Diffusive phase transformation in a Cu Zn alloy under rapid heating by electropulsing

Size: px
Start display at page:

Download "Diffusive phase transformation in a Cu Zn alloy under rapid heating by electropulsing"

Transcription

1 PHILOSOPHICAL MAGAZINE LETTERS, MAY 2004 VOL. 84, NO. 5, Diffusive phase transformation in a Cu Zn alloy under rapid heating by electropulsing Yizhou Z. Zhouy Lehrstuhl Werkstoffkunde und Technologie der Metalle (WTM), Universita t Erlangen-Nu rnberg, Martensstr. 5, Erlangen, Germany Wei Zhang, Jingdong Guo and Guanhu He Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang , PR China [Received in final form 22 December 2003 and accepted 9 January 2004 ] Abstract Electropulsing with a damped oscillating waveform was employed to heat cycle a Cu Zn alloy containing a and b 0 phases. It was found that significant long-range diffusion and then a diffusive phase transformation a þ b 0!b can occur in the alloy during the course of heating, even when the heating rate during the electropulsing treatment is very high (10 6 Ks 1 ). The phenomenon is different from the common cases of rapid heating and rapid cooling. It implies that electropulsing can dramatically enhance diffusion in the alloy. } 1. Introduction In previous work (Zhou et al. 2002a, b, 2003), we reported that the microstructure of metallic materials could be dramatically refined by the rapid heating cooling cycles of an electropulsing treatment. It was proposed that the mechanism of refinement was related to a solid-state phase transformation following nucleation and growth mechanisms. This implied that the phase transformation during heating was not a non-diffusive phase transformation (a martensitic or a massive phase transformation). We know that solid-state phase transformations can generally be classified into two kinds: diffusive and non-diffusive. Under conditions of rapid heating and/or rapid cooling, since there is no significant long-range diffusion on a short time scale, a diffusive phase transformation cannot be expected to take place. The heating rate of high-current-density electropulsing can reach Ks 1. Thus, we need to know whether or not a diffusive phase transformation can take place within such a short time, although it is well known that the flow of electric current can give rise to mass transport, a process known as electromigration (Huntington and Grone 1961, Blech 1976, Ho and Kwok 1989). In the present work, a diffusive phase transformation in a Cu Zn alloy was found during the rapid heating cycle of an electropulsing treatment. The phenomenon cannot be explained by classical electromigration theory. yauthor for correspondence. Yizhou.Zhou@ww.uni-erlangen.de. Philosophical Magazine Letters ISSN print/issn online # 2004 Taylor & Francis Ltd DOI: /

2 342 Y. Z. Zhou et al. } 2. Experimental details The nominal chemical composition of the Cu Zn alloy used in the present investigation was 59.4 wt% Cu 40.6 wt% Zn. The alloy was annealed at 873 K for 30 min and then cooled in air. After the thermal treatment, the alloy had two phases at room temperature: the a phase and the b 0 phase. Flat samples were cut from the annealed alloy and were divided into three groups: H samples, that were not to undergo any further treatment; HE samples, samples to be treated by electropulsing; HL samples, samples to be treated by a pulsed laser. Electropulsing was performed under ambient conditions, using the discharge of capacitor banks. Each sample was treated twice, the parameters of the electropulsing being chosen to be the same in all cases. The interval between the two electropulsing treatments was long enough to ensure that the sample cooled to room temperature before the second treatment. In order to obtain a high cooling rate in the effective middle part of sample after electropulsing, the size of the two ends was made much larger than that of the middle part so that current density was much smaller there. The middle parts of these HE samples were 3 mm long, 3 mm wide and 1.5 mm thick. The ends of each sample were put into Cu electrodes during electropulsing treatment, so that their temperature rise was very small and they could be regarded as at room temperature. A high cooling rate could thereby be obtained in the effective part of the sample. The waveform of the electropulsing was shown to be a damped oscillating wave using a Rogowski coil and a TDS3012 Tektronix digital storage oscilloscope (figure 1). The pulse duration was about 800 ms and the period of oscillation t p ¼ 120 ms. The maximum current density was j m ¼ 18.0 ka mm 2. With these parameters, the temperature of the sample by Joule heating was measured to be about 1110 K by a K-type thermocouple (diameter, 80 mm) soldered to the sample at its middlemost part. This temperature is very close to the melting point (1175 K) of the alloy. HL samples were 40 mm long, 20 mm wide and 3 mm thick. They were subjected to pulsed treatment from a Nd-doped yttrium aluminium garnet laser device. The pulse duration was about 1000 ms. The surface temperature of the illuminated part of each sample could be controlled by adjustment of the voltage applied to the laser device and the distance between the sample and a focusing lens. It was controlled to be very close to the melting point of the alloy. As for the electropulsing experiments, Current density (ka/mm 2 ) Time (µs) Figure 1. Waveform of electropulsing.

