Production of g-alumina from waste aluminium dross

Size: px
Start display at page:

Download "Production of g-alumina from waste aluminium dross"

Transcription

1 Minerals Engineering 20 (2007) This article is also available online at: Production of g-alumina from waste aluminium dross B.R. Das, B. Dash, B.C. Tripathy *, I.N. Bhattacharya, S.C. Das Regional Research Laboratory, Bhubaneswar , India Received 31 May 2006; accepted 11 September 2006 Available online 31 October 2006 Abstract Processing of aluminium dross is one of the most challenging tasks because of its toxic nature. The dross generated while melting at various facilities is generally remelted with salts to recover residual metal values. The remaining residue dross contains mostly aluminium oxide, alloying elements and salts such as NaCl or KCl. This residue dross while stock piling creates pollution of the adjoining area as salts leach out to water stream and also emits harmful gases. In the present study domestic aluminium dross was treated for developing a suitable process flow sheet to obtain g-alumina a high valued product. Initially H 2 SO 4 leaching was carried out for both un-washed and washed dross. With un-washed dross the leaching efficiency achieved was 71% but washing of dross followed by leaching raised the recovery to 84%. Washing of dross is essential to have higher alumina recovery and also to recover salt for recycling. The liquor obtained after treatment of the dross with acid was further processed to obtain aluminium hydroxide of amorphous nature by hydrolyzing aluminium sulphate with aqueous ammonia. The aluminium hydroxide was then subjected to calcinations which resulted in the formation of g-alumina at 900 C. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Hydrometallurgy; Leaching; Reclamation; Recycling; Waste processing 1. Introduction Disposal and recycling of dross produced during aluminium melting is a worldwide problem. Majority of dross is disposed off in landfill sites, which is likely to result in leaching of toxic metal ions into ground water causing serious pollution problems (Unger and Beckmann, 1992). In addition to this when aluminium dross comes in contact with water it emits harmful gases such as NH 3, CH 4, PH 3,H 2,H 2 S, etc. (Unger and Beckmann, 1992). In India, a rough estimate shows that 75,000 tons of dross is generated annually and most of it is used for making crackers, impure chemicals and low quality refractory bricks or stock piled due to want of proper treatment options. Aluminium dross is formed by natural oxidation of molten aluminium. The metal when comes in contact with air * Corresponding author. Tel.: ; fax: address: bankimtripathy@gmail.com (B.C. Tripathy). forms oxide of aluminium at the outer surface of the melt. The residual metal part in the dross is removed by remelting it by adding salt flux to minimize the oxidation. The oxide in the dross exhibits the form of a long continuous net where aluminium stays entrapped. The molten flux also breaks this framework and facilitates the coalescence of aluminium drops that sinks to the aluminium bath (Tenorio and Espinosa, 2002). In majority of the cases salt bath is used to maximize the recovery of aluminium. By this process though oxide generation is less the dross becomes toxic because of its salt content and makes the disposal of dross and recovery of aluminium from the dross more complex. The increasing demand of valuable materials and environmental standard enforcement has forced the development of suitable treatment facilities for industrial wastes. Further, for sustainable development, replacement of primary resources with secondary resources has also become very essential. Scanning of literature shows that attempts have already been made to utilize aluminium dross by adopting either /$ - see front matter Ó 2006 Elsevier Ltd. All rights reserved. doi: /j.mineng

2 B.R. Das et al. / Minerals Engineering 20 (2007) pyro- or hydrometallurgical methods. The conventional dross oxide treatment consists of grinding the dross, sieving to recover the metal value followed by water leaching to dissolve the salt in water from residue oxide. The salt is recovered back by filtering and evaporation technique. The residue which contains primarily alumina and other alloying elements is then calcined. In another process aluminium is mechanically separated from the oxide part and the remaining oxide fines are blended into a product that can be used for steel industries. In recent times Portland cement industries use certain quantities of alumina for the production of cement (Zuck, 1995). As the requirement of aluminium oxide is around 5%, many producers in US utilize this dross oxide for production of cement. Alcan (Lavoie et al., 1991; Lavoie and Lachance, 1995), since 1990 has been using plasma dross processing facility for its treatment plant where aluminium recovery is said to improve to around 90%. The dross generated is utilized for manufacture of other products like sodium aluminate (Na 2 Al 2 O 4 ) spinel based ceramic, brown alumina, calcium aluminate etc. In a Korean process (Park et al., 1999), the dross was leached with NaOH to extract the aluminium as sodium aluminate and then precipitated in the form of aluminium hydroxide. The residue in the leaching was roasted to oxidize the remaining metals to oxide. This roasted oxide is used for making high castable refractories by mixing with aggregates and alumina cement. El-Katatny et al. (2003) described a process where aluminium is recovered from the dross by precipitating out aluminium hydroxide using NaOH solution. This aluminium hydroxide powder is then activated at 600 C to obtain c-al 2 O 3. Various studies (Osborne, 1995; Garret, 1982; Huckabay, 1984; Huckabay and Skiathas, 1982; Amer, 2002) have been undertaken where H 2 SO 4 was utilized for manufacture of aluminium sulphate. In most of the works (Osborne, 1995; Garret, 1982; Huckabay, 1984; Huckabay and Skiathas, 1982) aluminium sulphate produced was having various contaminants, thus making the sulphate impure. Amer (2002) produced two types of alums (aluminium sulphate) by dividing the alumina leaching process in to two steps. In the first step leaching was carried out with dilute H 2 SO 4 to remove impurities and in the second step alumina was extracted from the purified dross tailings using concentrated H 2 SO 4. In India no significant effort has been made to reclaim the dross and add value to the waste. The dross is treated mostly in unorganized sectors for preparation of impure chemicals, crackers and castable refractories as mentioned earlier. In the present study an attempt has been made to develop a process flow sheet to recover salt and alumina value to produce g-alumina. 2. Experimental Aluminium dross is a waste material obtained from aluminium melting plants whose composition differs due to the various alloying elements used during melting. The dross used in this work was collected from a domestic dross producer, which contains mainly 65% alumina, 4% SiO 2 and oxides of Mg, Ca and Fe along with some salts such as NaCl and KCl. This dross contains bigger particles of size 2 5 mm, which are mostly aluminium or its alloy and the finer fractions are mostly alumina (Al 2 O 3 ). Screening of the above material was undertaken to separate out the aluminium part from the oxide. The <850 lm (Tyler 20) size particles were taken for the study. The analysis of this fraction is given in Table 1. Philips X-ray Fluorescence (XRF) analytical equipment was used for the dross analysis. The X-ray diffraction analysis (XRD) was carried out on a Philips Powder diffractometer Model PW 1830 X pert system. The XRD pattern of the dross is shown in Fig. 1 with the possible phases present. Carbon and sulphur were analysed on a LECO instrument. The XRF and X-ray diffraction analysis of the dross indicated the presence of a-al 2 O 3, CaF 2, MgAl 2 O 4, Fe 2 O 3, CaO, carbon, sulfur and salts like KCl and NaCl. The dissolution experiments of dross in H 2 SO 4 medium were carried out in a flat-bottomed glass reactor, which was placed on a Remi make hot plate cum magnetic stirrer. During leaching the temperature was maintained at around 90 C. A similar system was used for washing of dross with water. As the dissolution reaction is exothermic, the temperature of the leaching medium automatically increases up to C without any input of heat from out side. The hot plate was utilized to maintain the temperature at 90 ± 2 C. For each experiment 10 g of dross was taken unless otherwise specified. Each experiment was carried out for 3 h followed by alumina analysis of the leached liquor by conventional EDTA ZnSO 4 method. The leach solution obtained after filtration was subjected to iron removal followed by aluminium hydroxide precipitation using 10% solution of aqueous ammonia that was added drop wise into the solution using a burette. The product aluminium hydroxide was heat treated at various temperatures from 200 to 1100 C in a muffle furnace to observe the phase transformation and to identify the temperature for g-alumina transformation. Table 1 Chemical composition of aluminium dross Compound/element Percent (w/w) Al 2 O CaO 0.93 SiO Fe 2 O MgO 3.2 Na 2 O 2.75 K 2 O 0.51 Cl 3.9 C 1.25 S 0.22

