funds for the Central Universities (PKUJC ), Foundation of Key Laboratory for Advanced Materials Processing Technology, Ministry of Education ( ), National Natural Science Foundation of China (No ), Beijing Municipal Natural Science Foundation ( ) and Program for New Century Excellent Talents in University (NCET ). Appendix A. Figures with essential colour discrimination Certain figures in this article, particularly Figs. 1, 2, 5, 6, 9, 10, are difficult to interpret in black and white. The full colour images can be found in the on-line version, at doi: /j.actbio References [1] Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 2003;89: [2] Witte F, Kaese V, Switzer H, Meyer-Lindenberg A, Wirth CJ, Windhag H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26: [3] Kannan MB, Raman RKS. Evaluating the stress corrosion cracking susceptibility of Mg Al Zn alloy in modified-simulated body fluid for orthopaedic implant application. Scripta Mater 2008;59: [4] Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg Ca alloys for use as biodegradable materials within bone. Biomaterials 2008;29: [5] Kannan MB, Raman RKS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008;29: [6] Witte F, Ulrich H, Rudert M, Willbold E. Biodegradable magnesium scaffolds. Part I. Appropriate inflammatory response. J Biomed Mater Res 2007;A81: [7] Witte F, Ulrich H, Palm C, Willbold E. Biodegradable magnesium scaffolds. Part II. Peri-implant bone remodeling. J Biomed Mater Res 2007;A81: [8] Zhang XP, Zhao ZP, Wu FM, Wang YL, Wu J. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank s solution. J Mater Sci 2007;42: [9] Dutta Majumdar J, Bhattacharyya U, Biswas A, Manna I. Studies on thermal oxidation of Mg-alloy (AZ91) for improving corrosion and wear resistance. Surf Coat Technol 2008;202: [10] Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, et al. Drugeluting bioabsorbable magnesium alloys. J Interven Cardiovasc 2004;17(6): [11] Erbel R, Mario CD, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective non-randomised multicentre trial. Lancet 2007;369: [12] Waksman R, Pakala R, Kuchulakanti PK, Baffour R, Hellinga D, Seabron R, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interven 2006;68: [13] Loos A, Rohde R, Haverich A, Barlach S. In vitro and in vivo biocompatibility testing of absorbable metal stents. Macromol Symp 2007;253:103 8.