3 Diffusive phase transformation in a Cu Zn alloy 343 the HL samples were treated twice, the experimental conditions being exactly the same. The interval between the two laser treatments was long enough to allow cooling to room temperature before the second treatment. A JSM-6301F JEOL field emission scanning electron microscope and a JEM JEOL transmission electron microscope were employed to observe the microstructure of the samples. The samples for scanning electron microscopy examination were polished and etched. The chemical composition of microareas in the samples was determined with an energy-dispersive X-ray spectroscope in the scanning electron microscope. The characteristics of the untreated H and the electropulsed HE samples were examined by X-ray diffractometry using Cu ka radiation. } 3. Experimental results From microstructure observations of the samples, we found that the electropulsing and laser treatments, although both rapid, differ in their effects. Figure 2 shows scanning electron micrographs of the H, HE and HL samples. In Figure 2 (a), the raised microstructure is the a phase and the cupped microstructure is the b 0 phase. The average grain size of the a-phase microstructure is about 30 mm. The composition of the a phase was found to be 62.8 wt% Cu 37.2 wt% Zn, while that of the b 0 -phase was 55.9 wt% Cu 44.1 wt% Zn by energy-despersive spectroscopy (EDS) analysis. In Figure 2 (b), the microstructure of the a phase can hardly be seen; that is the sample consists of almost a single b 0 phase. EDS analysis showed that the composition of the microstructure in the figure is uniform, and of composition 59.6 wt% Cu 40.4 wt% Zn, which is almost the same as the nominal composition of the alloy. In figure 2 (c), although the temperature of the surface during laser treatment was close to that during electropulsing, one sees that the a and b 0 phases still remain after this treatment. EDS analysis showed that the composition of the a phase is 62.5 wt% Cu 37.5 wt% Zn, while that of the b 0 phase is 56.1 wt% Cu 43.9 wt% Zn, the values almost the same as those for the untreated H samples. The results of the EDS analysis mean that diffusion between the a phase and the b 0 phase is strong during electropulsing treatment and that the average displacement of the atoms is no less than 10 mm within the pulse duration of 800 ms. In combination with X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) observations, it can be confirmed that the microstructure of the electropulsed samples is almost a single b 0 phase. Figure 3 shows XRD patterns of the untreated H samples and the electropulsed HE samples. The diffraction peaks of the a phase can hardly be seen in the HE sample. Figure 4 (a) shows a bright-field TEM image taken from the HE sample. One can see that there are three grains in the figure. Selectedarea electron diffraction patterns of the three grains were found to be exactly the same; one of these is shown in figure 4 (b). Of course, in order to obtain the diffraction pattern shown in figure 4 (b), it was necessary to rotate the different grains by different amounts. Analysis of the diffraction pattern showed that the microstructure shown in figure 4 (a) is the b 0 phase. It must be pointed out that the a phase in HE samples could not be found by TEM observations. However, many coarse-grained a-phase microstructures could be observed on the surface of HL samples by TEM. According to these experimental results, almost all the a phase transforms to the b 0 phase after double electropulsing treatment. However, the same does not occur after a double pulsed laser treatment.

4 344 Y. Z. Zhou et al. (a) β α (b) β (c) β α Figure 2. 10µm Scanning electron micrographs of samples: (a) without any treatment; (b) treated twice by electropulsing; (c) treated twice by pulsed laser excitation. } 4. Discussion and conclusions Figure 5 shows a local Cu Zn binary alloy phase diagram (Massalski et al. 1990), in which the nominal composition of the alloy used in this work is shown as a straight line A; the compositions of the a and b 0 phases in the untreated H samples are indicated as straight lines B and C respectively. According to this phase diagram

5 Diffusive phase transformation in a Cu Zn alloy 345 α(111) β (110) Intensity α(200) β (200) α(220) β (211) a b Figure θ (deg) XRD patterns of samples: (a) without any treatment; (b) treated twice by electropulsing. (a) 0.5µm (b) 112 [110], CsCl-type structure Spots of second diffraction Figure 4. (a) A bright-field TEM image; (b) the corresponding selected-area electron diffraction pattern taken from a sample treated twice by electropulsing. and knowledge of phase transformation of the alloy (Brooks 1982), the course of the microstructure changes in the alloy during heating cooling cycles is as follows. During the heating cycle, the a and the b 0 phases transform to the b phase by longrange atom drift, when the temperature is higher than the phase transformation