3 254 B.R. Das et al. / Minerals Engineering 20 (2007) Alumina recovery, % % 20 % 30 % 40 % Fig. 1. XRD pattern of original dross of particle size less than 850 lm (Tyler 20). 3. Results and discussion 3.1. Dissolution of dross oxide Leaching of both un-washed and washed dross oxide in sulfuric acid medium was carried out to evaluate the leaching behavior Dissolution of un-washed dross After screening, the <850 lm size dross was subjected to sulphuric acid leaching. During sulphuric acid leaching of the dross following reactions take place and water-soluble aluminium sulphate is formed. Al 2 O 3 +3H 2 SO 4 =Al 2 (SO 4 ) 3 +3H 2 O ð1þ 2Al + 3H 2 SO 4 =Al 2 (SO 4 ) 3 +3H 2 2Al + 6H 2 SO 4 =Al 2 (SO 4 ) 3 + 3SO 2 +6H 2 O Fig. 2 shows variation of alumina recovery as a function of amount of H 2 SO 4 at different percentage of its concentrations. Here at each level of H 2 SO 4, 10 g of dross was taken. The amount of acid added varied between stoichiometric amount to almost three times of the stoichiometric amount. The temperature during leaching was maintained at around 90 C. The experiments mentioned were carried out to know the exact amount (ml) and concentration of acid (%) required for the maximum recovery of alumina from the dross. This is required because solubility of aluminium sulphate is limited to concentrated H 2 SO 4 solution. Fig. 2 also shows the alumina recovery at a fixed percentage of acid with change in acid quantity. The different percentages of acid used were 15%, 20%, 30% and 40%, whereas its amount varied from 15 to 50 ml. With 15% acid marginal improvement in recovery was observed when amount of acid increased to 20 ml but the recovery remained almost constant (75%) with further increase in acid quantity. The recovery was found to be 74% with 15 ml of 20% acid. On increasing the acid quantity to ð2þ ð3þ Volume of H 2 SO 4, ml Fig. 2. Variation of alumina recovery as a function of H 2 SO 4 amount at various acid concentrations. 30 ml maximum recovery of 78% was obtained but with further increase in the acid quantity the recovery started falling. Similar observation was made for 30% acid where 30 ml acid showed maximum recovery of 88% and with further increase in acid quantity recovery showed a declining trend. However with 40% acid the maximum recovery was obtained at 40 ml of acid amount. The reason behind decrease in recovery with increase in acid is exactly not known. Though the decrease in recovery is not appreciable but it happened in all the cases. Generally in any dissolution/leaching operation stoichiometric quantities of leachant does not show the optimum level of recovery. Invariably some more acid would be required to have the optimum value. In this case the role of acid quantity, quantity of water, salts like KCl and NaCl, formation of aluminium sulphate etc. will influence the leaching behaviour. It has been mentioned that where washed dross is taken for dissolution studies, with stoichiometric quantity of acid, alumina recovery is higher. It has been found, therefore that the optimum recovery of alumina for original dross is 88%, with 30 ml of 30% acid. But this 30 ml of acid is almost double the stoichiometric amount that is required for 100% solubilisation of available alumina. Fig. 3 shows percentage of recovery of alumina plotted as a function of solids (dross) concentration at various acid quantities. It has been found that solid concentration of 10% showed maximum recovery. Similar results were also obtained with other percentages of acid considered in the present study. Therefore, pulp density of 10% may be taken as the optimum solid concentration to obtain maximum alumina recovery. It has been observed from the above results that maximum recovery of 88% can be achieved with 30 ml of

4 B.R. Das et al. / Minerals Engineering 20 (2007) Alumina Recovery, % Solid (dross) Concentration, % Fig. 3. Efficiency of alumina recovery as a function of pulp density at 30% acid concentration. 30% acid for 10 g of dross. However as mentioned earlier, this 30% acid is almost double of the stoichiometric amount. With 30% acid leaching, the concentration of acid in the leach liquor would be too high and would require significant amount of alkali for its neutralization during hydroxide precipitation. Considering this aspect it was decided to use stoichiometric quantity of acid i.e. 15% but in this case the recovery would be limited to 70% Washing of dross followed by leaching of washed dross The leaching of original dross with stoichiometric amount of acid resulted in only 70% alumina dissolution. In addition the salts will contaminate the leach liquor. These salts in the leach liquor will contaminate the hydroxide in the precipitation stage and thus the ultimate product. In order to improve the leaching efficiency and prevent contamination of leach liquor from the soluble salts, some leaching experiments were carried out after washing the dross. This has improved the leaching efficiency as well as brought almost all the salts into the washed solution. It was then decided to introduce a washing step to remove the soluble salts followed by its recovery. So a detailed study on water washing of the dross followed by leaching was taken up Washing of dross and recovery of salts for recycling. As discussed earlier the salts used in the dross during melting are water-soluble salts like KCl and NaCl. The total quantity of the salt present in the dross was found to be around 8%. Prior to acid leaching the dross was subjected to water washing for salt recovery. The variables considered in these set of experiments were time and washing temperature. All these experiments were carried out under stirring condition with 20 g of dross maintaining a solid to liquid ratio of 10%. The effect of time on washing was carried out from 1 to 24 h. Washing at room temperature for 1 h yielded about 65% of the total salt present in the dross. Further increase in the washing time up to 24 h has practically no effect. However when the residue obtained after 1 h washing was again washed with fresh water for 1 h the salt recovery was improved by another 5 7%. To improve the salt recovery efficiency, washing of the dross was carried out at 80 ± 2 C. It has been found that kinetics of salt recovery was enhanced with rise in temperature. At 80 C around 90% salt is washed with water in 1 h. Similar to room temperature washing, the residue obtained after 1 h washing at 80 C if washed with fresh water for another 1 h at 80 C the recovery improved by further 10%. Thus almost 100% recovery of salt could be possible in two step washing at 80 C. This washed solution was evaporated to obtain KCl and NaCl crystals, which can be recycled during melting of dross. Fig. 4 shows the XRD phase analysis of recovered salt. In actual plant operation a washing scheme has to be involved so as to obtain a wash solution of high salt content for economical recovery of salts Leaching of washed dross. Acid leaching studies were carried out with both washed dross, and washed and dried dross. In these cases, 10 g dross was taken each time and was washed with 100 ml of demineralised (DM) water under optimum conditions to recover salts. The slurry was filtered and the residue was taken for leaching with 15% acid under the conditions established above. In another case the residue obtained after washing and filtration was dried and the dried residue was taken for leaching under the same conditions. The acid leaching efficiencies (recovery of Al 2 O 3 ) of the three different drosses i.e. original, washed and washed & dried were compared. It was found that the alumina recovery efficiency has improved considerably with washing. The washed dross showed maximum recovery of 84% with 15% (v/v) acid and 10% dross (w/v). The improvement in leaching efficiency for washed dross may be due to the removal of salts from the alumina surfaces. This finding has good implication, as inclusion of a washing step is essential to recover the salts from the filtrate as well as removal of washable impurities, which might otherwise end up with the final product. X-ray diffraction data (Fig. 1) showed original dross contains mainly a-al 2 O 3,MgOÆ Al 2 O 3, SiO 2, CaF 2,KCl, NaCl etc. There is also possibility of formation of sillimanite (Al 2 O 3, SiO 2 ) as 100% relative intensity is observed at 26.5 (2h) as well as at 38.5 (2h) coincides with certain a- alumina reflections. Probably these ceramic oxides do not respond to the present leaching conditions thus limiting the alumina recovery to 84%.