10 X.N. Gu et al. / Acta Biomaterialia 6 (2010) [14] James BA, Sire RA. Fatigue-life assessment and validation techniques for metallic vascular implants. Biomaterials 2010;31: [15] Azevedo CRF. Failure analysis of a commercially pure titanium plate for osteosynthesis. Eng Fail Anal 2003;10: [16] Magnissalis EA, Zinelis S, Karachalios Th, Hartofilakidis G. Failure analysis of two Ti-alloy total hip arthroplasty femoral stems fractured in vivo. J Biomed Mater Res 2003;66B(1): [17] US Congress. The Bjork Shiley heart valve: earn as you learn. In: Subcommittee on Oversight and Investigations House Committee on Energy and Commerce, [18] US Food and Drug Adminstration. Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. US Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health; 13 January [19] ASTM-F Standard test methods for in vitro pulsatile durability testing of vascular stents. Philadelphia, PA: American Society for Testing and Materials; [20] Eliezer A, Gutman EM, Abramov E, Unigovski Y. Corrosion fatigue of die-cast and extruded magnesium alloys. J Light Metals 2001;1: [21] Unigovski Y, Eliezer A, Abramov E, Snir Y, Gutman EM. Corrosion fatigue of extruded magnesium alloys. Mater Sci Eng A 2003;360: [22] Bhuiyan SM, Mutoh Y, Murai T, Iwakami S. Corrosion fatigue behavior of the extruded magnesium alloy AZ61 under three different corrosive environments. Int J Fatigue 2008;30: [23] ASTM-E Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. Philadelphia, PA: American Society for Testing and Materials; [24] ASTM-E8-04. Standard test methods for tension testing of metallic materials, annual book of ASTM standards. Philadelphia, PA: American Society for Testing and Materials; [25] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27: [26] Wolf B, Fleck C, Eifler D. Characterization of the fatigue behavior of the magnesium alloy AZ91D by means of mechanical hysteresis and temperature measurements. Int J Fatigue 2004;26: [27] Tokaji KamakuraM, Ishiizumi Y, Hasegawa N. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. Int J Fatigue 2004;26: [28] Yu K, Li W-X, Wang R-C, Wang B, Li C. Effect of rolling and heat treatment on mechanical properties and microstructure of WE43 magnesium alloy. Trans Mater Heat Treat 2008;29(2):95 8. [29] Song G, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1999;1(1): [30] Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27: [31] Kainer KU. Magnesium alloys and technology. Weinheim: Wiley-VCH Verlag; [32] Zucchi F, Grassi V, Frignani, Monticelli C, Trabanelli G. Electrochemical behavior of a magnesium alloy containing rare earth elements. J Appl Electrochem 2006;36(2): [33] El-Rahman SSA. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol Res 2003;47: [34] Jones G, Sambrook PN. Drug-induced disorders of bone metabolism: incidence, management and avoidance. Drug Safety 1994;10(6): [35] Flaten TP, Alfrey AC, Birchall JD, Savory J, Yokrl RA. Status and future concerns of clinical and environmental aluminum toxicology. J Toxicol Environ Health 1996;48: [36] Horstemeyer MF, Yang N, Gall K, McDowell D, Fan J, Gullett P. High cycle fatigue mechanisms in a cast AM60B magnesium alloy. Fatigue Fract Eng Mater Struct 2002;25: [37] Horstemeyer MF, Yang N, Gall K, McDowell DL, Fan J, Gullett PM. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Mater 2004;52: [38] Shih T-S, Liu W-S, Chen Y-J. Fatigue of as-extruded AZ61A magnesium alloy. Mater Sci Eng A 2002;325: [39] Ogarevic VV, Stephens RI. Fatigue of magnesium alloys. Annu Rev Mater Sci 1990;20: [40] Zúberová Z, Kunz L, Lamark TT, Estrin Y, Janeček M. Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metall Mater Trans A 2007;38A: [41] Xin Y, Huo K, Tao H, Tang G, Chu PK. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater 2008;4(6): [42] Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009;30: [43] Rettig R, Virtanen S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res A 2007;85(1): [44] Lévesque J, Hermawan G, Dubé D, Mantovani D. Design of a pseudophysiological test bench specific to the development of biodegradable metallic biomaterials. Acta Biomater 2008;4: [45] Eliezer A, Abramov E, Gutman EM. Mechanochemical effect on Mg-alloys. J Mater Sci Lett 1998;17: [46] Sajuri ZB, Miyashita Y, Mutoh Y. Effects of humidity and temperature on the fatigue behavior of an extruded AZ61 magnesium alloy. Fatigue Fract Eng Mater Struct 2005;28: [47] Fontana MG. Corrosion engineering. 3rd ed. New York: McGraw-Hill; [48] Hoeppner DW. Model for prediction of fatigue lives based upon a pitting corrosion fatigue process. Fatigue Mechanisms, Philadelphia, PA: ASTM STP; [49] Miyashita Y, Sajuri Z, Mutoh Y, Kamado S. Fundamental study on high cycle fatigue behavior of magnesium alloy in order to establish a standard testing method. In: The 3rd Asian symposium on magnesium alloys, Shenyang, Liaoning, China; [50] Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008;12(5 6): [51] Kimura Y, Takubo S. Corrosion fatigue of bio-ceramic sapphire in isotonic sodium chloride solution. Int J Fatigue 2000;22: [52] Ninomi M, Kobayashi T, Toriyama O, Kawakami N, Ishida Y, Matsuyama Y. Fracture characteristics, microstructure, and tissue reaction of Ti 5Al 5Fe for orthopedic surgery. Metall Mater Trans A 1996;27A: [53] Okazaki Y, Rao S, Ito Y, Tateishi T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 1998;19: [54] Giordani EJ, Guimarães VA, Pinto TB, Ferreira I. Effect of precipitates on the corrosion-fatigue crack initiation of ISO stainless steel biomaterial. Int J Fatigue 2004;26: [55] Zhao L, Burguera EF, Xu HHK, Amin N, Ryou H, Arola DD. Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate chitosan-biodegradable fiber scaffolds. Biomaterials 2010;31: [56] Kurtz SM, Villarraga ML, Zhao K, Edidin AA. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Biomaterials 2005;26: [57] Sauer WL, Weaver KD, Beals NB. Fatigue performance of ultra-high-molecularweight polyethylene: effect of gamma radiation sterilization. Biomaterials 1996;17: [58] Gilbert JL, Ney DS, Lautenschlager EP. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties. Biomaterials 1995;16: [59] Taylor D. Fatigue of bone and bones: an analysis based on stressed volume. J Orthop Res 1998;16(2):163 9.

Statistic characteristics of fatigue properties in magnesium alloy

Statistic characteristics of fatigue properties in magnesium alloy Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 1232 1237 ICM11 Statistic characteristics of fatigue properties in magnesium alloy S. Mohd a,c, *, Y. Otsuka b, Y. Miyashita b,

More information

Final Draft of the original manuscript:

Final Draft of the original manuscript: Final Draft of the original manuscript: Kannan, M.B.; Singh Raman, R.K.; Witte, F.; Blawert, C.; Dietzel, W.: Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable

More information

Fatigue Properties of Ti-6Al-4V Subjected to Simulated Body Fluid

Fatigue Properties of Ti-6Al-4V Subjected to Simulated Body Fluid Copyright 2009 Tech Science Press SL, vol.2, no.3, pp.169-175, 2009 Fatigue Properties of Ti-6Al-4V Subjected to Simulated Body Fluid Y.J. Liu 1, Q.L. Ouyang 2, R.H. Tian 3 and Q.Y. Wang 4 Abstract: Fatigue

More information

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated Bull. Mater. Sci., Vol. 34, No. 4, July 2011, pp. 805 810. Indian Academy of Sciences. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling X P ZHANG, *, M J TAN, T H YANG,