6 346 Y. Z. Zhou et al B A C Temperature C C C β α C L C Weight Percent Zinc Weight percent zinc Figure 5. Local Cu Zn binary alloy phase diagram. β temperature of þ 0! (about 1003 K). During cooling, the a phase will precipitate from the b phase by long-range diffusion of atoms, if the cooling rate is not too high. However, the high-temperature b phase will be quenched to the b 0 phase, and the a phase will be prevented from precipitating from the b phase in the case of rapid cooling, because there is no significant long-range diffusion during the cooling cycle. It must be emphasized that the phase transformation þ 0! is a diffusive phase transformation. Namely, the phase transformation cannot take place without long-range diffusion. In the present work, the heating rates during electropulsing and laser treatment could be defined as the ratio of the maximum temperature to the pulse duration. According to the above values, the heating rate during electropulsing is almost the same as that during the pulsed laser treatment, both being about Ks 1. However, the cooling rate during the electropulsing experiment was far less than that during the laser experiment, because the cooling rate of the electropulsed HE samples was controlled by their larger ends, while that of the laser-treated HL samples resulted directly from their matrices. In combination with the above analysis concerning the phase transformation of the alloy, it can be concluded that the single b 0 phase microstructure should also be formed in the illuminated part after laser treatment, if the a and the b 0 phases can transform to the b phase during the heating cycle of the laser treatment. However, the experimental results showed that the a and the b 0 phases still remain in the illuminated part after laser treatment. The reason for the difference between the microstructures in the two treatments must be that there is significant long-range diffusion during the heating cycle of the electropulsing treatment, while there is no significant long-range diffusion during the heating cycle of the laser treatment. Rapid long-range migration of atoms within such a short time is unusual. In an electropulsing system, a flux of atoms can be driven by a composition gradient, an electric current and a temperature gradient. Based on the experimental

7 Diffusive phase transformation in a Cu Zn alloy 347 results of the laser treatment, it is clear that the difference between the atomic densities of the a and b 0 phases provides an insufficient composition gradient to allow long-range migration of atoms. Classical electromigration theory cannot explain the phenomenon of rapid diffusion either. The average atom drift velocity V ie resulting from an electric current is given by Huntington and Grone (1961), Blech (1976), Ho and Kwok (1989) V ie ¼ J ie c i ¼ D i kt ez j ¼ D 0 kt ez j exp Q i, ð1þ kt where J ie is the flux of atoms, c i is the atomic density, D i the diffusion coefficient, k Boltzmann s constant, T the temperature, e the electronic charge, Z the effective charge, j the current density, the resistivity, D 0 the diffusion pre-exponential factor and Q i the activation energy. For the investigated alloy, Cu is the solvent and Zn the solute, with the drift velocity of Zn atoms being higher than that of Cu atoms. Therefore, an estimate of the drift velocity is based on the behaviour of the Zn atoms. According to equation (1) with the values D 0 ¼ m 2 s 1 (Guy and Hren 1974), Q i ¼ J mol 1 (Guy and Hren 1974), Z ¼ 23.3 (Ho and Kwok 1989) and j ¼ j m ¼ 18.0 ka mm 2, it can be found that V ie is of the order of 10 2 mms 1. It is clear therefore that the drift velocity is very low and the atomic displacement cannot reach 10 mm by this process during the electropulsing treatment. In addition, the electropulsing is an alternating treatment and the current, and hence atom drift direction, will undergo reversals. Since the properties of the a and b 0 phases are different, their temperatures due to Joule heating can be different during the electropulsing treatment. Therefore, an atom flow resulting from a temperature gradient (thermotransport) could occur. However, thermotransport is generally a second-order effect compared with electromigration (Hummel 1994). Furthermore, any temperature difference between the phases will disappear in very short time in this work. Therefore, the phenomenon in the present work is unlikely to be explained in terms of a temperature gradient. According to classical electromigration theory, the diffusion coefficient cannot be changed by an electric current, which can be inferred from the definition of D i in equation (1); D i is the diffusion coefficient in a current-free system. However, an unchanged diffusion coefficient cannot explain the phenomenon in this work. Therefore, we think that the main reason for the rapid atom drift in the present work arises from a diffusion coefficient that is dramatically enhanced by the electropulsing waveform. Possibilities for enhancing the diffusion coefficient by electropulsing include (a) an increase in the pre-exponential factor D 0, which could result from heating on an atomic scale, increasing the atom vibration frequency and also the activation entropy, since we know D 0 ¼ fa 2 exp (S/k) (Bocquet et al. 1983), where f is a constant for a certain system, a is the lattice constant, is the atom vibration frequency and S is the change of activation entropy, and