5 256 B.R. Das et al. / Minerals Engineering 20 (2007) Fig. 4. X-ray diffraction pattern of salts obtained from dross after water washing Aluminium hydroxide precipitation The leach liquor obtained from sulphuric acid leaching contains g/l of Al 2 O 3 as aluminium sulphate. It also contains considerable amount of iron i.e. around mg/l. Since presence of iron in the aluminium hydroxide imparts colour and contaminates the final product, it was removed by controlled addition of aqueous ammonia at ph 4.4. Aluminium hydroxide was then precipitated by raising the ph of the iron free solution to 7.0. The aluminium hydroxide thus obtained is rich in water content ðal 2 O 3 :42%; H 2 O and SO 2 4 : 58%Þ Production of activated alumina The amorphous aluminium hydroxide during calcination undergoes phase transformation and produces different forms of transition oxides. The phase transformation depends on the precursor material. The different transition aluminas available are v, g, c and q alumina in low temperature range ( C) and d, j and h at higher temperature range (Goodboy and Downing, 1990). These oxides form a large group of activated aluminas. In the present study the precipitated hydroxide is subjected to calcinations in the range of C. This temperature range was chosen because major transformations are obtained in this range only. The activated alumina is obtained from aluminium hydroxide by controlled heating to eliminate most of the water of constitution. The XRD study of the product aluminium hydroxide carried out at different temperatures showed amorphous behaviour till 800 C but at 900 C it transformed to g-alumina (Fig. 5) and at 1100 C a-alumina was obtained. A similar observation was also made in our previous study (Bhattacharya et al., 2004) where aluminium hydroxide precipitated from pure aluminium sulphate was transformed to g-alumina at 900 C. TGA study of the precipitated aluminium hydroxide indicated two distinctive high rates of weight loss zones i.e. at 250 C and 900 C. The first zone was referred to as due to dehydration or dehydroxylation and the second zone due to desulphurisation reaction. These effects result in the increased porosity. It was also observed that BET surface area of the calcined product at 900 C was maxi- Fig. 5. X-ray diffraction pattern of g-alumina.

6 B.R. Das et al. / Minerals Engineering 20 (2007) Fig. 6. Typical flow sheet for aluminium dross processing. mum (112 m 2 /g). Higher surface area and increased porosity of g-alumina indicated that this can be used as a very good adsorbent and also as catalytic material. The surface area can further be increased by treating/doping the material with inorganic acids and/or various metal ions. 4. Processing routes Fig. 6 represents a flow sheet proposed from the present study for aluminium dross processing to recover aluminium value and processing of leach liquor for producing value added product like g-alumina. 5. Conclusions The process developed for the treatment of aluminium dross is unique in nature. The treatment options available mostly aimed to optimize the recovery of metal part from oxide part and rest was land filled. In this study only alumina part was subjected to the treatment after recovering the metal part by screening. A flow sheet has been developed where initially water-soluble salt is recovered by water washings. H 2 SO 4 dissolution process has been optimized and found that 30% acid at 10% pulp density of dross will leach out 88% Al 2 O 3 and 15% acid at 10% solid concentration showed around 71% recovery. Alternatively, it was found that when the leaching was carried out with washed dross and 15% acid around 84% recovery was obtained. The aluminium containing leached solution was further treated with aqueous ammonia to obtain amorphous aluminium hydroxide. This aluminium hydroxide was heat treated at 900 C to obtain g-al 2 O 3, which is a high valued activated alumina and can be used as an adsorbent or can be used for catalytic purpose. Acknowledgements The authors are grateful to Ministry of Environment and Forests, Govt. of India, New Delhi, for the financial support to carry out the work. They are also grateful to M/s Agarvanshi Aluminium, Secunderabad for supplying the aluminium dross. The authors also like to thank the Director, Regional Research Laboratory, for permission to publish this paper. They are also thankful to Dr. P.S. Mukherjee and Dr. Rajeev for XRD/XRF analyses. References Amer, A.M., Extracting aluminum from dross tailings. J. Metals 54, Bhattacharya, I.N., Gochhayat, P.K., Mukherjee, P.S., Paul, S., Mitra, P.K., Thermal decomposition of precipitated low bulk density basic aluminium sulfate. Mater. Chem. Phys. 88, 32. El-Katatny, E.A., Halany, S.A., Mohamed, M.A., Zaki, M.I., Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technol. 132, Garret, L.W., Process for the Production of Sulfates. US Patent No. 4,337,228. Goodboy, K.P., Downing, J.C., In: Hart, L.D. (Ed.), Production, Process, Properties and Applications of Activated and Catalytic Aluminas. The American Ceramic Society Inc., Wessterville, Ohio, p. 93.

7 258 B.R. Das et al. / Minerals Engineering 20 (2007) Huckabay, J.A., Method for Treatment of Aluminum Dross Oxides. US Patent No. 4,434,142. Huckabay, D.A., Skiathas, D.A., Aluminium Sulfate Manufacture from Aluminum Dross Tailings. US Patent No. 4,320,098. Lavoie, S., Lachance, J., In: Queneau, P.B., Peterson, R. (Eds.), Proceeding of 3rd International Symposium on Recycling of Metals and Engineered Materials. The Minerals, Metals and Materials Society, TMS, p Lavoie, S., Dube, C., Dube, G., The Alcan plasma dross treatment process, light metals. In: Elwin Rooy, (Ed.), TMS Annual Meeting, New Orleans, Louisiana, pp Osborne, W.B., In: Queneam, P.B., Peterson, R.D. (Eds.), Proceeding of 3rd International Symposium on Recycling of Metals and Engineered Materials. The Minerals, Metals and Materials Society, TMS, p Park, H., Lee, H., Kim, J., Yoon, E., A processing for recycling of the domestic aluminum. Dross, Global Symposium on Recycling, Waste Treatments and Clean Technology, vol. II. REWAS, San Sebastian, Spain, p Tenorio, J.A.S., Espinosa, D.C.R., Effect of salt/oxide interaction on the process of aluminum recycling. J. Light Metals 2, Unger, T.W., Beckmann, M., Salt slag processing for recycling, light metals. In: Cutshall, E.R., (Ed.), TMS Annual Meeting, San Diego, California, pp Zuck, O.A., In: Queneau, P.B., Peterson, R. (Eds.), Proceeding of 3rd International Symposium on Recycling of Metals and Engineered Materials. The Minerals, Metals and Materials Society, TMS, pp

Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

General Principle of Isolation of Elements (NCERT)

General Principle of Isolation of Elements (NCERT) Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

INCORPORATION OF ALUMINUM-RICH SALT SALG IN BAUXITIC-TYPE REFRACTORIES. 193 Aveiro, Portugal

INCORPORATION OF ALUMINUM-RICH SALT SALG IN BAUXITIC-TYPE REFRACTORIES. 193 Aveiro, Portugal INCORPORATION OF ALUMINUM-RICH SALT SALG IN BAUXITIC-TYPE REFRACTORIES D.A. Pereira 1, J.A. Labrincha 2 1 Mechanical Engineering Dept., ISEP, 4200 Porto, Portugal 2 Ceramics and Glass Engineering Dept.,

