Latest progress in performance and understanding of laser welding

Size: px
Start display at page:

Download "Latest progress in performance and understanding of laser welding"

Transcription

1 Available online at Physics Procedia 39 (2012 ) 8 16 LANE 2012 Latest progress in performance and understanding of laser welding Seiji Katayama, Yousuke Kawahito, Masami Mizutani JWRI - Joining and Welding Research Institut - Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka , Japan - Keynote Paper - Abstract This paper describes a variety of fundamental research results of laser welding which the authors have recently performed. The behavior and characteristics of a laser-induced plume were elucidated. Especially, in remote welding with a fiber laser, the effect of a tall plume leading to shallow weld was interpreted by considering the interaction of an incident laser beam against the zone of a low refractive index from the Mickelson interferometer results. The laser absorption in the plate was higher in the case of a smaller focused beam of fiber laser, lower welding speed and higher power, and the reason was interpreted by considering the size and location of a keyhole inlet and a beam spot. High power tandem laser beams could produce deep penetration, and laser welding in vacuum was developed for production of deeply penetrated welds. Laser direct joining was also developed for joining of metal to plastic or CFRP Published by by Elsevier B.V. Ltd. Selection and/or review under responsibility of of Bayerisches Laserzentrum GmbH Open access under CC BY-NC-ND license. Keywords: fiber laser; disk laser; welding phenomena; deep penetration ; metal-plastic joining 1. Introduction Laser welding has received great attention as promising joining technology with high quality, high precision, high performance, high speed, good flexibility and low deformation or distortion, in addition to the recognition of easy and wide applications due to congeniality with a robot, reduced man-power, full automation, systematization, production lines, etc. Thus, applications of laser welding are increasing. * Corresponding author. Tel.: address: katayama@jwri.osaka-u.ac.jp Published by Elsevier B.V. Selection and/or review under responsibility of Bayerisches Laserzentrum GmbH Open access under CC BY-NC-ND license. doi: /j.phpro

2 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) Therefore, to understand the mechanism of weld penetration and the phenomena in laser welding, a variety of researches have been performed concerning laser-induced plume behavior, the interaction between a laser beam and its induced plume/plasma, melt flows, keyhole behavior, and bubbles generation in the molten pool leading to the porosity formation in the weld fusion zones. Especially, remote welding phenomenon was elucidated by Mickelson interferometer. Welding in low vacuum for sound deep penetration or joining of metal to plastic or CFRP has been newly developed in terms of effective penetration and lighter-weight applications. 2. Behavior and Characteristics of Laser-Induced Plume, and Its Interaction to Laser Beam Spectroscopic measurement and analysis of a plume were performed during welding of Type 304 stainless steel with a 10 kw fiber laser beam at the ultra-high power density of about 1 MW/mm2 in Ar shielding gas. It was revealed that almost all peaks came from the emission of neutral atoms, and the emission from Ar gas was not detected. The inverse Bremsstrahlung effect seems to be negligibly small in welding with a fiber, disk or YAG laser beam of about 1 m wavelength. According to Saha equation, it is estimated that a plume is in the state of a weakly-ionized plasma (about 6000 K and 2% atomic ions)[1]. It was confirmed that the refraction and attenuation of a probe laser beam existed due to an inclined refraction index profile caused by slanted distribution of vapors density at high temperatures and Rayleigh scattering, respectively. The interaction of such a small-sized plume on a laser beam of about 1.06 m wavelength was also judged to be small. Fig. 1. Schematic arrangement of Michelson interferometer for measuring

3 10 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) 8 16 Fiber laser remote welding was performed on 270 MPa steel sheet with and without fan blowing under the conditions of 4 kw and 5 m/min. Without fan-blowing, a full penetration weld was changed into a partial penetration during welding, while it was formed all over the weld length with fan-blowing. To understand the effect of tall plume on the weld penetration, a laser induced plume and refractive index distribution were observed by Mickelson interferometer, as the system is schematically shown in Fig. 1 [2]. The observation results are shown in Fig. 2 [2]. It is considered that a tall plume over the specimen is heated, and thus the distribution of the refractive-index is so different that the incident laser beam is defocused and/or inclined. As a result, the transition in weld penetration depth occurred in air without fan-blowing. It is concluded that the influence of a short plume is small but the effect of a tall plume is great during remote fiber laser welding. Fan OFF Fan ON Fig. 2. Plume behaviour and refraction index distribution during remote laser welding of steel without and with fan-blowing 3. Laser Absorption Laser absorption was measured by calorimetric method. Fig. 3 shows a comparison of fiber and YAG laser absorption. Laser power: 2.5 kw, Welding speed: 1 m/min Fiber laser Spot diameter: 200 m YAG laser Spot diameter: 580 m Defocused distance [mm] Defocused distance [mm] Beam diameter [mm] Absorptivity [%] 3 mm 3 mm Beam diameter [mm] Defocused distance [mm] Fig. 3. Absorption of fiber and YAG laser in Type 304 stainless steel as function of defocused distance