8 348 Diffusive phase transformation in a Cu Zn alloy (b) a reduction in the activation energy Q i, which could result from a reduction in the strength of opposing atom motion and an increase in defect density. However, these mechanisms are only tentative suggestions. Similar experimental results were found in other recent work, in which it was also suggested that a possible explanation lay in the diffusion coefficient (Bertolino et al. 2002). In summary, a diffusive phase transformation, a þ b 0!b, takes place in a Cu Zn alloy containing a and b 0 phases during rapid heating by electropulsing treatment. In common cases of rapid heating, a diffusive transformation is not found. For example, no equivalent transformation occurs when the heating is carried out by laser pulse excitation. The diffusive transformation cannot be explained by classical electromigration theory and is possibly associated with a dramatic enhancement of the diffusion coefficient in the investigated system as a consequence of the electric field used in the electropulsing treatment. ACKNOWLEDGEMENTS Financial support by The National Natural Science Foundation of China (grants and ) and The National Major Basic Research Development Program Item of China (grant G ) is acknowledged. The authors thank Professor Lu Ke and Wang Yuanming for many helpful discussions. REFERENCES BERTOLINO, N., GARAY, J., ANSELMI-TAMBURINI, U., and MUNIR, Z. A., 2002, Phil. Mag. B, 82, 969. BLECH, I. A., 1976, J. appl. Phys., 47, BOCQUET, J. L., BREBEC, G., and LIMOGE, Y., 1983, Physical Metallurgy, third edition, edited by R. W. Cahn and P. Haasen (Amsterdam: North-Holland), chapter 8, p BROOKS, C. R., 1982, Heat Treatment, Structure and Properties of Nonferrous Alloys, (Materials Park, Ohio: American Society for Metals), pp GUY, A. G., and HREN, J. J., 1974, Elements of Physical Metallurgy, Third edition (Reading, Massachusetts: Addison-Wesley), p HO, P. S., and KWOK, T., 1989, Rep. Prog. Phys., 52, 301. HUMMEL, R. E., 1994, Int. Mater. Rev., 39, 97. HUNTINGTON, H. B., and GRONE, A. R., 1961, J. Phys. Chem. Solids, 20, 76. MASSALSKI, T. B., OKAMOTO, H., SUBRAMANIAN, P. R., and KACPRZAK, L., 1990, Binary Alloy Phase Diagrams, second edition (Materials Park, Ohio: American Society for Metals), p ZHOU, Y. Z., ZHANG, W., SUI, M. L., LI, D. X., HE, G. H., and GUO, J. D., 2002a, J. Mater. Res., 17, 921. ZHOU, Y. Z., ZHANG, W., WANG, B. Q., and GUO, J. D., 2003, J. Mater. Res., 18, ZHOU, Y. Z., ZHANG, W., WANG, B. Q., HE, G. H., and GUO, J. D., 2002b, J. Mater. Res., 17, 2105.

The effects of trace Sc and Zr on microstructure and internal friction of Zn Al eutectoid alloy

The effects of trace Sc and Zr on microstructure and internal friction of Zn Al eutectoid alloy Materials Science and Engineering A 370 (2004) 172 176 The effects of trace Sc and Zr on microstructure and internal friction of Zn Al eutectoid alloy B.H. Luo, Z.H. Bai, Y.Q. Xie Department of Materials

More information

Inhibition of Electromigration in Eutectic SnBi Solder Interconnect by Plastic Prestraining

Inhibition of Electromigration in Eutectic SnBi Solder Interconnect by Plastic Prestraining J. Mater. Sci. Technol., 2011, 27(11), 1072-1076. Inhibition of Electromigration in Eutectic SnBi Solder Interconnect by Plastic Prestraining X.F. Zhang 1), H.Y. Liu 1), J.D. Guo 1) and J.K. Shang 1,2)

More information

Research on alloying technique of yttrium on AZ91D magnesium alloy

Research on alloying technique of yttrium on AZ91D magnesium alloy International Conference on Manufacturing Science and Engineering (ICMSE 2015) Research on alloying technique of yttrium on AZ91D magnesium alloy YULEI XU1,2,a and KUI ZHANG1,b * 1 2 State Key Laboratory

More information

Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy. Based Composites

Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy. Based Composites ID-1272 Effects of Hot Extrusion Parameters on Microstructure and Properties of RS P/M Al-7Fe-1.4Mo-1.4Si Alloy Based Composites P. Y. Li, S. L. Dai, H. J. Yu, S. C. Chai and Y. R. Li Beijing Institute