More information

Carlos Ruiz de Veye. Total recovery of Spent Pot Liner (SPL) using the Befesa process

Carlos Ruiz de Veye. Total recovery of Spent Pot Liner (SPL) using the Befesa process Carlos Ruiz de Veye Total recovery of Spent Pot Liner (SPL) using the Befesa process Today Befesa is a technological company that provides sustainable solutions for industrial waste recycling Industrial

More information

Sulfuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay

Sulfuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay ISSN: 0973-4945; CODEN ECJHAO E-Journal of Chemistry http://www.ejchem.net 2012, 9(3), 1364-1372 Sulfuric Acid and Ammonium Sulfate Leaching of from Lampang Clay PAWEENA NUMLUK and APHIRUK CHAISENA * Department

More information

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS INTEXT QUESTIONS GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS Question 6.1: Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method? If the ore or the gangue

More information

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT

INTERNATIONAL JOURNAL OF RESEARCH SCIENCE & MANAGEMENT PROCESS FOR RECOVERY CHROMIUM FROM ELECTROCHEMICAL MACHINING WASTE BY ACID LEACHING AND CHEMICAL PRECIPTATION Asst. Prof Dr. Saad K. Shather *, Dr. Hijran Z. Toama *, Shahad W. Hamed * * Dept. of Production

More information

Kinetics of Recovery of Alumina from Coal Fly Ash through Fusion with Sodium Hydroxide

Kinetics of Recovery of Alumina from Coal Fly Ash through Fusion with Sodium Hydroxide American Journal of Materials Engineering and Technology, 2013, Vol. 1, No. 3, 54-58 Available online at http://pubs.sciepub.com/materials/1/3/6 Science and Education Publishing DOI:10.12691/materials-1-3-6

More information

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY

GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY GENARAL INTRODUCTION TO METALLURGY :Std: XI-CHEMISTRY 1. What is matrix? The ore is generally associated with rock impurities like clay, sand etc. called gangue or matrix 2. What is mineral? The natural

More information

T 619 cm-84 TENTATIVE STANDARD 1933 OFFICIAL STANDARD 1935 CORRECTED 1944 CORRECTED 1953 CLASSICAL METHOD TAPPI. Analysis of salt cake

T 619 cm-84 TENTATIVE STANDARD 1933 OFFICIAL STANDARD 1935 CORRECTED 1944 CORRECTED 1953 CLASSICAL METHOD TAPPI. Analysis of salt cake T 619 cm-8 TENTATIVE STANDARD 19 OFFICIAL STANDARD 195 CORRECTED 19 CORRECTED 195 CLASSICAL METHOD 198 198 TAPPI The information and data contained in this document were prepared by a technical committee

More information

METALS AND THEIR COMPOUNDS

METALS AND THEIR COMPOUNDS METALS AND THEIR COMPOUNDS Metals are elements whose atoms ionize by electron loss, while non-metals are elements whose atoms ionize by electron gain. Metals are in groups 1, 2 and 3 of the periodic table.

More information

Chemical reactions and electrolysis

Chemical reactions and electrolysis Chemical reactions and electrolysis Higher Revision Questions Name: Class: Date: Time: 95 minutes Marks: 95 marks Comments: Page of 29 (a) Magnesium metal is shaped to make magnesium ribbon. Explain why

More information

This section describes the chemicals, apparatus and experimental procedure used.

This section describes the chemicals, apparatus and experimental procedure used. 7 EXPERIMENTAL 7.1 Introduction This section describes the chemicals, apparatus and experimental procedure used. 7.2 Apparatus and Reagents 7.2.1 Reagents Table 7.1: Reagents used Name Purity Supplier

More information

Utilization of ferro-manganese slag for production of manganese sulphate and Electrolytic manganese metal/manganese di-oxide

Utilization of ferro-manganese slag for production of manganese sulphate and Electrolytic manganese metal/manganese di-oxide Utilization of ferro-manganese slag for production of manganese sulphate and Electrolytic manganese metal/manganese di-oxide P. L. Sen Gupta N. Dhananjayan. ABSTRACT High and low ferro-manganese slags

More information

Gujarat Cleaner Production Centre (Established by Industries & Mines Department, GoG) ENVIS Centre on: Cleaner Production/Technology Supported by:

Gujarat Cleaner Production Centre (Established by Industries & Mines Department, GoG) ENVIS Centre on: Cleaner Production/Technology Supported by: 2015 Cleaner Production Guidelines G in Aluminium Smelting Sector Gujarat Cleaner Production Centre (Established by Industries & Mines Department, GoG) ENVIS Centre on: Cleaner Production/Technology Supported

More information

Issues of spent carbon potlining processing

Issues of spent carbon potlining processing Issues of spent carbon potlining processing Aleksandr Suss 1, Natalia Kuznetzova 2, Aleksandr Damaskin 3, Irina Paromova 4, Andrey Panov 5 1. Director Technology Department 2. Senior Researcher 3. Senior

More information

Two-stage precipitation process of iron and arsenic from acid leaching solutions

Two-stage precipitation process of iron and arsenic from acid leaching solutions Two-stage precipitation process of iron and arsenic from acid leaching solutions N. J. BOLIN, J. E. SUNDKVIST Boliden Mineral AB, SE-936 81 Boliden, SWEDEN Received 20 September 2008; accepted 5 November

More information

Recovery of Copper and Zinc from Brass Wastes via Ionic Liquid Leach

Recovery of Copper and Zinc from Brass Wastes via Ionic Liquid Leach Recovery of Copper and Zinc from Brass Wastes via Ionic Liquid Leach A. Kilicarslan, M. N. Saridede S. Stopic, B. Friedrich Yildiz Technical University, RWTH Aachen University, Department of Metallurgy

More information

ZINC RECOVERY FROM WASTES USING SPENT ACID FROM SCRAPPED LEAD ACID BATTERIES

ZINC RECOVERY FROM WASTES USING SPENT ACID FROM SCRAPPED LEAD ACID BATTERIES ZINC RECOVERY FROM WASTES USING SPENT ACID FROM SCRAPPED LEAD ACID BATTERIES Zdenek Kunicky, Kovohute Pribram nastupnicka, a.s., Czech Republic Jitka Jandova, Department of Metals and Corrosion Engineering,

More information

Soda Ash ( Sodium carbonate) Manufacture

Soda Ash ( Sodium carbonate) Manufacture Soda Ash ( Sodium carbonate) Manufacture Pertinent properties Mol. Wt. 106 M.P. 851deg.C. B.P. Decomposes Soluble in water 8.9 gm/100gm at 20 deg.cel. Grade s: 99% sodium carbonate washing soda ( Na 2

More information

STUDY ON ALKALI LIQUOR ROASTING AND SULPHURIC ACID LEACHING OF BAYAN OBO RARE EARTH CONCENTRATE

STUDY ON ALKALI LIQUOR ROASTING AND SULPHURIC ACID LEACHING OF BAYAN OBO RARE EARTH CONCENTRATE W. L. GUO, Y. H. XU, D. Q. CANG, S. F. MA, H. TIAN, Z. J. MENG, X. X. ZHANG ISSN 0543-5846 METABK 57(3) 157-161 (2018) UDC UDK 669.051.052:661.86:541.454:546.655.841:661.25=111 STUDY ON ALKALI LIQUOR ROASTING

More information

Recovery of Copper from Reverberatory Copper Slag and Production of a Leach Residue used as a Portland Cement Additive

Recovery of Copper from Reverberatory Copper Slag and Production of a Leach Residue used as a Portland Cement Additive Recovery of Copper from Reverberatory Copper Slag and Production of a Leach Residue used as a Portland Cement Additive T. A. Muhlare and D. R. Groot Department of Materials Science & Metallurgical Engineering,