More information

Metallic Implants In Biomedical Engineering. Kerstin Tillmann March 2011

Metallic Implants In Biomedical Engineering. Kerstin Tillmann March 2011 Metallic Implants In Biomedical Engineering Kerstin Tillmann March 2011 Implants substitution of damaged mechanical and physical functions of the human body temporary implants and long-term implants direct

More information

Influence of Shot Peening on the Fatigue Resistance of Sulfuric Anodized AA 7175-T74

Influence of Shot Peening on the Fatigue Resistance of Sulfuric Anodized AA 7175-T74 Influence of Shot Peening on the Fatigue Resistance of Sulfuric Anodized AA 7175-T74 H.J. C. Voorwald 1 a, T. A. Minto 1,b, M. Y. Pitanga 2,c, M. C. Fonseca 3,d 1 UNESP Department of Materials and Technology,

More information

Investigation of Stress Corrosion Cracking Behaviors of an AZ91 Magnesium Alloy in 0.1 kmol/m 3 Na 2 SO 4 Solution Using Slow Strain Rate Test

Investigation of Stress Corrosion Cracking Behaviors of an AZ91 Magnesium Alloy in 0.1 kmol/m 3 Na 2 SO 4 Solution Using Slow Strain Rate Test Materials Transactions, Vol. 49, No. 5 (2008) pp. 1052 to 1056 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, IV #2008 The Japan Institute of Metals Investigation of Stress

More information

ELSAYED Ayman*, IMAI Hisashi**, UMEDA Junko** and KONDOH Katsuyoshi*** Abstract

ELSAYED Ayman*, IMAI Hisashi**, UMEDA Junko** and KONDOH Katsuyoshi*** Abstract Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering ELSAYED Ayman*, IMAI Hisashi**, UMEDA Junko**

More information

Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy. Based Composites

Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy. Based Composites ID-1272 Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy Based Composites P. Y. Li, S. L. Dai, H. J. Yu, S. C. Chai and Y. R. Li Beijing Institute

More information

INFLUENCE OF BALL-BURNISHING ON STRESS CORROSION CRACKING, FATIGUE AND CORROSION FATIGUE OF Al 2024 AND Al 6082

INFLUENCE OF BALL-BURNISHING ON STRESS CORROSION CRACKING, FATIGUE AND CORROSION FATIGUE OF Al 2024 AND Al 6082 INFLUENCE OF BALL-BURNISHING ON STRESS CORROSION CRACKING, FATIGUE AND CORROSION FATIGUE OF Al 224 AND Al 682 M. Mhaede, M. Wollmann and L. Wagner Institute of Materials Science and Engineering Clausthal

More information

Bioabsorbable metal stents: properties, modeling and open questions

Bioabsorbable metal stents: properties, modeling and open questions Biomedical Engineering Bioabsorbable metal stents: properties, modeling and open questions Palma Tartaglione Supervisor: Prof. Ferdinando Auricchio Co-supervisor : Ing. Mauro Ferraro December 16, 2014

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 598 603 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit

Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit Scripta Materialia 50 (2004) 429 434 www.actamat-journals.com Scanning probe microscope observations of fatigue process in magnesium alloy AZ31 near the fatigue limit Z.Y. Nan, S. Ishihara *, T. Goshima,

More information

Magnesium alloys for biodegradable implants

Magnesium alloys for biodegradable implants Magnesium alloys for biodegradable implants Laboratory for Metal Physics and Technology Department of Materials, ETH Zürich Victor Wessels Anja Hänzi, Bruno Zberg, Jörg Löffler, Peter J. Uggowitzer Mg

More information

A study on alkaline heat treated Mg Ca alloy for the control of the biocorrosion rate

A study on alkaline heat treated Mg Ca alloy for the control of the biocorrosion rate Available online at www.sciencedirect.com Acta Biomaterialia 5 (2009) 2790 2799 www.elsevier.com/locate/actabiomat A study on alkaline heat treated Mg Ca alloy for the control of the biocorrosion rate

More information

International Journal of Fatigue

International Journal of Fatigue International Journal of Fatigue 31 (2009) 1137 1143 Contents lists available at ScienceDirect International Journal of Fatigue journal homepage: www.elsevier.com/locate/ijfatigue Fatigue crack propagation

More information

SCC Initiation for X80 Pipeline Steel Under AC Application in High ph Solution

SCC Initiation for X80 Pipeline Steel Under AC Application in High ph Solution 2017 2nd International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2017) ISBN: 978-1-60595-522-3 SCC Initiation for X80 Pipeline Steel Under AC Application in High ph Solution Min ZHU,

More information

The effect of pre-processing and grain structure on the biocorrosion and fatigue resistance of magnesium alloy AZ31

The effect of pre-processing and grain structure on the biocorrosion and fatigue resistance of magnesium alloy AZ31 The effect of pre-processing and grain structure on the biocorrosion and fatigue resistance of magnesium alloy AZ31 H. Wang a, *, Y. Estrin b, H. M. Fu c, G.L. Song c# and Z. Zúberová d a Faculty of Engineering

More information

High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline Phase Particles

High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline Phase Particles Materials Transactions, Vol. 49, No. 9 (2008) pp. 1947 to 1952 #2008 The Japan Institute of Metals High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline

More information

Fatigue Behavior of 2198-T8 Aluminum-lithium Alloy with Riveted Lap Joints

Fatigue Behavior of 2198-T8 Aluminum-lithium Alloy with Riveted Lap Joints 2nd Annual International Conference on Advanced Material Engineering (AME 2016) Fatigue Behavior of 2198-T8 Aluminum-lithium Alloy with Riveted Lap Joints An CHEN*, Shan-Shan LI, Fei XU and Deng-Ke DONG

More information

Macro-Micro Scale Observation of Cyclic Hardening-Softening and Precipitates Zone of C460

Macro-Micro Scale Observation of Cyclic Hardening-Softening and Precipitates Zone of C460 IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 6 (June. 2013), V1 PP 34-39 Macro-Micro Scale Observation of Cyclic Hardening-Softening and Precipitates Zone of

More information

Stress Corrosion Cracking of Novel Steel for Automotive Applications

Stress Corrosion Cracking of Novel Steel for Automotive Applications Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 3381 3386 ICM11 Stress Corrosion Cracking of Novel Steel for Automotive Applications Muhammed. Khalissi a, R.K. Singh Raman a,b,

More information

ASSESSING CYTOCOMPATIBILITY OF NOVEL ULTRA-HIGH DUCTILITY MAGNESIUM ALLOYS Fathima Shabnam 1, Jingyao Wu 2, Abhijit Roy 2, Prashant N.

ASSESSING CYTOCOMPATIBILITY OF NOVEL ULTRA-HIGH DUCTILITY MAGNESIUM ALLOYS Fathima Shabnam 1, Jingyao Wu 2, Abhijit Roy 2, Prashant N. ASSESSING CYTOCOMPATIBILITY OF NOVEL ULTRA-HIGH DUCTILITY MAGNESIUM ALLOYS Fathima Shabnam 1, Jingyao Wu 2, Abhijit Roy 2, Prashant N. Kumta 2 Department of Chemical Engineering, Swanson School of Engineering

More information

Research on alloying technique of yttrium on AZ91D magnesium alloy

Research on alloying technique of yttrium on AZ91D magnesium alloy International Conference on Manufacturing Science and Engineering (ICMSE 2015) Research on alloying technique of yttrium on AZ91D magnesium alloy YULEI XU1,2,a and KUI ZHANG1,b * 1 2 State Key Laboratory

More information

Corrosion Science 53 (2011) Contents lists available at ScienceDirect. Corrosion Science. journal homepage:

Corrosion Science 53 (2011) Contents lists available at ScienceDirect. Corrosion Science. journal homepage: Corrosion Science 53 (2011) 1522 1528 Contents lists available at ScienceDirect Corrosion Science journal homepage: www.elsevier.com/locate/corsci Degradation behaviour of pure magnesium in simulated body

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

Enhanced Corrosion Resistance of AZ91 Mg Alloy by Plasma Electrolytic Oxidation with Kmno4

Enhanced Corrosion Resistance of AZ91 Mg Alloy by Plasma Electrolytic Oxidation with Kmno4 About the Editor About the Organizers Magnesium Technology 2010 Poster Session Corrosion Resistance of Graphite Anode for Magnesium Electrolyzers Plenary Session Magnesium in Aerospace Applications - Flammability

More information

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy *Yin Dongsong 1, Zhang Erlin 2 and Zeng Songyan 1 (1. School of Materials Science and Engineering, Harbin

More information

Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression

Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression Focussed on Crack Paths Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression S. Lesz, A. Januszka, S. Griner, R. Nowosielski Silesian University of Technology,

More information

Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature

Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature Indian Journal of Engineering & Materials Sciences Vol. 23, October 2016, pp. 336-340 Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature Changying

More information

ACOUSTIC EMISSION FROM MICRO-FRACTURE PROCESSES OF BIO-CERAMICS IN SIMULATED BODY ENVIRONMENT

ACOUSTIC EMISSION FROM MICRO-FRACTURE PROCESSES OF BIO-CERAMICS IN SIMULATED BODY ENVIRONMENT ACOUSTIC EMISSION FROM MICRO-FRACTURE PROCESSES OF BIO-CERAMICS IN SIMULATED BODY ENVIRONMENT SHUICHI WAKAYAMA, TEPPEI KAWAKAMI, SATOSHI KOBAYASHI, MAMORU AIZAWA* and AKIRA NOZUE* Department of Mechanical

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Intergranular Corrosion (IGC)

Intergranular Corrosion (IGC) Intergranular Corrosion (IGC) Microstructure of metals and alloys is made up of grains (separated by grain boundaries) Intergranular corrosion is a localized attack along the grain boundaries, or immediately

More information

Y.S. Pyoun 1, 2, I.H. Cho 2, C.M. Suh 3, J. Park 4, J. Rogers 5, R. Kayumov 1 and R. Murakami 6

Y.S. Pyoun 1, 2, I.H. Cho 2, C.M. Suh 3, J. Park 4, J. Rogers 5, R. Kayumov 1 and R. Murakami 6 Application of UNSM (Ultrasonic Nanocrystal Surface Modification) Technology for Prolonging the Service life of AISI 1045 Shear Pin in the Flange Yoke Assembly of Stainless Hot Rolling Mill Y.S. Pyoun