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[mei, Q. S.] On: 14 February 2008 Access Details: [subscription number 790583253] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number:

More information

Mechanical Alloying of Mg-Al Alloy with Addition of Metal Silicides

Mechanical Alloying of Mg-Al Alloy with Addition of Metal Silicides Materials Transactions, Vol. 45, No. 7 (2004) pp. 2410 to 2416 #2004 The Japan Institute of Metals Mechanical Alloying of Mg-Al Alloy with Addition of Metal Silicides Akihiro Yamazaki*, Junichi Kaneko

More information

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h

Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Physical Metallurgy Friday, January 28, 2011; 8:30 12:00 h Always motivate your answers All sub-questions have equal weight in the assessment Question 1 Precipitation-hardening aluminium alloys are, after

More information

UC Davis UC Davis Previously Published Works

UC Davis UC Davis Previously Published Works UC Davis UC Davis Previously Published Works Title Crystallization of metallic glasses under the influence of high density dc currents Permalink https://escholarship.org/uc/item/1qw5m7b1 Journal Journal

More information

Effect of homogenizing treatment on microstructure and conductivity of 7075 aluminum alloy prepared by low frequency electromagnetic casting

Effect of homogenizing treatment on microstructure and conductivity of 7075 aluminum alloy prepared by low frequency electromagnetic casting Vol.11 No.1 January 214 Effect of homogenizing treatment on microstructure and conductivity of 775 aluminum alloy prepared by low frequency electromagnetic casting *Wang Gaosong, Zhao Zhihao, Guo Qiang

More information

MICROSTRUCTURAL CHARACTERIZATION OF MODIFIED COMMERCIAL 2219 ALUMINUM ALLOY

MICROSTRUCTURAL CHARACTERIZATION OF MODIFIED COMMERCIAL 2219 ALUMINUM ALLOY Association of Metallurgical Engineers Serbia and Montenegro Scientific paper AME UDC:669.715.17.2:62.192.4=2 MICROSTRUCTURAL CHARACTERIZATION OF MODIFIED COMMERCIAL 2219 ALUMINUM ALLOY V. MAKSIMOVIĆ 1,

More information

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness.

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness. PRAMANA c Indian Academy of Sciences Vol. 65, No. 4 journal of October 2005 physics pp. 745 751 Effect of rare-earth elements on nanophase evolution, crystallization behaviour and mechanical properties

More information

IMAGING OF MICROSTRUCTURAL FEATURES AND LOCAL STIFFNESS OF Α- AND Β-PHASES IN THE TITANIUM ALLOY TI- 6AL-4V BY ATOMIC FORCE ACOUSTIC MICROSCOPY

IMAGING OF MICROSTRUCTURAL FEATURES AND LOCAL STIFFNESS OF Α- AND Β-PHASES IN THE TITANIUM ALLOY TI- 6AL-4V BY ATOMIC FORCE ACOUSTIC MICROSCOPY IMAGING OF MICROSTRUCTURAL FEATURES AND LOCAL STIFFNESS OF Α- AND Β-PHASES IN THE TITANIUM ALLOY TI- 6AL-4V BY ATOMIC FORCE ACOUSTIC MICROSCOPY Jonas O. RABE, Ute RABE, Sigrun HIRSEKORN Fraunhofer Institute

More information

J.Dutkiewicz and J. Morgiel Institute for Metals Research, Polish Academy of Science, Krakow, Poland.

J.Dutkiewicz and J. Morgiel Institute for Metals Research, Polish Academy of Science, Krakow, Poland. 141 Effect of Ageing on Martensitic Transformation in CuZn and CuZnSn Alloys. J.Dutkiewicz and J. Morgiel Institute for Metals Research, Polish Academy of Science, Krakow, Poland. Introduction. The characteristic

More information

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy *Yin Dongsong 1, Zhang Erlin 2 and Zeng Songyan 1 (1. School of Materials Science and Engineering, Harbin

More information

Effect of zirconium addition on the recrystallization behaviour of a commercial Al Cu Mg alloy

Effect of zirconium addition on the recrystallization behaviour of a commercial Al Cu Mg alloy Bull. Mater. Sci., Vol. 4, No. 6, December 001, pp. 643 648. Indian Academy of Sciences. Effect of zirconium addition on the recrystallization behaviour of a commercial Al Cu Mg alloy K T KASHYAP Department

More information

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiAl-Nb ALLOY PREPARED BY PLASMA METALLURGY. Jan JUŘICA, Monika LOSERTOVÁ, Daniel PETLÁK