More information

Sustainable recycling of Aluminium salt slags by ALSA

Sustainable recycling of Aluminium salt slags by ALSA 1 Sustainable recycling of Aluminium salt slags by ALSA (By:G. Merker, O. Ballon; ALSA GmbH) 0. Abstract The trend in the aluminium recycling market is towards total recycling. In the future it will be

More information

Dissolution of copper from a primary chalcopyrite ore calcined with and without Fe 2 O 3 in sulphuric acid solution

Dissolution of copper from a primary chalcopyrite ore calcined with and without Fe 2 O 3 in sulphuric acid solution Indian Journal of Chemical Technology Vol. 17, March 2010, pp. 145-149 Dissolution of copper from a primary chalcopyrite ore calcined with and without Fe 2 O 3 in sulphuric acid solution Mustafa Gülfen*

More information

O 3, SIO 2. O, CAO, Al 2 AND MG IN ANT-HILL SOIL SAMPLES WITHIN ABRAKA TOWN IN NIGERIA

O 3, SIO 2. O, CAO, Al 2 AND MG IN ANT-HILL SOIL SAMPLES WITHIN ABRAKA TOWN IN NIGERIA Int. J. Agric.Sc & Vet.Med. 2014 Ekakitie A O and Osakwe A A, 2014 Research Paper ISSN 2320-3730 www.ijasvm.com Vol. 2, No. 3, August 2014 2014 www.ijasvm.com. All Rights Reserved DETERMINATION OF FE 2,

More information

FAYALITE SLAG MODIFIED STAINLESS STEEL AOD SLAG

FAYALITE SLAG MODIFIED STAINLESS STEEL AOD SLAG FAYALITE SLAG MODIFIED STAINLESS STEEL AOD SLAG Shuigen HUANG, Muxing GUO, Peter Tom JONES, Bart BLANPAIN Department of Metallurgy and Materials Engineering, KU Leuven, 3001 Heverlee, Belgium shuigen.huang@mtm.kuleuven.be,

More information

Alkali Fusion-Leaching Method for Comprehensive Processing of Fly Ash

Alkali Fusion-Leaching Method for Comprehensive Processing of Fly Ash International Conference with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations (2017) Conference Paper Alkali Fusion-Leaching Method for Comprehensive Processing

More information

SILICA SCALE PREVENTION METHOD USING SEED MADE FROM GEOTHERMAL BRINE

SILICA SCALE PREVENTION METHOD USING SEED MADE FROM GEOTHERMAL BRINE SILICA SCALE PREVENTION METHOD USING SEED MADE FROM GEOTHERMAL BRINE Hajime Sugita, Isao Matsunaga, Tsutomu Yamaguchi Geo-Energy Division, Geotechnology Department, National Institute for Resources and

More information

Table of Contents. Preface...

Table of Contents. Preface... Preface... xi Chapter 1. Metallurgical Thermochemistry... 1 1.1. Introduction... 1 1.2. Quantities characterizing the state of a system and its evolution... 3 1.2.1. The types of operations... 3 1.2.2.

More information

Recovery of niobium and tantalum from low grade tin slag - A hydrometallurgical approach

Recovery of niobium and tantalum from low grade tin slag - A hydrometallurgical approach Environmental and Waste Management (ISSN : 0971-9407) Eds. - A. 8andopadhyay, N.G. Goswami and P.R. Rao 5 NML, Jamshedpur - 831 007, 1998, pp. 100-107 Recovery of niobium and tantalum from low grade tin

More information

POLLUTION CONTROL IN RECYCLING INDUSTRY

POLLUTION CONTROL IN RECYCLING INDUSTRY POLLUTION CONTROL IN RECYCLING INDUSTRY 1. Introduction - Recycling industry frequently causes pollution to the environment. It is either the same or more than any other industrial activities. For example,

More information

Center for Advanced Sustainable Iron & Steel Making

Center for Advanced Sustainable Iron & Steel Making Proposed Project 10: Effects of Carbonate Minerals on Filtration Rates Objective(s): Determine how carbonate minerals that either occur naturally in the ore, or are added as flux, affect the filtration

More information

IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN:

IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN: SIGNIFICANT REDUCTION IN HYDROCHLORIC ACID CONSUMPTION IN RARE EARTH EXTRACTION FROM FERROCARBONATITE (MONTVIEL PROJECT) *P. Hajiani GéoMégA 475 Av Victoria St. Lambert, Canada J4P 2J1 (*Corresponding

More information

Comprehensive Processing Technology of Slags of Phosphorus Industry To Produce Precipitated Silica and Rare-Earth Concentrate

Comprehensive Processing Technology of Slags of Phosphorus Industry To Produce Precipitated Silica and Rare-Earth Concentrate International Conference with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations (2017) Conference Paper Comprehensive Processing Technology of Slags of Phosphorus

More information

Precipitation of Nickel Hydroxide from Simulated and Atmospheric-Leach Solution of Nickel Laterite Ore

Precipitation of Nickel Hydroxide from Simulated and Atmospheric-Leach Solution of Nickel Laterite Ore Available online at www.sciencedirect.com Procedia Earth and Planetary Science 6 ( 2013 ) 457 464 International Symposium on Earth Science and Technology, CINEST 2012 Precipitation of Nickel Hydroxide

More information

Utilization of steam from thermal power plant to recover the caustic & alumina from red mud slurry

Utilization of steam from thermal power plant to recover the caustic & alumina from red mud slurry International Symposium on Environment and Waste Management of Mining & Mineral based Industries (EWMMI 2008), IATES, Bhubaneswar Utilization of steam from thermal power plant to recover the caustic &

More information

Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage

Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage Chemical Activation of Low Calcium Fly Ash Part 1: Identification of Suitable Activators and their Dosage P. Arjunan 1, M. R. Silsbee 2, and D. M. Roy 2, 1 Custom Building Products, 6515, Salt Lake Ave,

More information

UTILIZATION OF CALCIUM SULFIDE DERIVED FROM WASTE GYPSUM BOARD FOR METAL-CONTAINING WASTEWATER TREATMENT

UTILIZATION OF CALCIUM SULFIDE DERIVED FROM WASTE GYPSUM BOARD FOR METAL-CONTAINING WASTEWATER TREATMENT Global NEST Journal, Vol 1, No 1, pp 11-17, 28 Copyright 28 Global NEST Printed in Greece. All rights reserved UTILIZATION OF CALCIUM SULFIDE DERIVED FROM WASTE GYPSUM BOARD FOR METAL-CONTAINING WASTEWATER

More information

THE ROLE OF CEMENT DUST IN BASALT-DE-ALUMINATED KAOLIN BRICKS

THE ROLE OF CEMENT DUST IN BASALT-DE-ALUMINATED KAOLIN BRICKS THE ROE OF EMENT DUST IN BASAT-DE-AUMINATED KAOIN BRIKS Hala Abu-El-Naga Hossein, Mona S. Mohammed and E. A. E-Alfi Building Materials, eramics and Refractories, Inorganic hemical Industries and Mineral

More information

Phosphate recovery from sewage sludge in combination with supercritical water oxidation

Phosphate recovery from sewage sludge in combination with supercritical water oxidation Phosphate recovery from sewage sludge in combination with supercritical water oxidation Feralco AB, Industrigatan 126, SE-252 32 Helsingborg, Sweden (E-mail: info@feralco.com) Abstract Supercritical Water

More information

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment D. Kuchar, T. Fukuta, M. Kubota, and H. Matsuda Abstract The selective recovery of heavy metals of Cu,

More information

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment D. Kuchar, T. Fukuta, M. Kubota, and H. Matsuda Abstract The selective recovery of heavy metals of Cu,

More information

Relationship Between Liquor Yield, Plant Capacity Increases, and Energy Savings in Alumina Refining

Relationship Between Liquor Yield, Plant Capacity Increases, and Energy Savings in Alumina Refining JOM, Vol. 66, No. 9, 2014 DOI: 10.1007/s11837-014-1069-x Ó 2014 The Minerals, Metals & Materials Society Relationship Between Liquor Yield, Plant Capacity Increases, and Energy Savings in Alumina Refining

More information

The effects of Fe/Al 2 O 3 preparation technique as a catalyst on synthesized CNTs in CVD method.