More information

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling Materials Transactions, Vol. 45, No. 1 (24) pp. 69 to 74 #24 The Japan Institute of Light Metals Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling Hiroki

More information

LOW CARBON STEEL WITH NANOSTRUCTURED SURFACE LAYER INDUCED BY HIGH-ENERGY SHOT PEENING

LOW CARBON STEEL WITH NANOSTRUCTURED SURFACE LAYER INDUCED BY HIGH-ENERGY SHOT PEENING Scripta mater. 44 (2001) 1791 1795 www.elsevier.com/locate/scriptamat LOW CARBON STEEL WITH NANOSTRUCTURED SURFACE LAYER INDUCED BY HIGH-ENERGY SHOT PEENING G. Liu 1, S.C. Wang 1, X.F. Lou 1,J.Lu 2 and

More information

Cold Deep-drawing of AZ31 Magnesium Alloy Sheet under Controlled Forming Motion Using Servo Press Machine

Cold Deep-drawing of AZ31 Magnesium Alloy Sheet under Controlled Forming Motion Using Servo Press Machine Universal Journal of Materials Science 4(4): 82-87, 206 DOI: 0.389/ujms.206.040402 http://www.hrpub.org Cold Deep-drawing of AZ3 Magnesium Alloy Sheet under Controlled Forming Motion Using Servo Press

More information

The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints

The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints Hongyang Wang, Gang Song, Baoqiang Feng, and Liming Liu ( ) Key Laboratory of Liaoning

More information

Characterization of Oxide Film Formed on Ck45 Steel by Plasma Electrolytic Oxidation Method

Characterization of Oxide Film Formed on Ck45 Steel by Plasma Electrolytic Oxidation Method Journal of Mechanical Research and Application ISSN: 2251-7383, eissn: 2251-7391 Vol. 4, No. 2, 2012, 57-61 Characterization of Oxide Film Formed on Ck45 Steel by Plasma Electrolytic Oxidation Method JMRA

More information

ZN-BASED ALLOYS AS AN ALTERNATIVE BIODEGRADABLE MATERIALS. Jiří KUBÁSEK, Dalibor VOJTĚCH

ZN-BASED ALLOYS AS AN ALTERNATIVE BIODEGRADABLE MATERIALS. Jiří KUBÁSEK, Dalibor VOJTĚCH ZN-BASED ALLOYS AS AN ALTERNATIVE BIODEGRADABLE MATERIALS Jiří KUBÁSEK, Dalibor VOJTĚCH Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague,

More information

Fatigue strength properties of precipitation strengthening stainless steel A286 focused attention on small fatigue crack behaviour

Fatigue strength properties of precipitation strengthening stainless steel A286 focused attention on small fatigue crack behaviour Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1973 1978 ICM11 Fatigue strength properties of precipitation strengthening stainless steel A286 focused attention on small fatigue

More information

J. Mater. Sci. Technol., 2010, 26(11),

J. Mater. Sci. Technol., 2010, 26(11), J. Mater. Sci. Technol., 2010, 26(11), 1016-1020. Effects of Current Density on the Microstructure and the Corrosion Resistance of Alumina Coatings Embedded with SiC Nano-particles Produced by Micro-arc

More information

Study on Corrosion Behavior of Pearlitic Rail Steel

Study on Corrosion Behavior of Pearlitic Rail Steel Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No.7, pp.573-581, 2011 jmmce.org Printed in the USA. All rights reserved Study on Corrosion Behavior of Pearlitic Rail Steel S.

More information

FATIGUE OF DUPLEX STEELS IN CORROSIVE ENVIRONMENT

FATIGUE OF DUPLEX STEELS IN CORROSIVE ENVIRONMENT 5th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING ADDING INNOVATION CAPACITY OF LABOUR FORCE AND ENTREPRENEURS" 20 22 April 2006, Tallinn, Estonia FATIGUE OF DUPLEX STEELS IN CORROSIVE

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Comparison of the Effects of Surface Roughness of Wrought Aluminium Alloys on the Surface of Steel

Comparison of the Effects of Surface Roughness of Wrought Aluminium Alloys on the Surface of Steel Comparison of the Effects of Surface Roughness of Wrought Aluminium Alloys on the Surface of Steel Riyadh A Badr* School of Engineering, University of Samarra, Samarrah, 34010 - Salah Ad Din, Iraq Research

More information

Fundamental Study on Impact Toughness of Magnesium Alloy at Cryogenic Temperature

Fundamental Study on Impact Toughness of Magnesium Alloy at Cryogenic Temperature Fundamental Study on Impact Toughness of Magnesium Alloy at Cryogenic Temperature Akihiro Takahashi Department of Mechanical Engineering National Institute of Technology, Miyakonojo College, Miyakonojo,

More information

Effects of Electric Field Treatment on Corrosion Behavior of a Ni-Cr-W-Mo Superalloy

Effects of Electric Field Treatment on Corrosion Behavior of a Ni-Cr-W-Mo Superalloy Materials Transactions, Vol. 50, No. 7 (2009) pp. 1644 to 1648 Special Issue on New Functions and Properties of Engineering Materials Created by Designing and Processing #2009 The Japan Institute of Metals