4 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) The absorption of tightly focused fiber laser of about 0.2 mm diameter was higher than that of YAG laser of about 0.6 mm diameter. The laser absorption was higher in the case of higher power and/or lower welding speed. The keyhole behavior during welding was observed. The results are shown in Fig. 4. At low welding speeds, the incident beam was shot into the keyhole, but the molten pool in front of a keyhole became smaller with an increase in the welding speed, and the laser beam was shot on the front wall of the keyhole and partly on a the molten pool and solid plate in front of the keyhole, which results in the decrease in the absorption. Consequently, the reason for the difference in laser absorption is interpreted by considering the relationship between the size and location of a keyhole inlet and beam spot size. Welding speed High speed images 2 m/min 3 m/min 6 m/min 10 m/min 15 m/min 1 mm Schematic illustration Beam ratio to keyhole Absorption Molten pool Keyhole Laser spot 100 % 84 % 100 % 85 % 69 % 66 % 84 % 79 % 74 % 68 % Fig. 4. Fiber laser absorption in Type 304 stainless steel during welding at 10 kw and various welding speeds 4. High Power Laser Welding in Vacuum Laser welding in low vacuum was established by using a new chamber, whose vacuum conditions were achieved by rotary pumps [3]. Two continuous wave (CW) disk lasers (TRUMPF and with the wavelength of 1030 nm) were used, as shown in Fig. 5. Feeding fiber: 300 m Peak power: 10 kw Wavelength: 1,030 nm BPP : 12 mm*mrad TRUMPF L A S E R TruDisk Feeding fiber: 200 m Peak power: 16 kw Wavelength: 1,030 nm BPP : 8 mm*mrad TRUMPF L A S E R TruDisk Pumping speed: 162 /min Rotary pump Guard glass Disk laser Pumping speed: 500 /min Pressure gauge High speed camera Flowmeter Frame rate: 5,000 f/s Frame rate: 100 f/s N 2 Specimen Laser diode (Illumination) : 980 nm P: 30 W Fig. 5. Schematic experimental setup for laser welding under low vacuum

5 12 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) 8 16 The maximum laser powers are 10 and 16 kw, and the beam parameter products (BPP) were 12 and 8 mm*mrad, respectively. The maximum power of combined laser beams was 26 kw. A focusing optic of the focal distance of about 1 m was employed. A spot diameter at the focus position was about 0.4 to 0.5 mm. High power fiber or disk laser bead-on-plate welding was performed on Type 304 stainless steel or A5052 aluminum alloy plate at the powers of 10, 16 and 26 kw at various welding speeds or under various defocused conditions in low vacuum. Examples of cross sections of weld beads in A5052 aluminum alloy under the different vacuum conditions are shown in Fig. 6. Pressure 0.1 kpa 10 kpa kpa Bead surface Cross section Fig. 6. Surface appearances and cross sections of laser weld beads in A5052 obtained at 0.3 m/min Examples of Type 304 stainless steels as a function of defocused distance are exhibited in Fig. 7. The penetration depth increased with the decrease in pressure (vacuum) in both aluminum alloy and stainless steel. The increase was remarkable at lower welding speed. However, humping beads were produced near the focal point under lower vacuum. Such a humping bead was suppressed under the proper defocused conditions as shown in Fig. 7 [4].

6 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) mm Defocused distance -20 mm 0mm +20 mm Bead surface Cross section (b) Welding speed of 0.3 m/min Fig. 7. Bead surfaces and cross sections of 16 kw disk laser welds made in SUS 304 at various defocused distances and welding speed of 0.3 m/min (a) f d = -40 mm (b) f d = mm Fig. 8. Cross sections of Type 304 wed beadsmade with disk laser at 26 kw, 0.3 m/minand 0.1 kpa, showing formation of sounddeep- penetration weld The penetration depth was further increased under the defocused conditions. The wide bead zone was formed about below the focal point in Type 304 welds. Examples of weld cross sections produced with 26 kw disk lasers (combined by 10 kw and 16 kw beams) at the defocused distances of +20 mm and - 40 mm is shown in Fig. 8 [4]. At +20 mm and 40 mm, ideal and deep weld beads of about 46 mm and 73 mm depth were formed in Type 304 steel, respectively. Sound welds of more than 50 and 70 mm in penetration depth could be produced in Type 304 at the pressure of 0.1 kpa, the speed of 0.3 m/min and the power of 16 kw and 26 kw. Similar welding results of deep penetration were also obtained in A5052 alloy [4]. A swelled part was not present in A5052 alloy although it was located at about under the focal point in Type 304 steel. According to welding phenomena, weak plume or evaporation, a stable molten pool on the surface and reduced spattering were observed although the keyhole in the molten pool was actively moved. In low vacuum with a focusing optics of long focal length, deep penetration welds could be produced under the conditions of high powers, low welding speeds and (minus) defocused distance. 5. Laser Direct Joining between Metal and Plastic or CFRP Recently, the use of light plastics (resin) has been increasing. The joining of metals and plastics is important in the fields of manufacturing. Therefore, we have developed a new Laser-Assisted Metal and Plastic (LAMP) direct joining process with a YAG, diode, disk or fiber laser, which has many advantages over the conventional bonding methods using adhesives or mechanical fastening with bolts and nuts. The specimen after the tensile shear test of LAMP joint of Type 304 and polyethylene terephthalate (PET) exhibited a long elongation of the base PET plastic, as shown in Fig. 9 [5,6]. TEM observation was also performed. The photo is shown in Fig. 10.

7 14 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) 8 16 Plastic Cro ss s e ct i o n We ld fus io n z one Type 304 Plastic :PE T m m Bubbles (a) (a) C r 2 O 3 Beam // [ 010] Ty T y pe 304 PET (a) LA M P jo i n t b etween TYPE304 stainl ess s t eel a n d PET 5 nm TEM photo (b) ( b ) T YPE304 B ea m // [ 110] Elect ro n dif f racti o n p a t te rn s (b) L A MP j o i n t af ter ten si l e share test Fig. 8. Tensile shear test specimens of Type 304 and PET joined with laser (a) before and (b) after test, showing elongation of PET base plastic Fig. 9. TEM photo near joint interface of Type 304 steel and PET plastic, and electron diffraction patterns obtained from oxide film and metal It suggests that the joint was produced by bonding melted plastic onto the oxide film covering all over the metal. The LAMP joining could produce strong joints between almost all metals and some plastics such as PET, polyamide (PA), and polycarbonate (PC) [5,6]. The joint specimens of Type 304 stainless steel plates and PA or PET plastic sheets of 2 mm thickness and 30 mm width possessed tensile shear loads of more than 3000 N, where the fracture occurred in the base plastic sheets. The LAMP joining was characterized by the formation of small bubbles in the plastic on the metal plate surface. SEM and TEM observation of the bonding parts, XPS analyses of the bonding interface and the special bubble-inside-gas analyzer suggested that such high strengths were attributed to three joining mechanisms of mechanical, physical and chemical bonding, as indicated in Fig. 11 [5,6]. Dissimilar lap joints between Type 304 stainless steel plate, Zn-coated steel sheet or A5052 aluminum alloy sheet and CFRP sheet could be produced by irradiating a disk laser on Type 304 steel plate [7]. An example is shown in Fig. 12. The mechanical properties of the joints were evaluated by the tensile shear test. The tensile strength or loads of Type 304-CFRP joints of 3 mm thickness and 20 mm width were high. Fracture occurred in the CFRP base plastic to connect some bubbles. Some joints were very strong depending upon the joining areas according to the conditions. Especially, the load or strength of the joint reached 4770 N tensile shear load [8].