The effects of Fe/Al 2 O 3 preparation technique as a catalyst on synthesized CNTs in CVD method. Science Journal of Physics Science Journal Publication Science Journal of Physics Web: http://www.sjpublication.com/sjp.html The effects of Fe/Al 2 O 3 preparation technique as a catalyst on synthesized

More information

A NOVEL VACUUM ALUMINOTHERMIC REDUCTION LITHIUM PROCESS

A NOVEL VACUUM ALUMINOTHERMIC REDUCTION LITHIUM PROCESS 4th International Symposium on High-Temperature Metallurgical Processing Edited by: Tao Jiang, Jiann-YangHwang, Phillip J. Mackey, Onuralp Yucel, and Guifeng Zhou TMS (The Minerals, Metals & Materials

More information

Synthesis of Zeolite-X from Waste Metals

Synthesis of Zeolite-X from Waste Metals , pp. 1644 1648 Synthesis of Zeolite-X from Waste Metals Takehito HIRAKI, Atsushi NOSAKA, Noriyuki OKINAKA and Tomohiro AKIYAMA Center for Advanced Research of Energy Conversion Materials, Hokkaido University,

More information

DEVELOPMENT OF SLUDGE WASTE TREATMENT PROCESS

DEVELOPMENT OF SLUDGE WASTE TREATMENT PROCESS DEVELOPMENT OF SLUDGE WASTE TREATMENT PROCESS D. S. Hwang, J. H. Oh, K. I. Lee, Y. D. Choi, S. T. Hwang, J. H. Park Korea Atomic Energy Research Institute ABSTRACT Korea Atomic Energy Research Institute

More information

Technical Presentation on Spent Pot lining Management & Red Mud

Technical Presentation on Spent Pot lining Management & Red Mud Technical Presentation on Spent Pot lining Management & Red Mud 0 Bharat Aluminium Company Ltd, Korba & Vedanta limited, Jharsuguda & Lanjigarh OUR PRESENCE 1 Jharsuguda Smelter Capacity 3,615 MW 1.75

More information

CHARACTERISTICS OF SLUDGE FROM DIFFERENT WATER TREATMENT PLANTS

CHARACTERISTICS OF SLUDGE FROM DIFFERENT WATER TREATMENT PLANTS Journal of Experimental Research December 2017, Vol 5 No 2 www.er-journal.com Email: editor-in-chie f@er-journal.com Received: December, 2016 Accepted for Publication: June, 2017 CHARACTERISTICS OF SLUDGE

More information

Howard Epstein, RVA, FRANCE. Valoxy: A Sustainable Alternative Source of Alumina

Howard Epstein, RVA, FRANCE. Valoxy: A Sustainable Alternative Source of Alumina Howard Epstein, RVA, FRANCE Valoxy: A Sustainable Alternative Source of Alumina Agenda Origins of secondary aluminas Analytical information Current and potential applications Commercial benefits Environmental

More information

RECOVERY OF GERMANIUM FROM LEAD BLAST FURNACE SLAG

RECOVERY OF GERMANIUM FROM LEAD BLAST FURNACE SLAG RECOVERY OF GERMANIUM FROM LEAD BLAST FURNACE SLAG Hakan Cengizler 1 and R Hurman Eric 2 1 Celal Bayar University, TMYO, Turgutlu - Turkey 2 University of the Witwatersrand, Johannesburg, School of Chemical

More information

PRODUCTION OF MAGNESIUM OXALATE FROM SEA BITTERN

PRODUCTION OF MAGNESIUM OXALATE FROM SEA BITTERN PRODUCTION OF MAGNESIUM OXALATE FROM SEA BITTERN Hanem A. Sibak 1, Shadia A. El-Rafie 2, Shakinaz A. El-Sherbini1 M. S. Shalaby 2 and Rania Ramadan 2 1 Cairo University Faculty of Engineering, Egypt 2

More information

FLASH ROASTING OF SULPHIDE CONCENTRATES AND LEACH RESIDUES USING A TORBED* REACTOR

FLASH ROASTING OF SULPHIDE CONCENTRATES AND LEACH RESIDUES USING A TORBED* REACTOR FLASH ROASTING OF SULPHIDE CONCENTRATES AND LEACH RESIDUES USING A TORBED* REACTOR C. E. Dodson, Torftech (Canada) Inc., 2395 Speakman Drive, Mississauga, Ontario L5K 1B3, Canada V. I. Lakshmanan, R. G.

More information

Waste Acid Recycling Technology by Slag

Waste Acid Recycling Technology by Slag Technical Report NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT No. 109 JULY 2015 Waste Acid Recycling Technology by Slag UDC 669. 184. 28 : 621. 794. 48 Shigeharu MATSUBAYASHI* Abstract In this study,

More information

Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide

Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide Journal of Metals, Materials and Minerals, Vol.22 No. pp. -6, 22 Extraction of Tin from Hardhead by Oxidation and Fusion with Sodium Hydroxide Chudhalak UNNKKH and Charkorn JRUPISITTHORN 2 Graduate student,

More information

Concrete Technology. 1- Neville, AM and Brooks J.J." Concrete Technology" Second Edition, 2010.

Concrete Technology. 1- Neville, AM and Brooks J.J. Concrete Technology Second Edition, 2010. Syllabus. Introduction 2. Cement 3. Aggregate 4. Fresh Concrete 5. Strength of Concrete 6. Elasticity, Shrinkage and Creep 7. Concrete Durability 8. Concrete Mix Design 9. Special Concretes Text Book -

More information

Leaching behaviour of impurities in waste gypsum board

Leaching behaviour of impurities in waste gypsum board Sustainable Development and Planning III 991 Leaching behaviour of impurities in waste gypsum board M. Tafu & T. Chohji Department of Ecomaterials Engineering, Toyama National College of Technology, Japan

More information

CHLOR-ALKALI INDUSTRY

CHLOR-ALKALI INDUSTRY CHLOR-ALKALI INDUSTRY The chlor-alkali industry represents of three major industrial chemicals: Soda ash (sodium carbonate-na 2 CO 3 ) Caustic soda (sodium hydroxide-naoh) Chlorine (Cl 2 ) These chemicals

More information

Low Temperature Synthesis of Spinel Powders by Mechanical Grinding

Low Temperature Synthesis of Spinel Powders by Mechanical Grinding Key Engineering Materials Online: 2004-05-15 ISSN: 1662-9795, Vols. 264-268, pp 53-56 doi:10.4028/www.scientific.net/kem.264-268.53 2004 Trans Tech Publications, Switzerland Low Temperature Synthesis of

More information

SULFURATION TREATMENT OF ELECTROPLATING WASTEWATER FOR SELECTIVE RECOVERY OF COPPER, ZINC AND NICKEL RESOURCE

SULFURATION TREATMENT OF ELECTROPLATING WASTEWATER FOR SELECTIVE RECOVERY OF COPPER, ZINC AND NICKEL RESOURCE Global NEST Journal, Vol 8, No 2, pp 131-136, 20 Copyright 20 Global NEST Printed in Greece. All rights reserved SULFURATION TREATMENT OF ELECTROPLATING WASTEWATER FOR SELECTIVE RECOVERY OF COPPER, ZINC