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiAl-Nb ALLOY PREPARED BY PLASMA METALLURGY. Jan JUŘICA, Monika LOSERTOVÁ, Daniel PETLÁK MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiAl-Nb ALLOY PREPARED BY PLASMA METALLURGY Jan JUŘICA, Monika LOSERTOVÁ, Daniel PETLÁK Authors: Jan Juřica, MSc. Eng., Monika Losertová, Assoc. Prof. Dr., Daniel

More information

Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni

Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni , pp. 692 698 Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni Sung-Joon KIM, Chang Gil LEE, Tae-Ho LEE and Sunghak

More information

Type II twins and their deformation characteristics in 18R martensite in a Cu Zn Al alloy

Type II twins and their deformation characteristics in 18R martensite in a Cu Zn Al alloy March 1998 Materials Letters 34 1998 351 355 Type II twins and their deformation characteristics in 18R martensite in a Cu Zn Al alloy Jianxin Zhang a,), Wei Cai a, Yufeng Zheng a,b, Liancheng Zhao a a

More information

Phase Transformation of 00 Martensite Structure by Aging in Ti-8 mass%mo Alloy

Phase Transformation of 00 Martensite Structure by Aging in Ti-8 mass%mo Alloy Materials Transactions, Vol. 45, No. 5 (2004) pp. 1629 to 1634 Special Issue on Recent Research and Developments in Titanium and Its Alloys #2004 The Japan Institute of Metals Phase Transformation of 00

More information

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 213 217. Indian Academy of Sciences. XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel LI YAJIANG*, WANG

More information

EFFECT OF DC AND TEMPERATURE STRESSES ON NONLINEAR COEFFICIENT OF ZnO CERAMIC VARISTORS

EFFECT OF DC AND TEMPERATURE STRESSES ON NONLINEAR COEFFICIENT OF ZnO CERAMIC VARISTORS EFFECT OF DC AND TEMPERATURE STRESSES ON NONLINEAR COEFFICIENT OF ZnO CERAMIC VARISTORS M.G.M. Sabri, B.Z. Azmi, M. Hashim, Zahid Rizwan, M.K. Halimah, H.A.A. Sidek, S.A. Warid and A.N. Fauzana Department

More information

Mg-Al alloys, such as AZ91 and AM60 alloys, have been

Mg-Al alloys, such as AZ91 and AM60 alloys, have been Effect of Cu addition on microstructure and properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy *You Zhiyong, Zhang Yuhua, Cheng Weili, Zhang Jinshan and Wei Yinghui ( College of Materials Science

More information

MICROSTRUCTURE CHARACTERIZATION AND IMAGING IN TITANIUM ALLOYS BY ATOMIC FORCE ACOUSTIC MICROSCOPY

MICROSTRUCTURE CHARACTERIZATION AND IMAGING IN TITANIUM ALLOYS BY ATOMIC FORCE ACOUSTIC MICROSCOPY MICROSTRUCTURE CHARACTERIZATION AND IMAGING IN TITANIUM ALLOYS BY ATOMIC FORCE ACOUSTIC MICROSCOPY Sigrun HIRSEKORN, Jonas RABE, Ute RABE, FRAUNHOFER IZFP, Campus E3 1, 66123 Saarbrücken, Germany INTRODUCTION

More information

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2008 Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

More information

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure

Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period Stacking Ordered Structure Materials Transactions, Vol. 48, No. 11 (2007) pp. 2986 to 2992 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Mechanical Properties of Mg 97 Zn 1 RE 2 Alloys with Long-Period

More information

Improved high-q microwave dielectric resonator using CuO-doped MgNb 2 O 6 ceramics

Improved high-q microwave dielectric resonator using CuO-doped MgNb 2 O 6 ceramics Materials Research Bulletin 38 (2003) 1091 1099 Improved high-q microwave dielectric resonator using CuO-doped MgNb 2 O 6 ceramics Cheng-Shing Hsu a, Cheng-Liang Huang a,*, Jing-Fang Tseng a, Chi-Yuen

More information

Laser-Induced Crystallization in AgInSbTe Phase-Change Optical Disk

Laser-Induced Crystallization in AgInSbTe Phase-Change Optical Disk Laser-Induced Crystallization in AgInSbTe Phase-Change Optical Disk Yem-Yeu Chang, Lih-Hsin Chou, and Hung-Ta Lin Presented at the 8th International Conference on Electronic Materials (IUMRS-ICEM 2002,

More information

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress Materials Science Forum Vols. 524-525 (26) pp. 35-31 online at http://www.scientific.net (26) Trans Tech Publications, Switzerland The influence of aluminium alloy quench sensitivity on the magnitude of