More information

Evaluation of Sodium Titanate Coating on Titanium by Sol-Gel Method in vitro

Evaluation of Sodium Titanate Coating on Titanium by Sol-Gel Method in vitro Key Engineering Materials Online: 2007-02-15 ISSN: 1662-9795, Vols. 330-332, pp 777-780 doi:10.4028/www.scientific.net/kem.330-332.777 2007 Trans Tech Publications, Switzerland Evaluation of Sodium Titanate

More information

Joint Replacement Implants Hip Joint Prostheses

Joint Replacement Implants Hip Joint Prostheses Translated English of Chinese Standard: YY0118-2016 www.chinesestandard.net Sales@ChineseStandard.net PHARMACEUTICAL INDUSTRY STANDARD YY OF THE PEOPLE S REPUBLIC OF CHINA ICS 11.040.40 C 35 YY 0118-2016

More information

Mg-Al alloys, such as AZ91 and AM60 alloys, have been

Mg-Al alloys, such as AZ91 and AM60 alloys, have been Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy *You Zhiyong, Zhang Yuhua, Cheng Weili, Zhang Jinshan and Wei Yinghui ( College of Materials Science

More information

EFFECT OF AGING BEHAVIOR ON MECHANICAL PROPERTIES OF AZ91D/ AL 18 B 4 O 33 WHISKER COMPOSITES FABRICATED BY SQUEEZE CASTING

EFFECT OF AGING BEHAVIOR ON MECHANICAL PROPERTIES OF AZ91D/ AL 18 B 4 O 33 WHISKER COMPOSITES FABRICATED BY SQUEEZE CASTING 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF AGING BEHAVIOR ON MECHANICAL PROPERTIES OF AZ91D/ AL 18 B 4 O 33 WHISKER Kouji Maruo*, Wenguang Wang*, Nobuyuki Fuyama**, Kazuhiro Matsugi*,

More information

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions D. P. Myriounis, S.T.Hasan Sheffield Hallam

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

LASER SURFACE MELTING OF 304 STAINLESS STEEL FOR PITTING CORROSION RESISTANCE IMPROVEMENT

LASER SURFACE MELTING OF 304 STAINLESS STEEL FOR PITTING CORROSION RESISTANCE IMPROVEMENT LASER SURFACE MELTING OF 304 STAINLESS STEEL FOR PITTING CORROSION RESISTANCE IMPROVEMENT T.S. Seleka and S.L. Pityana 1. ABSTRACT CSIR: National Laser Centre Laser surface melting has been conducted on

More information

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure Materials Transactions, Vol. 48, No. 11 (2007) pp. 2986 to 2992 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period

More information

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing Devaraju Aruri, Adepu Kumar & B Kotiveerachary Department of Mechanical Engineering, National

More information

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Materials Transactions, Vol. 50, No. 7 (2009) pp. 1832 to 1837 #2009 The Japan Institute of Metals Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Kuk Hyun

More information

Chulalongkorn University, Bangkok, Thailand. Chulalongkorn University, Bangkok, Thailand; Abstract

Chulalongkorn University, Bangkok, Thailand. Chulalongkorn University, Bangkok, Thailand; Abstract Journal of Metals, Materials and Minerals. Vol.16 No.2 pp.25-31, 2006 The Effect of Long-Term Thermal Exposure at Elevated Temperatures on Microstructures and Mechanical Properties in Centrifugally Casted

More information

Ceramics, Glasses, and Glass-Ceramics

Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics include a broad range of inorganic/nonmetallic compositions. Eyeglasses Diagnostic instruments Thermometers Tissue culture flasks

More information

Evaluation of the Surface of Nitinol after MR Polishing Process

Evaluation of the Surface of Nitinol after MR Polishing Process Journal of Applied Mathematics and Physics, 2015, 3, 208-217 Published Online February 2015 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2015.32031 Evaluation of the Surface

More information

The influence of Mg 17 Al 12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy. Andrzej Kiełbus* and Grzegorz Moskal

The influence of Mg 17 Al 12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy. Andrzej Kiełbus* and Grzegorz Moskal 196 Int. J. Microstructure and Materials Properties, Vol. 4, No. 2, 2009 The influence of Mg 17 Al 12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy Andrzej Kiełbus* and Grzegorz

More information

Failure analysis of diesel engine cylinder head bolts

Failure analysis of diesel engine cylinder head bolts Engineering Failure Analysis 13 (2006) 826 834 www.elsevier.com/locate/engfailanal Failure analysis of diesel engine cylinder head bolts Zhiwei Yu, Xiaolei Xu * Institute of Metal and Technology, Dalian

More information

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL Karel OBRTLÍK Jiří MAN Jaroslav POLÁK Institute of Physics of Materials, Academy of Sciences of the Czech Republic Žižkova 22,

More information

Selection criteria for Biomaterials

Selection criteria for Biomaterials Selection criteria for Biomaterials Biomaterials and biomedical devices are used throughout the human body. 2 important aspects: Functional performance Biocompatibility Hip joint prosthesis 1 Functional

More information

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression Materials Transactions, Vol., No. (00) pp. 6 to 67 #00 The Japan Institute of Light Metals {00} Texture Map of AA8 Aluminum Alloy for High Temperature Uniaxial Compression Hyeon-Mook Jeong*, Kazuto Okayasu

More information

Initiation of fatigue cracks in AZ91 Mg alloy processed by ECAP

Initiation of fatigue cracks in AZ91 Mg alloy processed by ECAP IOP Conference Series: Materials Science and Engineering OPEN ACCESS Initiation of fatigue cracks in AZ91 Mg alloy processed by ECAP To cite this article: S Fintová and L Kunz 2014 IOP Conf. Ser.: Mater.