More information

XRF S ROLE IN THE PRODUCTION OF MAGNESIUM METAL BY THE MAGNETHERMIC METHOD

XRF S ROLE IN THE PRODUCTION OF MAGNESIUM METAL BY THE MAGNETHERMIC METHOD Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 398 XRF S ROLE IN THE PRODUCTION OF MAGNESIUM METAL BY THE MAGNETHERMIC METHOD H. L. Baker Northwest Alloys,

More information

The developing of red mud utilization in China

The developing of red mud utilization in China The developing of red mud utilization in China Dr. Wanchao Liu Zhengzhou Research Institute of CHALCO for BR2015, KU Leuven 1 Alumin prodcution and red mud in China 2 Utilization of red mud---commercially

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Significance of paper Paper is one of the essential commodities in daily life all over the world. It is considered as an index of a country s growth. Several grades of paper

More information

Influence of fabric on aqueous SO 2 leaching of manganese ore

Influence of fabric on aqueous SO 2 leaching of manganese ore The European Journal of Mineral Processing and Environmental Protection Influence of fabric on aqueous SO 2 leaching of manganese ore P.. Naik*, B.. Mohapatra, S.C. Das, V.N. Misra Regional Research Laboratory

More information

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline

9/12/2018. Course Objectives MSE 353 PYROMETALLURGY. Prerequisite. Course Outcomes. Forms of Assessment. Course Outline Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 353 PYROMETALLURGY Course Objectives Understand the fundamental concepts of pyrometallurgy Understand the concepts of materials and energy

More information

Mn recovery from medium grade ore using a waste cellulosic reductant

Mn recovery from medium grade ore using a waste cellulosic reductant Indian Journal of Chemical Technology Vol. 16, July 2009, pp. 322-327 Mn recovery from medium grade ore using a waste cellulosic reductant D Hariprasad, B Dash, M K Ghosh* & S Anand Institute of Minerals

More information

WET ANALYSIS OF GOLD-SILVER ALLOYS OF HIGH GOLD CONTENT 1

WET ANALYSIS OF GOLD-SILVER ALLOYS OF HIGH GOLD CONTENT 1 WET ANALYSIS OF GOLD-SILVER ALLOYS OF HIGH GOLD CONTENT EARLE R. CALEY AND LOWELL W. SHANK Department of Chemistry, The Ohio State University, Columbus, Ohio ABSTRACT -silver alloys dissolve completely

More information

EXTRACTION OF TIN FROM OXIDIZED SOLDERING DROSS BY CARBOTHERMIC REDUCTION AND ACID LEACHING ZOLTÁN HARANGI 1 TAMÁS KÉKESI 2

EXTRACTION OF TIN FROM OXIDIZED SOLDERING DROSS BY CARBOTHERMIC REDUCTION AND ACID LEACHING ZOLTÁN HARANGI 1 TAMÁS KÉKESI 2 Materials Science and Engineering, Volume 39, No. 2 (2014), pp. 13 22. EXTRACTION OF TIN FROM OXIDIZED SOLDERING DROSS BY CARBOTHERMIC REDUCTION AND ACID LEACHING ZOLTÁN HARANGI 1 TAMÁS KÉKESI 2 The melting

More information

Aluminium Occurrence

Aluminium Occurrence Aluminium Occurrence Aluminium is the most abundant ( 8.13 % ) metallic element in the earth s crust and after oxygen and silicon, the third most abundant of all elements in the crust. Because of its strong

More information

The Study of Method for Complex Processing Turgay Sub-Standard Aluminum-Containing Raw Materials

The Study of Method for Complex Processing Turgay Sub-Standard Aluminum-Containing Raw Materials Advances in Materials Physics and Chemistry, 2012, 2, 216-220 doi:10.4236/ampc.2012.24b055 Published Online December 2012 (http://www.scirp.org/journal/ampc) The Study of Method for Complex Processing

More information

EXTRACTIVE METALLURGY

EXTRACTIVE METALLURGY EXTRACTIVE METALLURGY Extractive metallurgy is the practice of removing valuable metals from an ore and refining the extracted raw metals into a purer form. In order to convert a metal oxide or sulfide

More information

TITANIUM DIOXIDE. SYNONYMS Titania; CI Pigment white 6; CI (1975) No ; INS No. 171 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

TITANIUM DIOXIDE. SYNONYMS Titania; CI Pigment white 6; CI (1975) No ; INS No. 171 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS TITANIUM DIOXIDE Prepared at the 71 st JECFA (2009) and published in FAO JECFA Monographs 7 (2009), superseding specifications prepared at the 67 th JECFA (2006) and published in FAO JECFA Monographs 3

More information

Liberia REMEDIATION AND DISPOSAL OF SULPHUR CONTAMINATED SOLID WASTES. May 1996 GUIDELINES FOR THE ENVIRONMENT

Liberia REMEDIATION AND DISPOSAL OF SULPHUR CONTAMINATED SOLID WASTES. May 1996 GUIDELINES FOR THE ENVIRONMENT GUIDELINES FOR THE REMEDIATION AND DISPOSAL OF SULPHUR CONTAMINATED SOLID WASTES Liberia ENVIRONMENT May 1996 Chemicals Assessment and Management Division Environmental Regulatory Service ISBN: 0-7785-0819-6

More information

Characteristics of the Geopolymer using Fly Ash and Blast Furnace Slag with Alkaline Activators

Characteristics of the Geopolymer using Fly Ash and Blast Furnace Slag with Alkaline Activators 2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 32 Characteristics of the Geopolymer

More information

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories Int. J. Nanosci. Nanotechnol., Vol. 12, No. 1, March. 2016, pp. 19-26 Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories S. G. Kahrizsangi*, A. Nemati, A.

More information

Extraction of Al and Na from red mud by magnesium oxide sodium carbonate sinter process

Extraction of Al and Na from red mud by magnesium oxide sodium carbonate sinter process African Journal of Environmental Science and Technology Vol. 4(13), pp. 897-902, December 2010 Special Review Available online at http://www.academicjournals.org/ajest ISSN 1991-637X 2010 Academic Journals

More information

By *T.Khalil, **J. Bossert,***A.H.Ashor and *F. Abou EL-Nour

By *T.Khalil, **J. Bossert,***A.H.Ashor and *F. Abou EL-Nour WM 11 EG0100132 Seventh Conference of Nuclear Sciences & Applications 6-10 February 2000. Cairo, Egypt Preparation, Characterization and application of Alumina powder Produced by advanced Preparation Techniques

More information

Al2O3-MgO system: magnesia and spinel Magnesia

Al2O3-MgO system: magnesia and spinel Magnesia Al 2 O 3 -MgO system: magnesia and spinel 1-1.2. Magnesia Magnesium oxide (MgO, magnesia) occurs naturally as the mineral periclase; a metamorphic mineral formed by the breakdown of dolomite, CaMg (CO

More information

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES 1. (a) Give THREE differences between a physical and

More information

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory Interactions between MgO SiC composite and liquid steel resulted in decomposition of

More information

SOLUBILITY CONCENTRATIONS OF ARSENIC, FLUORINE, PHOSPHORUS AND CANADIUM IN EVAPORATED BAYER LIQUOR

SOLUBILITY CONCENTRATIONS OF ARSENIC, FLUORINE, PHOSPHORUS AND CANADIUM IN EVAPORATED BAYER LIQUOR Proceedings of the 6th International Alumina Quality Workshop 2002 SOLUBILITY CONCENTRATIONS OF ARSENIC, FLUORINE, PHOSPHORUS AND CANADIUM IN EVAPORATED BAYER LIQUOR Sipos, G., Del Aguila, D., Healy, S.J.,