More information

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Journal of Crystal Growth 289 (26) 48 413 www.elsevier.com/locate/jcrysgro Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Wu Weidong a,b,, He Yingjie

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management DIFFUSION BONDING OF AL ALLOY USING DIFFERENT IINTERLAYERS Assist. Prof. Dr. Ahmed A. Akbar*, Samer K. Khaleel * Asst. Prof. Dr. at University of Technology, Production Engineering and Metallurgy, Iraq

More information

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase Materials Transactions, Vol. 43, No. 9 (2002) pp. 2337 to 2341 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained

More information

Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization of Hi-B electrical steel

Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization of Hi-B electrical steel Indian Journal of Engineering & Materials Sciences Vol. 23, April & June 2016, pp. 165-170 Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization

More information

Comparison of the transformation sequence from ),-A1OOH (boehmite) to o~-a12o 3 (corundum) induced by heating and by ball milling

Comparison of the transformation sequence from ),-A1OOH (boehmite) to o~-a12o 3 (corundum) induced by heating and by ball milling Materials Science and Engineering, A181/A 182 (1994) 1227-1231 1227 Comparison of the transformation sequence from ),-A1OOH (boehmite) to o~-a12o 3 (corundum) induced by heating and by ball milling A.

More information

Sr and Pb additions. L. Affleck, C. Leach *

Sr and Pb additions. L. Affleck, C. Leach * Microstructures of BaTiO 3 based PTC thermistors with Ca, Sr and Pb additions Abstract L. Affleck, C. Leach * Manchester Materials Science Centre University of Manchester and UMIST Grosvenor Street, Manchester

More information

The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing

The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing Journal of Physics: Conference Series PAPER OPEN ACCESS The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing To cite this article: M Kök et al 2016 J. Phys.:

More information

The effect of nickel on the martensitic-type transformations of Pt 3 AI and TiPt

The effect of nickel on the martensitic-type transformations of Pt 3 AI and TiPt J. Phys. IVFrance 11 (2001) Pr8-493 EDP Sciences, Les Ulis The effect of nickel on the martensitic-type transformations of Pt 3 AI and TiPt T. Biggs, L.A. Cornish 1, M.J. Witcomb 2 and M.B. Cortie Physical

More information

Diffusional Transformations in Solids

Diffusional Transformations in Solids Diffusional Transformations in Solids The majority of phase transformations that occur in the solid state take place by thermally activated atomic movements. The transformations that will be dealt with

More information

Quantitative Analysis of Atomic-scale Alloying Elements Using TEM

Quantitative Analysis of Atomic-scale Alloying Elements Using TEM Technical Report UDC 543. 5 : 621. 385. 22 : 539. 18 Quantitative Analysis of Atomic-scale Alloying Elements Using TEM Takafumi AMINO* Abstract Steel properties can change greatly depending on the steel

More information

RELAXATION EFFECT OBSERVED AT LOW FREQUENCY IN AL-CU ALLOY

RELAXATION EFFECT OBSERVED AT LOW FREQUENCY IN AL-CU ALLOY RELAXATION EFFECT OBSERVED AT LOW FREQUENCY IN AL-CU ALLOY S.Belhas a, C.Belamri a,n.benyahia a, A.Rivière b, and M.Gerland b a Batna University, Batna-Algeria, sbelhas@yahoo.fr, cbelamri@yahoo.fr, andre.riviere@ensma.fr

More information

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition Materials Chemistry and Physics 90 (2005) 373 377 Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition Cheng-Liang Huang a,, Kuo-Hau Chiang a, Chi-Yuen Huang b a

More information

Structure and Microhardness of Steel Samples after Pulse Plasma Flows Processing *

Structure and Microhardness of Steel Samples after Pulse Plasma Flows Processing * Materials Sciences and Applications, 2013, 4, 35-41 http://dx.doi.org/10.4236/msa.2013.47a2006 Published Online July 2013 (http://www.scirp.org/journal/msa) 35 Structure and Microhardness of Steel Samples

More information

Institute of Physics and Chemistry of Metals, University of Silesia, Bankowa 12, Katowice, Poland

Institute of Physics and Chemistry of Metals, University of Silesia, Bankowa 12, Katowice, Poland J. Phys. IV France 11 (2001) Pr8-345 EDP Sciences, Les Ulis Structure of melt spun 2 5Ti 5 ocu 2 5 ribbons studied by X-ray diffraction T. Goryczka, M. Karolus, P. Ochin 1 and H. Morawiec Institute of