More information

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure Materials Transactions, Vol. 47, No. 4 (2006) pp. 959 to 965 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, III #2006 The Japan Institute of Light Metals Microstructure

More information

Electronics materials - Stress and its effect on materials

Electronics materials - Stress and its effect on materials Electronics materials - Stress and its effect on materials Introduction You will have already seen in Mechanical properties of metals that stress on materials results in strain first elastic strain and

More information

The Viability of Mg Alloy with Nano/Sub-micron Structure as a new Material for Practical Applications

The Viability of Mg Alloy with Nano/Sub-micron Structure as a new Material for Practical Applications The Viability of Mg Alloy with Nano/Sub-micron Structure as a new Material for Practical Applications E. Aghion and A. Arnon Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva,

More information

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu

More information

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 34L STAINLESS STEEL H.-J. Christ, C. K. Wamukwamba and H. Mughrabi The fatigue behaviour of the austenitic stainless steel AISI34L

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 WESTMORELAND MECHANICAL TESTING & RESEARCH, INC. 221 Westmoreland Drive Youngstown, PA 15696 Michael Self Phone: 724 537 3131 E-mail: mself@wmtr.com CHEMICAL

More information

ME 415 Failure Analysis and Prevention Failure of the Fortnight #4 H-1 Engine LOX Dome Failure. Evrim ERSU (ee51) Due Date: Thursday, March 29!!

ME 415 Failure Analysis and Prevention Failure of the Fortnight #4 H-1 Engine LOX Dome Failure. Evrim ERSU (ee51) Due Date: Thursday, March 29!! ME 415 Failure Analysis and Prevention Failure of the Fortnight #4 H-1 Engine LOX Dome Failure Evrim ERSU (ee51) Due Date: Thursday, March 29!! Space travel and exploration has always been one of humanity's

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

Effects of TiO2 Contents on HA/TiO2 Composite Coating by Electrophoretic Deposition Lei Zhao, Huiping Shaoa, Hang Zheng

Effects of TiO2 Contents on HA/TiO2 Composite Coating by Electrophoretic Deposition Lei Zhao, Huiping Shaoa, Hang Zheng International Conference on Manufacturing Science and Engineering (ICMSE 2015) Effects of TiO2 Contents on HA/TiO2 Composite Coating by Electrophoretic Deposition Lei Zhao, Huiping Shaoa, Hang Zheng Institute

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel

Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel Wen-Quan Wang 1,, Shu-Cheng Dong 1, Fan Jiang 1, and Ming Cao 1 1 School of Material Science and Engineering, Jilin

More information

Microstructures and dislocations in the stressed AZ91D magnesium alloys

Microstructures and dislocations in the stressed AZ91D magnesium alloys Materials Science and Engineering A344 (2002) 279/287 www.elsevier.com/locate/msea Microstructures and dislocations in the stressed AZ91D magnesium alloys R.M. Wang a,b,, A. Eliezer a, E. Gutman a a Ben-Gurion

More information

Effect of thermal exposure on mechanical properties hypo eutectic aerospace grade aluminium-silicon alloy

Effect of thermal exposure on mechanical properties hypo eutectic aerospace grade aluminium-silicon alloy IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effect of thermal exposure on mechanical properties hypo eutectic aerospace grade aluminium-silicon alloy To cite this article:

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Metals and alloys for biomedical applications

Metals and alloys for biomedical applications http://pioneer.netserv.chula.ac.th/~pchedtha/ Metals and alloys for biomedical applications Fundamental of Materials Engineering 2189202 Chedtha Puncreobutr Department of Metallurgical Engineering Chulalongkorn

More information

Microstructure and Mechanical Properties of Ultra-fine Grained Copper Processed by Equal Channel Angular Pressing Technique

Microstructure and Mechanical Properties of Ultra-fine Grained Copper Processed by Equal Channel Angular Pressing Technique , 22-24 October, 2014, San Francisco, USA Microstructure and Mechanical Properties of Ultra-fine Grained Copper Processed by Equal Channel Angular Pressing Technique Kazeem O. Sanusi, Member, IAENG Ayo

More information

RESEARCH REPOSITORY.