8 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) Laser beam Plastic Metal Heat transfer High vapor pressure due to rapid expansion Plastic Heat transfer Molten area Flow Metal Bubble Laser heated zone Bubble Oxide film (Higher magnification) Laser beam Fig. 10. Mechanisms of laser direct joining between metal and plastic, showing absorption of laser in metal, melting of plastic due to absorbed heat, and formation and expansion of bubbles inducing plastic flows onto oxide covering metal. The joining is attributed to anchor effect, Van der Waals force and chemical bonding between melted plastic and oxide film 16 kw Disk laser, fd = +20mm, spot diameter = 0.3 mm P = 2 kw, v = 5 m/s Appearances Crosssection Magnified photo Fig. 11. Tensile shear test results of specimens made between Type 304 and CFRP sheets (left), and example of specimen and cross section and magnified photo near joint interface showing bubbles in CFRP 6. Conclusions Laser welding phenomena are satisfactorily understood. The behavior and characteristics of a laser induced plume were elucidated. In remote welding with a fiber laser, the effect of a tall plume leading to shallow weld was interpreted by considering the interaction of an incident laser beam against the zone of a low refractive index from the Michelson interferometer results. The laser absorption in the plate was higher in the case of a smaller focused beam of fiber laser, lower welding speed and higher power, and the reason for high or low absorption was interpreted by considering the size and location of a keyhole

9 16 Seiji Katayama et al. / Physics Procedia 39 ( 2012 ) 8 16 inlet and a beam spot. High power tandem laser beams could produce deep penetration, and laser welding in vacuum was developed for production of deeply penetrated welds in stainless steel and aluminum alloy. Laser direct joining between metal and plastic or CFRP sheet was also developed. Strong joints were produced easily by irradiating a laser beam on the metal plate. Acknowledgements We would like to acknowledge Mr. Naoki Matsumoto, Mr. Shimpei Oiwa, Mr. Youhei Abe, Kwangwoon Jung, and so on of former Graduate Students of Osaka University. References [1] Kawahito Y., Kinoshita K., Matsumoto N., Mizutani M. and Katayama S., Q. J. Jpn. Weld. Soc., (in Japanese). [2] Katayama S., Oiwa S., Ishida H., Ozawa N., Mizutani M. and Kawahito Y., 61st Annual Assembly of Int. Inst. Welding (IIW), Graz, IIW Doc. IV [3] Abe Y., Mizutani M., Kawahito Y., and Katayama S., Proc. of ICALEO 2010, LIA, 2010, [4] Katayama S., Abe Y., Mizutani M., and Kawahito Y., Physics Procedia, 2011, 12-Part 1, [5] Katayama S. and Kawahito Y., Scripta Materialia, 2008, [6] Katayama, S., Kawahito Y., Niwa Y. and Kubota S., Proc. of LANE 2007, Germany, 2007, [7] Niwa Y., Kawahito Y., Kubota S. and Katayama S., Proc. ICALEO 2008, LIA, CA, USA, 2008, [8] Jung K.-W., Kawahito Y. and Katayama S., Science and Technology of Welding and Joining, 2011,

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Transactions of JWRI, Vol.42 (2013), No. 1 Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Su-Jin LEE Su-Jin*, LEE*,

More information

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser Yousuke KAWAHITO*, Masaharu KAWASAKI* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium

In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium In-process Monitoring and Adaptive Control for Laser Spot and Seam Welding of Pure Titanium Yousuke KAWAHITO*, Masayuki KITO* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

Adaptive Control and Repair for Lap Welds of Aluminum Alloy Sheets Based upon In-Process Monitoring.

Adaptive Control and Repair for Lap Welds of Aluminum Alloy Sheets Based upon In-Process Monitoring. Title Author(s) Adaptive Control and Repair for Lap Welds of Aluminum Alloy Sheets Based upon In-Process Monitoring Kawahito, Yousuke; Katayama, Seiji Citation Transactions of JWRI. 34(2) P.7-P.15 Issue

More information

Weldability and Keyhole Behavior in Remote Welding of three Zn-Coated Steel Sheets

Weldability and Keyhole Behavior in Remote Welding of three Zn-Coated Steel Sheets Weldability and Behavior in Remote Welding of three Zn-Coated Steel Sheets LEE Su-Jin Su-Jin*, LEE*, KATAYAMA Seiji KATAYAMA**, Seiji**, KAWAHITO Yousuke KAWAHITO***, Yousuke***, KINOSHITA Keisuke KINOSHITA****

More information

In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets

In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets JLMN-Journal of Laser Micro/Nanoengineering, Vol.1, No. 1, 2006 In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets Yousuke KAWAHITO * and Seiji

More information

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser.