More information

Utilization of Calcium Carbonate (Clam Shell) Universities Research Journal 2013, Vol. 6

Utilization of Calcium Carbonate (Clam Shell) Universities Research Journal 2013, Vol. 6 Title All Authors Publication Type Publisher (Journal name, issue no., page no etc.) Abstract Keywords Utilization of Calcium Carbonate (Clam Shell) Aye Aye Mar Local Publication Universities Research

More information

CLEANER PRODUCTION GUIDELINES IN SMELTING INDUSTRIESS

CLEANER PRODUCTION GUIDELINES IN SMELTING INDUSTRIESS 2015 CLEANER PRODUCTION GUIDELINES IN COPPER SMELTING INDUSTRIESS Gujarat Cleaner Production Centre (Established by Industries & Mines Department, GoG) ENVIS Centre on: Cleaner Production/Technology Supported

More information

Recovery of Metals from Sn-Ag-Cu Solder Alloy Dross

Recovery of Metals from Sn-Ag-Cu Solder Alloy Dross Proceedings of the International Conference on Mining, Material and Metallurgical Engineering Prague, Czech Republic, August 11-12, 2014 Paper No. 79 Recovery of Metals from Sn-Ag-Cu Solder Alloy Dross

More information

Precipitated Silica from Pumice and Carbon Dioxide Gas (Co 2. ) in Bubble Column Reactor

Precipitated Silica from Pumice and Carbon Dioxide Gas (Co 2. ) in Bubble Column Reactor Journal of Physics: Conference Series PAPER OPEN ACCESS Precipitated Silica from Pumice and Carbon Dioxide Gas (Co 2 ) in Bubble Column Reactor To cite this article: R Dewati et al 2018 J. Phys.: Conf.

More information

Explain this difference. [2] [Total: 12] PhysicsAndMathsTutor.com

Explain this difference. [2] [Total: 12] PhysicsAndMathsTutor.com (v) During electroplating, it is necessary to add more chromium(iii) sulfate but during copper plating using a copper anode, it is not necessary to add more copper(ii) sulfate. Explain this difference.

More information

High Purity Alumina and Zeolite from Local Low Grade Kaolin

High Purity Alumina and Zeolite from Local Low Grade Kaolin High Purity Alumina and Zeolite from Local Low Grade Kaolin Meor Yusoff M.S., Masliana Muslim, Choo Tye Foo and Julie Andrianny Murshidi Materials Technology Group, Industrial Technology Division, Malaysian

More information

Recovery of Nickel Oxide from Primary-type Portable Spent Battery: an Experimental Strategy

Recovery of Nickel Oxide from Primary-type Portable Spent Battery: an Experimental Strategy Recovery of Nickel Oxide from Primary-type Portable Spent Battery: an Experimental Strategy Vinay K. Jha 1, and Michihiro Miyake 2 1 Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu

More information

MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS

MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS ABSTRACT ULRIKE BROSCHEK, CECILIA VIDAL, LUIS BRAVO and GILDA ZUÑIGA Environmental

More information

Recycled Alumina from Aluminium Salt Slag: Origins & Applications. Howard Epstein

Recycled Alumina from Aluminium Salt Slag: Origins & Applications. Howard Epstein Recycled Alumina from Aluminium Salt Slag: Origins & Applications Howard Epstein Recycled Alumina - Agenda Where it comes from What it is How it may be applied The drivers of demand October 2012 RVA s

More information

Recover, reduce, reuse: optimizing metal recoveries from dross. Presented by Alan M Peel C.Eng. ALTEK Group

Recover, reduce, reuse: optimizing metal recoveries from dross. Presented by Alan M Peel C.Eng. ALTEK Group Recover, reduce, reuse: optimizing metal recoveries from dross Presented by Alan M Peel C.Eng ALTEK Group Recover, reduce, reuse: optimizing metal recoveries from dross Presented by Alan M Peel C.Eng ALTEK

More information

Potassium Phosphate Recovery from Incinerated Ash of Sewage Sludge

Potassium Phosphate Recovery from Incinerated Ash of Sewage Sludge Journal of Materials Science and Engineering B 7 (7-8) (2017) 149-154 doi: 10.17265/2161-6221/2017.7-8.003 D DAVID PUBLISHING Potassium Phosphate Recovery from Incinerated Ash of Sewage Sludge Masaaki

More information

Characteristics of waste streams and requirements for recycling processes Executive summary

Characteristics of waste streams and requirements for recycling processes Executive summary FOSTERING INDUSTRIAL SYMBIOSIS FOR A SUSTAINABLE RESOURCE INTENSIVE INDUSTRY ACROSS THE EXTENDED CONSTRUCTION VALUE CHAIN Characteristics of streams and requirements for recycling processes Executive summary

More information

(received: 31/7/2004 ; accepted: 25/9/2004)

(received: 31/7/2004 ; accepted: 25/9/2004) Iranian Int. J. Sci. 5(2), 2004, p.173-179 Optimization of the Fe/Sr Ratio in Processing of Ultra-Fine Strontium Hexaferrite Powders by a Sol-Gel Auto-combustion Method in the Presence of Trimethylamine

More information

Solidification in gasifier slags

Solidification in gasifier slags 1 Solidification in gasifier slags Daniel Schwitalla, Stefan Guhl, Bernd Meyer Institute of Energy Process Engineering and Chemical Engineering (IEC) TU Bergakademie Freiberg Berlin, Germany 3-8 June 18

More information

Preparation of Magnesium Carbonate Whisker from Magnesite Tailings

Preparation of Magnesium Carbonate Whisker from Magnesite Tailings IOP Conference Series: Materials Science and Engineering Preparation of Magnesium Carbonate Whisker from Magnesite Tailings To cite this article: N Wang et al 2011 IOP Conf. Ser.: Mater. Sci. Eng. 18 222013

More information

CEMENT MANUFACTURING PROCESS

CEMENT MANUFACTURING PROCESS CEMENT MANUFACTURING PROCESS Definition: Defined as a product material obtained by calcination of calcareous (a material containing lime) and argillaceous (a material which contain silica) materials. According

More information

Non-Ferrous Extractive Metallurgy Prof. H. S. Ray Department of Metallurgical & Materials Engineering Indian Institute of Technology, Kharagpur

Non-Ferrous Extractive Metallurgy Prof. H. S. Ray Department of Metallurgical & Materials Engineering Indian Institute of Technology, Kharagpur Non-Ferrous Extractive Metallurgy Prof. H. S. Ray Department of Metallurgical & Materials Engineering Indian Institute of Technology, Kharagpur Lecture No. # 07 Principles of Hydrometalling Friends, we

More information

Composite particles as active catalysts for the SO 3 dissociation reaction of the thermochemical storage scheme based on elemental sulphur

Composite particles as active catalysts for the SO 3 dissociation reaction of the thermochemical storage scheme based on elemental sulphur International Workshop on Solar Thermochemistry September 12-14, 2017, Ju lich, Germany Composite particles as active catalysts for the SO 3 dissociation reaction of the thermochemical storage scheme based

More information

Study on the Recovery of Some Metals from Spent Desulfurization Catalyst

Study on the Recovery of Some Metals from Spent Desulfurization Catalyst International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 1210 Study on the Recovery of Some Metals from Spent Desulfurization Catalyst Tarek Morsy Mohamed, Gihan Malash,

More information