RESEARCH REPOSITORY. RESEARCH REPOSITORY This is the author s final version of the work, as accepted for publication following peer review but without the publisher s layout or pagination. The definitive version is available

More information

Overview of ASTM Subcommittee F04.15 on Material Test Methods Terry O. Woods, Ph.D. FDA Center for Devices & Radiological Health

Overview of ASTM Subcommittee F04.15 on Material Test Methods Terry O. Woods, Ph.D. FDA Center for Devices & Radiological Health Overview of ASTM Subcommittee F04.15 on Material Test Methods Terry O. Woods, Ph.D. FDA Center for Devices & Radiological Health PERU Workshop on Medical Device Regulation and Standards: Policy and Technical

More information

MgO implanted in rat tibia bone marrow is osteoinductive through the formation of a matrix, containing hydroxyapatite

MgO implanted in rat tibia bone marrow is osteoinductive through the formation of a matrix, containing hydroxyapatite Loughborough University Institutional Repository MgO implanted in rat tibia bone marrow is osteoinductive through the formation of a matrix, containing hydroxyapatite This item was submitted to Loughborough

More information

Calcium Phosphate Formation on Alkali-Treated Titanium Alloy and Stainless Steel

Calcium Phosphate Formation on Alkali-Treated Titanium Alloy and Stainless Steel Vol. Materials 7, No. Research, 2, 2004Vol. 7, No. 2, 299-303, 2004. Calcium Phosphate Formation on Alkali-Treated Titanium Alloy and Stainless Steel 2004 299 Calcium Phosphate Formation on Alkali-Treated

More information

Applied Surface Science

Applied Surface Science Applied Surface Science 258 (2012) 7651 7657 Contents lists available at SciVerse ScienceDirect Applied Surface Science j our nal ho me p age: www.elsevier.com/loc ate/apsusc Retardation of surface corrosion

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Effect of Alkali and Heat Treatment on Biomimetic HA Coating on Ti6Al4V

Effect of Alkali and Heat Treatment on Biomimetic HA Coating on Ti6Al4V Effect of Alkali and Heat Treatment on Biomimetic HA Coating on Ti6Al4V K. Fatehi i, F. Moztarzadeh ii, M.Solati Hashtjin iii ABSTRACT In this study, time of calcium phosphate formation on Ti6Al4V alloy

More information

A REVIEW OF PARAMETERS AFFECTING DUCTILE FRACTURE OF ALUMINUM ALLOY

A REVIEW OF PARAMETERS AFFECTING DUCTILE FRACTURE OF ALUMINUM ALLOY A REVIEW OF PARAMETERS AFFECTING DUCTILE FRACTURE OF ALUMINUM ALLOY Savan P. Makwana M.E.CAD/CAM, Mechanical Engineering, A.D. Patel Institute of Technology, Gujarat, India ABSTRACT This paper reviews

More information

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy K. R. Cardoso 1, V. Sinka 1, A. García Escorial 2, M. Lieblich 2 1 IP&D UNIVAP, Av. Shishima

More information

Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn shape memory alloy

Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn shape memory alloy ESOMAT 29, 528 (29) DOI:1.151/esomat/29528 Owned by the authors, published by EDP Sciences, 29 Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn

More information

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION KULA Anna 1, BLAZ Ludwik 1 1 AGH University of Science and Technology,

More information

Arch. Metall. Mater. 62 (2017), 2B,

Arch. Metall. Mater. 62 (2017), 2B, Arch. Metall. Mater. 6 (7), B, 9- DOI:.55/amm-7- B.-H. KANG*, M.-H. PARK**, K.-A. LEE*** # EFFECT OF STRUT THICKNESS ON ROOM AND HIGH TEMPERATURE COMPRESSIVE PROPEIES OF BLOCK-TYPE Ni-Cr-Al POWDER POROUS

More information

Failure Analysis for the Economizer Tube of the Waste Heat Boiler

Failure Analysis for the Economizer Tube of the Waste Heat Boiler China Steel Technical Report, No. 22, pp. 53 58, (2009) Tsung-Feng Wu 53 Failure Analysis for the Economizer Tube of the Waste Heat Boiler TSUNG-FENG WU New Materials Research and Development Department

More information

CHEMICAL COMPOSITION INVESTIGATION OF Zn-Mg ALLOY

CHEMICAL COMPOSITION INVESTIGATION OF Zn-Mg ALLOY EUROPEAN JOURNAL OF MATERIALS SCIENCE AND ENGINEERING Volume 3, Issue 4, 2018: 184-188 www.ejmse.tuiasi.ro ISSN: 2537-4338 Simona POPESCU (DOBRIȚĂ), Sergiu STANCIU, Ramona CIMPOEȘU, Dumitru Doru BURDUHOS

More information

Mechanical Properties of Bulk Metallic Glasses and composites

Mechanical Properties of Bulk Metallic Glasses and composites Mechanical Properties of Bulk Metallic Glasses and composites M.L. Lee 1 *, Y. Li 1, 2, Y. Zhong 1, C.W. Carter 1, 3 1. Advanced Materials for Micro- and Nano- Systems Programmes, Singapore-MIT Alliance,

More information

Corrosion Fatigue Performance in Simulated Sea Water of Aluminium 6061-T651 Welded using ER4043 Filler Wire

Corrosion Fatigue Performance in Simulated Sea Water of Aluminium 6061-T651 Welded using ER4043 Filler Wire Corrosion Fatigue Performance in Simulated Sea Water of Aluminium 6061-T651 Welded using ER4043 Filler Wire 1,a and Madeleine du Toit 2,b 1 CSIR/Pretoria, South Africa 2 University of Pretoria, South Africa

More information