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser. Title Author(s) In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser KAWAHITO, Yousuke; KATAYAMA, Seiji Citation Transactions of JWRI. 38(2) P.5-P.11 Issue Date 2009-12

More information

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser Transactions of JWRI, Vol.36 (2007), No. 2 Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser KAWAHITO Yousuke*, KITO Masayuki** and KATAYAMA Seiji*** Abstract The gap is one of the most important

More information

Dissimilar Metals Welding of Galvanized Steel and Aluminum

Dissimilar Metals Welding of Galvanized Steel and Aluminum Transactions of JWRI, Vol.43 (04), No. Dissimilar Metals Welding of Galvanized Steel and Aluminum NISHIMOTO Koji*, KAWAHITO Yousuke** and KATAYAMA Seiji*** Abstract Dissimilar metals joints of galvanized

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Methods for improving laser beam welding efficiency

Available online at   ScienceDirect. Physics Procedia 56 (2014 ) Methods for improving laser beam welding efficiency Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 450 457 8 th International Conference on Photonic Technologies LANE 2014 Methods for improving laser beam welding efficiency

More information

Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding

Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding Transactions of of JWRI, Vol.35 Vol.** (2006), (200*), No.1 No. * Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding KATAYAMA Seiji*, NAITO Yasuaki**, UCHIUMI Satoru** and

More information

Mechanical Property and Joining Characteristics of Laser Direct Joining of CFRP to Polyethylene Terephthalate

Mechanical Property and Joining Characteristics of Laser Direct Joining of CFRP to Polyethylene Terephthalate INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY Vol. 1, No. 1, pp. 43-48 JANUARY 2014 / 43 DOI: 10.1007/s40684-014-0007-2 Mechanical Property and Joining Characteristics

More information

Influence of Ambient Pressure on Spatter Formation during Laser Welding of Copper

Influence of Ambient Pressure on Spatter Formation during Laser Welding of Copper Lasers in Manufacturing Conference 2015 Influence of Ambient Pressure on Spatter Formation during Laser Welding of Copper Andreas Heider a *, Thomas Engelhardt b, Rudolf Weber a, Thomas Graf a a Institut

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Laser Beam Welding of Brass.

Available online at   ScienceDirect. Physics Procedia 56 (2014 ) Laser Beam Welding of Brass. Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 576 581 8 th International Conference on Photonic Technologies LANE 2014 Laser Beam Welding of Brass Florian Hugger a,

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Budapest, Stoczek u.

Available online at   ScienceDirect. Physics Procedia 56 (2014 ) Budapest, Stoczek u. Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (214 ) 811 817 8 th International Conference on Photonic Technologies LANE 214 Investigating thermal interactions in the case

More information

Effects of welding parameters onto keyhole geometry for partial penetration laser welding

Effects of welding parameters onto keyhole geometry for partial penetration laser welding Available online at www.sciencedirect.com Physics Procedia 41 (2013 ) 199 208 Lasers in Manufacturing Conference 2013 Effects of welding parameters onto keyhole geometry for partial penetration laser welding

More information

Laser Joining of Different Materials between Aluminum and Plastic Using Insert Materials

Laser Joining of Different Materials between Aluminum and Plastic Using Insert Materials Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan Ó2010 2010 The Japan Institute of Light Metals pp. 1740-1745 1740 Laser Joining of Different Materials

More information

Parameter Dependencies of Copper Welding with Multi-kW Lasers at 1 Micron Wavelength

Parameter Dependencies of Copper Welding with Multi-kW Lasers at 1 Micron Wavelength Available online at www.sciencedirect.com Physics Procedia 12 (2011) 95 104 LiM 2011 Parameter Dependencies of Copper Welding with Multi-kW Lasers at 1 Micron Wavelength Dirk Petring*, Vahid Nazery Goneghany

More information

Thick section laser welding

Thick section laser welding Thick section laser welding Chris Allen 1 Scope How thick is thick? Possible applications Advantages and challenges of thick section laser welding Traditional thick section laser welding techniques CO

More information

(Received December 6, 2006)

(Received December 6, 2006) 研究論文 Mechanical Properties of Aluminum-Based Dissimilar Alloy Joints by Power Beams, Arc and Processes Michinori OKUBO*, Tomokuni KON** and Nobuyuki ABE*** (Received December 6, 6) Dissimilar smart joints

More information

LINEAR MATHEMATICAL MODELS FOR WELDS IN LASER WELDING

LINEAR MATHEMATICAL MODELS FOR WELDS IN LASER WELDING LINEAR MATHEMATICAL MODELS FOR WELDS IN LASER WELDING Remus BOBOESCU 1 1 Ph.D., Professor, Polytechnic University Timişoara Abstract. It presents a study on the molten area produced at irradiation of steel

More information

Welding of Thin Foils with Elliptical Beams. Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro.

Welding of Thin Foils with Elliptical Beams. Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro. Title Author(s) Citation Welding of Thin Foils with Elliptical Beams Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro Transactions of JWRI. 37(1) P.27-P.31 Issue Date 2008-07 Text Version publisher

More information

Investigation of copper / gold laser seam welding for targets manufacturing

Investigation of copper / gold laser seam welding for targets manufacturing Available online at www.sciencedirect.com Physics Procedia 41 (2013 ) 581 588 Lasers in Manufacturing Conference 2013 Investigation of copper / gold laser seam welding for targets manufacturing R. Bourdenet*,

More information

AILU Technology Workshop

AILU Technology Workshop AILU Technology Workshop Welding of metals using high power fiber delivered diode laser beams Dipl.-Ing. Mark Daichendt Laserline GmbH Mülheim-Kärlich Germany www.laserline.de 1 Outline Laserline company

More information

An Analysis of the Role of Side Assisting Gas during CO 2 Laser Welding

An Analysis of the Role of Side Assisting Gas during CO 2 Laser Welding Transactions of JWRI, Vol. 35 (26), No. 1 An Analysis of the Role of Side Assisting Gas during O 2 Laser Welding HANG Linjie*, HANG Jianxun ** and MURAKAWA Hidekazu *** Abstract An experimental study of

More information

Multispot laser welding to improve process stability

Multispot laser welding to improve process stability Lasers in Manufacturing Conference 2015 Multispot laser welding to improve process stability K.S. Hansen a *, F.O. Olsen a, M. Kristiansen b, O. Madsen b a IPU Technology Development, Produktionstorvet

More information

Dissimilar Metal Joining Process "Element Arc Spot Welding"

Dissimilar Metal Joining Process Element Arc Spot Welding Dissimilar Metal Joining Process "Element Arc Spot Welding" Liang CHEN *1, Dr. Reiichi SUZUKI *1 *1 Automotive Solution Center, Technical Development Group Dissimilar metal joining between aluminum and

More information

Advanced welding analysis methods applied to heavy section welding with a 15 kw fibre laser

Advanced welding analysis methods applied to heavy section welding with a 15 kw fibre laser Advanced welding analysis methods applied to heavy section welding with a 15 kw fibre laser A. F. H. Kaplan and G. Wiklund Luleå University of Technology, Department of Applied Physics and Mechanical Engineering,

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää*

Available online at  ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää* Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 630 636 8 th International Conference on Photonic Technologies LANE 2014 Thick-section laser and hybrid welding of austenitic

More information

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure KOBAYASHI Akira*, TAKAO Yoshiyuki**, KOMURASAKI Kimiya*** Abstract The microwave discharge plasma

More information

REVIEW OF LASER PLASTIC WELDING PROCESS

REVIEW OF LASER PLASTIC WELDING PROCESS REVIEW OF LASER PLASTIC WELDING PROCESS Kalpesh More 1, Rushikesh Aher 2, Makrand Bharaskar 3 1,2,3 Mechanical, Sandip Institute Technology and Research Centre/Pune University, (India) ABSTRACT There are

More information

Monitoring of High Power Laser Welding Process by Using Image Difference Algorithm

Monitoring of High Power Laser Welding Process by Using Image Difference Algorithm , October 24-26, 2012, San Francisco, USA Monitoring of High Power Laser Welding Process by Using Image Difference Algorithm Deyong You, Xiangdong Gao Abstract Process monitoring is important for the laser

More information

Spatter-Free Stable Conduction and Keyhole Welding of Copper with 275 Watt Blue Laser

Spatter-Free Stable Conduction and Keyhole Welding of Copper with 275 Watt Blue Laser Spatter-Free Stable Conduction and Keyhole Welding of Copper with 275 Watt Blue Laser Abstract Laser welding of highly reflective materials such as copper has been problematic for infrared lasers due to

More information

Process Control of Stainless Steel Laser Welding using an Optical Spectroscopic Sensor

Process Control of Stainless Steel Laser Welding using an Optical Spectroscopic Sensor Available online at www.sciencedirect.com Physics Procedia 12 (2011) 744 751 LiM 2011 Process Control of Stainless Steel Laser Welding using an Optical Spectroscopic Sensor A.R. Konuk a, *, R.G.K.M. Aarts

More information

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires Materials Transactions, Vol. 45, No. 4 (24) pp. 17 to 176 Special Issue on Frontiers of Smart Biomaterials #24 The Japan Institute of Metals Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted

More information

Page 1 of 5 Welding plastics with near-ir lasers Improvements in the performance and cost-effectiveness of lasers have led to their wider use for welding thermoplastics. Increasing use of bonded plastics

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

Laser welding of polymers

Laser welding of polymers Laser welding of polymers State of the art and innovative trends - Part I Dipl.-Ing. Andrei Boglea 1 st Internal Workshop Laser welding - a versatile process for the high performance production of polymeric

More information

Practical Numerical Simulation of Laser Welding for Industrial Use

Practical Numerical Simulation of Laser Welding for Industrial Use Practical Numerical Simulation of Laser Welding for Industrial Use B.L. Bemis Copyright 2014 Owens Corning. All Rights Reserved. Introduction Laser Welding of Metals Advantages Fast Precise power input

More information

Finite-element simulation of aluminum temperature field and thermal profile in laser welding process

Finite-element simulation of aluminum temperature field and thermal profile in laser welding process Finite-element simulation of aluminum temperature field and thermal profile in laser welding process Ali Moarrefzadeh Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran A_moarrefzadeh@yahoo.com,

More information

Laser Surface processing -The features and the applications -

Laser Surface processing -The features and the applications - Laser Surface processing -The features and the applications - 1)Introduction 2) Heating process 3) Melting process 4) Laser vaporizing process 5) Laser CVD & PVD 6)laser marking and engraving By Munehary

More information

Online Detection of Pore Formation during Laser Deep- Penetration Welding

Online Detection of Pore Formation during Laser Deep- Penetration Welding Lasers in Manufacturing Conference 2015 Online Detection of Pore Formation during Laser Deep- Penetration Welding Meiko Boley*, Rudolf Weber, Thomas Graf Institut für Strahlwerkzeuge, Pfaffenwaldring 43,

More information

Copper Welding with High-Brightness Fiber Lasers

Copper Welding with High-Brightness Fiber Lasers Copper Welding with High-Brightness Fiber Lasers Process stabilization by high dynamic beam deflection Michael Grupp and Nils Reinermann The consumer electronics and automotive industry are the driving

More information

Laser Roll Welding. Chapter 1. By Muneharu KUTSUNA Advanced Laser Technology Research Center Co.,Ltd. CONTENT

Laser Roll Welding. Chapter 1. By Muneharu KUTSUNA Advanced Laser Technology Research Center Co.,Ltd. CONTENT Laser Roll Welding By Muneharu KUTSUNA Advanced Laser Technology Research Center Co.,Ltd. CONTENT Chapter 1 1.1 Background and Historical aspect 1.2 Definition of process Chapter 2: Process fundamentals,

More information

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform ICCM2015, 14-17 th July, Auckland, NZ Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform *G. Song¹, J.Wang¹,

More information

Repair or Maintenance

Repair or Maintenance Repair or Maintenance Development of Multifunction Laser Welding Head as Maintenance Technologies against Stress Corrosion Cracking for Nuclear Power Reactors T. Miura, W. Kono, I. Chida, T. Hino, S. Yamamoto,

More information

Evaluation of unusual change in contact angle between MgO and molten magnesium

Evaluation of unusual change in contact angle between MgO and molten magnesium Materials Science and Engineering A 417 (2006) 99 103 Evaluation of unusual change in contact angle between MgO and molten magnesium Hidetoshi Fujii a, Shun Izutani a, Taihei Matsumoto a,, Shoji Kiguchi

More information

Dr Jack Gabzdyl Product Line Manager Pulsed Lasers

Dr Jack Gabzdyl Product Line Manager Pulsed Lasers AILU PHOTONEX 08 16 th October 2008 Fiber Lasers for Medical Applications Dr Jack Gabzdyl Product Line Manager Pulsed Lasers General Advantages of Fibre Lasers Beam Quality & Stability Diffraction-limited

More information

Effects of Laser Peening Parameters. on Plastic Deformation in Stainless Steel

Effects of Laser Peening Parameters. on Plastic Deformation in Stainless Steel Effects of Laser Peening Parameters on Plastic Deformation in Stainless Steel Miho Tsuyama* 1, Yasuteru Kodama* 2, Yukio Miyamoto* 2, Ippei Kitawaki* 2, Masahiro Tsukamoto* 3 and Hitoshi Nakano* 1 *1 Faculty

More information

Development of Indirect Laser Peening Process for forming a micro dimple and making powder deposition on the substrate

Development of Indirect Laser Peening Process for forming a micro dimple and making powder deposition on the substrate Development of Indirect Laser Peening Process for forming a micro dimple and making powder deposition on the substrate # 1903 Muneharu KUTSUNA 1, Hiroki INOUE 1, and Haruki MIZUTANI 1 1 School of Engineering,

More information

Microstructural development at weld interface between Zr-based glassy alloy and stainless steel by resistance microwelding

Microstructural development at weld interface between Zr-based glassy alloy and stainless steel by resistance microwelding Journal of Physics: Conference Series Microstructural development at weld interface between Zr-based glassy alloy and stainless steel by resistance microwelding To cite this article: S Fukumoto et al 2012

More information

Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy

Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy IIW Doc IV 906-06 Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy Muneharu KUTSUNA Nagoya University Hitoshi OZAKI Nagoya University Shigeyuki NAKAGAWA Nissan Motor

More information

Challenges and solutions for copper processing with high brightness fiber lasers for e-mobility applications

Challenges and solutions for copper processing with high brightness fiber lasers for e-mobility applications Abstract Lasers in Manufacturing Conference 2017 Challenges and solutions for copper processing with high brightness fiber lasers for e-mobility applications M. Grupp *, N. Reinermann IPG Laser GmbH, Siemensstr.

More information

NONTRADITIONAL MANUFACTURING PROCESSES

NONTRADITIONAL MANUFACTURING PROCESSES NONTRADITIONAL MANUFACTURING PROCESSES Lasers & Laser Beam Machining Basic NTM Process Groups: * Thermal NTM Processes - Laser Beam Machining (LBM) - Electron Beam Machining (EBM) - Plasma Arc Machining

More information

Trends in BIW Aluminum Welding

Trends in BIW Aluminum Welding Trends in BIW Aluminum Welding Diode lasers in the automotive industry Axel Luft and Tobias Stittgen Since 2001 diode lasers are in use in automotive series production and are still gaining importance.

More information

Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal

Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal penetration thus small thermal distortion for sensitive

More information

Evaluation of Solidification Cracking Susceptibility for Austenitic Stainless Steel during Laser Trans-Varestraint Test Using Twodimensional

Evaluation of Solidification Cracking Susceptibility for Austenitic Stainless Steel during Laser Trans-Varestraint Test Using Twodimensional ISIJ International, Vol. 56 (2016), ISIJ International, No. 11 Vol. 56 (2016), No. 11, pp. 2022 2028 Evaluation of Solidification Cracking Susceptibility for Austenitic Stainless Steel during Laser Trans-Varestraint

More information

Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device*

Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device* Materials Transactions, Vol. 47, No. 7 (2006) pp. 1821 to 1825 #2006 The Japan Institute of Metals Strength of Carbon Fiber Reinforced Cu-25 at%al Alloy Junction Device* Yoshitake Nishi and Kazunori Tanaka

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management DIFFUSION BONDING OF AL ALLOY USING DIFFERENT IINTERLAYERS Assist. Prof. Dr. Ahmed A. Akbar*, Samer K. Khaleel * Asst. Prof. Dr. at University of Technology, Production Engineering and Metallurgy, Iraq

More information

Measurements of fluid flow on keyhole front during laser welding

Measurements of fluid flow on keyhole front during laser welding Measurements of fluid flow on keyhole front during laser welding I. Eriksson*, J. Powell and A. F. H. Kaplan This paper presents the results of a high speed video survey of melt flow on the front face

More information

IIW Commission meetings in Annual Assembly Prague, Czech Republic on July 11 to 13, 2005 Meeting Notes by Alice Lau

IIW Commission meetings in Annual Assembly Prague, Czech Republic on July 11 to 13, 2005 Meeting Notes by Alice Lau IIW Commission meetings in Annual Assembly Prague, Czech Republic on July 11 to 13, 2005 Meeting Notes by Alice Lau All papers are on the IIW website in the Working Group area of Commission XII July 11,

More information

Experimental Investigation of the Cutting Front Angle during Remote Fusion Cutting

Experimental Investigation of the Cutting Front Angle during Remote Fusion Cutting Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 204 212 LANE 2012 Experimental Investigation of the Cutting Front Angle during Remote Fusion Cutting Schober, A., Musiol, J., Daub,

More information

STUDY ON SiCP/6063Al COMPOSITES LASER WELDING PROCESS WITH Al75Cu20Ti5 FOIL INTERLAYER

STUDY ON SiCP/6063Al COMPOSITES LASER WELDING PROCESS WITH Al75Cu20Ti5 FOIL INTERLAYER Engineering Review, Vol. 37, Issue 2, 235-242, 2017. 235 STUDY ON SiCP/6063Al COMPOSITES LASER WELDING PROCESS WITH Al75Cu20Ti5 FOIL INTERLAYER Dongfeng Cheng 1* Peng Wang 1 Jitai Niu 1,2 Zeng Gao 1 1

More information

Computer simulations of thermal phenomena in surface heating process using the real distribution of Yb:YAG laser power

Computer simulations of thermal phenomena in surface heating process using the real distribution of Yb:YAG laser power Computer simulations of thermal phenomena in surface heating process using the real distribution of Yb:YAG laser power Marcin Kubiak 1,*, Vladimír Dekýš 2, Tomasz Domański 1, Pavol Novák 2, Zbigniew Saternus

More information

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Materials Transactions, Vol. 50, No. 7 (2009) pp. 1832 to 1837 #2009 The Japan Institute of Metals Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Kuk Hyun

More information

Laser welding of Al-Si coated hot stamping steel

Laser welding of Al-Si coated hot stamping steel Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 2226 2231 ICM11 Laser welding of Al-Si coated hot stamping steel C. Kim a*, M. J. Kang a, Y. D. Park b a Korea Institute of Industrial

More information

Porosity in fiber laser formation of 5A06 aluminum alloy

Porosity in fiber laser formation of 5A06 aluminum alloy Journal of Mechanical Science and Technology 24 (5) (2010) 1077~1082 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-010-0309-4 Porosity in fiber laser formation of 5A06 aluminum alloy Yangchun

More information

Effects of TIG Welding Parameters on Dissimilar Metals Welding between Mild Steel and 5052 Aluminum Alloy

Effects of TIG Welding Parameters on Dissimilar Metals Welding between Mild Steel and 5052 Aluminum Alloy 2010 The Japan Institute of Light Metals Proceedings pp. 928-933 of the 12th International Conference on 928 Effects of TIG Welding Parameters on Dissimilar Metals Welding between Mild Steel and 5052 Aluminum

More information

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering The use of holographic optics in laser additive layer manufacture Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering Traditional Laser Beam Problems Shape Intensity Beam intensity distribution....

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Evaluation of Tensile Strength and Fatigue Strength of Commercial Pure Aluminum/Tough Pitch Copper Friction-Welded Joints by Deformation Heat Input* 1

Evaluation of Tensile Strength and Fatigue Strength of Commercial Pure Aluminum/Tough Pitch Copper Friction-Welded Joints by Deformation Heat Input* 1 Materials Transactions, Vol. 49, No. 12 (28) pp. 2786 to 2791 #28 The Japan Institute of Light Metals Evaluation of Tensile Strength and Fatigue Strength of Commercial Pure Aluminum/Tough Pitch Copper

More information

The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints

The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints Hongyang Wang, Gang Song, Baoqiang Feng, and Liming Liu ( ) Key Laboratory of Liaoning

More information

Improvement of Fatigue Strength and Friction Energy Loss of Machinery Parts by Indirect Laser Peening

Improvement of Fatigue Strength and Friction Energy Loss of Machinery Parts by Indirect Laser Peening Improvement of Fatigue Strength and Friction Energy Loss of Machinery Parts by Indirect Laser Peening 1 M.Kutsuna 1, H.Inoue 1,,K.Saito 2, and K. Amano 3 Advanced Laser Technology Research Center Co. 40-7

More information

Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel," L. Lagrange,& T.

Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel, L. Lagrange,& T. Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel," L. Lagrange,& T. Marchione^ f^, BID de /a rzcfozre ^7000 France ABSTRACT The interaction

More information

Influence of Oxygen Flow Rate on the Variation of Surface Roughness of Fused Silica during Plasma Polishing Process

Influence of Oxygen Flow Rate on the Variation of Surface Roughness of Fused Silica during Plasma Polishing Process Available online at www.sciencedirect.com Physics Procedia 18 (2011) 107 111 The Fourth International Conference on Surface and Interface Science and Engineering Influence of Oxygen Flow Rate on the Variation

More information

Mechanical Properties of 5052/2017 Dissimilar Aluminum Alloys Deposit by Friction Surfacing* 1

Mechanical Properties of 5052/2017 Dissimilar Aluminum Alloys Deposit by Friction Surfacing* 1 Materials Transactions, Vol. 47, No. 3 (6) pp. 874 to 882 #6 The Japan Institute of Light Metals Mechanical Properties of 552/7 Dissimilar Aluminum Alloys Deposit by Friction Surfacing* Hiroshi Tokisue,

More information

CANUNDA. Application note. Version 06/10/2015

CANUNDA. Application note. Version 06/10/2015 CANUNDA Application note Version 06/10/2015 2 TABLE OF CONTENTS INTRODUCTION LASER BEAM SHAPING SOLUTIONS APPLICATIONS Sheet cutting improved speed Hardened welding Pre-joining surface ablation Slow cooling

More information

Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization

Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization Laser Surface Treatment Annealing or Transformation Hardening Surface hardness Surface Melting Homogenization,

More information

Laser Material Processing New Frontiers New Opportunities Terry VanderWert/ Prima Power Laserdyne

Laser Material Processing New Frontiers New Opportunities Terry VanderWert/ Prima Power Laserdyne Laser Material Processing New Frontiers New Opportunities Terry VanderWert/ Prima Power Laserdyne Moving the frontier from solution looking for a problem to enabling technology 2 About Prima Power Laserdyne

More information

In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding

In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding Tomonori YAMADA*1, Takahisa SHOBU*2, Akihiko NISHIMURA*1, Yukihiro YONEMOTO*1, Susumu YAMASHITA*1 and Toshiharu MURAMATSU*1 *1

More information

Advances in Welding and Joining Technologies Dr. Swarup Bag Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Advances in Welding and Joining Technologies Dr. Swarup Bag Department of Mechanical Engineering Indian Institute of Technology, Guwahati Advances in Welding and Joining Technologies Dr. Swarup Bag Department of Mechanical Engineering Indian Institute of Technology, Guwahati Lecture 15 Micro and Nano Joining Processes Part II Hello everybody,

More information

ScienceDirect. Joining of various kinds of metal plates using ultrasonic vibrations

ScienceDirect. Joining of various kinds of metal plates using ultrasonic vibrations Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 2111 2116 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Selective front side patterning of CZTS thin-film solar cells by picosecond laser induced material lift-off process

Selective front side patterning of CZTS thin-film solar cells by picosecond laser induced material lift-off process Available online at www.sciencedirect.com Physics Procedia 41 (2013 ) 741 745 Lasers in Manufacturing Conference 2013 Selective front side patterning of CZTS thin-film solar cells by picosecond laser induced

More information

LASER BEAM DEFOCUSING EFFECTS ON LASER WELDS SURFACES

LASER BEAM DEFOCUSING EFFECTS ON LASER WELDS SURFACES HENRI COANDA GERMANY GENERAL M.R. STEFANIK AIR FORCE ACADEMY ARMED FORCES ACADEMY ROMANIA SLOVAK REPUBLIC INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2011 Brasov, 26-28 May 2011 LASER BEAM DEFOCUSING

More information

Fundamental Characteristics of a New Type Plasma Generator

Fundamental Characteristics of a New Type Plasma Generator Fundamental Characteristics of a New Type Plasma Generator KOBAYASHI Akira *and ISHIBASHI Norifumi ** Abstract Plasma jet at atmospheric pressure has the advantage of cost, because there is no need to

More information

Low-Speed Laser Welding of Aluminum Alloy 7075-T6 Using a 300-W, Single-Mode, Ytterbium Fiber Laser

Low-Speed Laser Welding of Aluminum Alloy 7075-T6 Using a 300-W, Single-Mode, Ytterbium Fiber Laser Low-Speed Laser Welding of Aluminum Alloy 775-T6 Using a 3-W, Single-Mode, Ytterbium Fiber Laser By defining the fluence per weld length and specific weld energy per weld length metrics, the results were

More information

Spot and seam welding applications using Nd:YAG lasers. Geoff J Shannon Unitek Miyachi Corporation 1820 S Myrtle Avenue Monrovia, CA

Spot and seam welding applications using Nd:YAG lasers. Geoff J Shannon Unitek Miyachi Corporation 1820 S Myrtle Avenue Monrovia, CA Spot and seam welding applications using Nd:YAG lasers Geoff J Shannon Unitek Miyachi Corporation 1820 S Myrtle Avenue Monrovia, CA 91017 Abstract With precise energy control and application flexibility

More information

Expulsion Reduction in Resistance Spot Welding by Controlling of welding Current Waveform

Expulsion Reduction in Resistance Spot Welding by Controlling of welding Current Waveform Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 2775 2781 International conference on the mechanical behavior of materials Expulsion Reduction in Resistance Spot Welding by Controlling

More information

Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel

Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel Wen-Quan Wang 1,, Shu-Cheng Dong 1, Fan Jiang 1, and Ming Cao 1 1 School of Material Science and Engineering, Jilin

More information

Available online at ScienceDirect. Procedia Materials Science 4 (2014 ) Hiroshi Utsunomiya*, Ryo Matsumoto

Available online at   ScienceDirect. Procedia Materials Science 4 (2014 ) Hiroshi Utsunomiya*, Ryo Matsumoto Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 4 (2014 ) 245 249 8th International Conference on Porous Metals and Metallic Foams, Metfoam 2013 Deformation processes

More information

LASER WELDING WITH HIGH POWER LASER: THE EFFECT OF JOINT CONFIGURATION

LASER WELDING WITH HIGH POWER LASER: THE EFFECT OF JOINT CONFIGURATION LASER WELDING WITH HIGH POWER LASER: THE EFFECT OF JOINT CONFIGURATION E. LAPPALAINEN 1, A. UNT 1, M. SOKOLOV 1, M. VÄNSKÄ 1 AND A. SALMINEN 1,2 1 Lappeenranta University of Technology, Laboratory of Laser

More information

New Developments in Laser Welding of 21 st Century Automotive Materials Dr Jon Blackburn CII Welding Conference 2016

New Developments in Laser Welding of 21 st Century Automotive Materials Dr Jon Blackburn CII Welding Conference 2016 New Developments in Laser Welding of 21 st Century Automotive Materials Dr Jon Blackburn CII Welding Conference 2016 Copyright TWI Ltd 2015 TWI An Extension of your Resources The World Centre for Materials

More information

Lasers in Advanced Packaging

Lasers in Advanced Packaging Lasers in Advanced Packaging Xiangyang Song, Cristian Porneala, Dana Sercel, Kevin Silvia, Joshua Schoenly, Rouzbeh Sarrafi, Sean Dennigan, Eric DeGenova, Scott Tompkins, Brian Baird, Vijay Kancharla,

More information

Influence of residual stresses induced by forming on the hot cracking sensitivity of laser welding processes of AlMgSi aluminum alloy

Influence of residual stresses induced by forming on the hot cracking sensitivity of laser welding processes of AlMgSi aluminum alloy Lasers in Manufacturing Conference 2015 Influence of residual stresses induced by forming on the hot cracking sensitivity of laser welding processes of AlMgSi aluminum alloy Peter Stritt*, Christian Hagenlocher,

More information

Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser

Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser Abstract Lasers in Manufacturing Conference 2015 Sputter-free and reproducible laser welding of electric or electronic copper contacts with a green laser Kaiser, Elke*; Pricking, Sebastian; Stolzenburg,

More information

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS CHAPTER-4 EXPERIMENTAL DETAILS 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS Hot rolled plates of 90/10 and 70/30 Cu-Ni alloys of 5 mm thickness were selected as test

More information

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Advances in Intense Pulsed Light Solutions For Display Manufacturing XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Talk Outline Introduction to Pulsed Light Applications in Display UV Curing Applications

More information

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD Noboru NAKAYAMA Akita Prefectural University, 84-4 Tsuchiya-Ebinokuti, Yurihonjyo, Akita/ 15-55, JAPAN nakayama@akita-pu.ac.jp

More information

Influence of laser marking on stainless steel surface and corrosion resistance

Influence of laser marking on stainless steel surface and corrosion resistance Lasers in Manufacturing Conference 2015 Influence of laser marking on stainless steel surface and corrosion resistance Martin Kučera a *, Michal Švantner a, Eva Smazalová a a, New Technologies - Research

More information