More information

Supplementary Information

Supplementary Information Supplementary Information Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation Sanxu Pu, Lu Li, Ji Ma, Fuliang

More information

Crystallographic Orientation Relationship between Discontinuous Precipitates and Matrix in Commercial AZ91 Mg Alloy

Crystallographic Orientation Relationship between Discontinuous Precipitates and Matrix in Commercial AZ91 Mg Alloy Materials Transactions, Vol. 52, No. 3 (2011) pp. 340 to 344 Special Issue on New Trends for Micro- and Nano Analyses by Transmission Electron Microscopy #2011 The Japan Institute of Metals Crystallographic

More information

Effects of Alloying Additions and Cooling Rate on the Microstructures and Mechanical Properties of the Cast Al-Mg-Si Alloys

Effects of Alloying Additions and Cooling Rate on the Microstructures and Mechanical Properties of the Cast Al-Mg-Si Alloys Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 2010 The Japan Institute of Light Metals pp. 1708-1713 1708 Effects of Alloying Additions

More information

Transmission Electron Microscopy Study of the Infrared Brazed High-strength Titanium Alloy

Transmission Electron Microscopy Study of the Infrared Brazed High-strength Titanium Alloy J. Mater. Sci. Technol., 2010, 26(4), 311-316. Transmission Electron Microscopy Study of the Infrared Brazed High-strength Titanium Alloy Z.Y. Wu 1), R.K. Shiue 1) and C.S. Chang 2) 1) Department of Materials

More information

Thermal Diffusivity Measurement of SnO 2. -CuO Ceramic at Room Temperature

Thermal Diffusivity Measurement of SnO 2. -CuO Ceramic at Room Temperature Pertanika J. Sci. & Technol. 16 (): 65-73 (008) ISSN: 018-7680 Universiti Putra Malaysia Press Thermal Diffusivity Measurement of SnO -CuO Ceramic at Room Temperature Aiza M.M.*, Zaidan A.W., Wan Mahmood

More information

Accumulation (%) Amount (%) Particle Size 0.1

Accumulation (%) Amount (%) Particle Size 0.1 100 10 Amount (%) 5 50 Accumulation (%) 0 0.1 1 Particle Size (µm) 10 0 Supplementary Figure 1. The particle size distribution of W-15 at% Cr after 20 hours milling. Supplementary Figure 2. a,b, X-ray

More information

THERMAL STABILITY OF RAPIDLY SOLIDIFIED Al-Fe-X ALLOYS. Milena VODĚROVÁ, Pavel NOVÁK, Alena MICHALCOVÁ, Dalibor VOJTĚCH

THERMAL STABILITY OF RAPIDLY SOLIDIFIED Al-Fe-X ALLOYS. Milena VODĚROVÁ, Pavel NOVÁK, Alena MICHALCOVÁ, Dalibor VOJTĚCH THERMAL STABILITY OF RAPIDLY SOLIDIFIED Al-Fe-X ALLOYS Milena VODĚROVÁ, Pavel NOVÁK, Alena MICHALCOVÁ, Dalibor VOJTĚCH Department of Metals and Corrosion Engineering, Institute of Chemical Technology,

More information

QUANTITATIVE STUDY OF Sb GRAIN BOUNDARY SEGREGATION IN RAPIDLY QUENCHED Cu-Sb ALLOYS

QUANTITATIVE STUDY OF Sb GRAIN BOUNDARY SEGREGATION IN RAPIDLY QUENCHED Cu-Sb ALLOYS Journal of Materials Science and Engineering with Advanced Technology Volume 3, Number 1, 2011, Pages 29-39 QUANTITATIVE STUDY OF Sb GRAIN BOUNDARY SEGREGATION IN RAPIDLY QUENCHED Cu-Sb ALLOYS CHUNFEI

More information

PREPARATION OF NEODYMIUM HYDROXIDE NANORODS AND NEODYMIUM OXIDE NANORODS BY A HYDROTHERMAL METHOD

PREPARATION OF NEODYMIUM HYDROXIDE NANORODS AND NEODYMIUM OXIDE NANORODS BY A HYDROTHERMAL METHOD Digest Journal of Nanomaterials and Biostructures Vol. 10, No. 2, April - June 2015, p. 715-719 PREPARATION OF NEODYMIUM HYDROXIDE NANORODS AND NEODYMIUM OXIDE NANORODS BY A HYDROTHERMAL METHOD N. EKTHAMMATHAT

More information

Characterization of Nano-Scale Fine Precipitates in Al-Mg-Si Alloys for Automotive Applications

Characterization of Nano-Scale Fine Precipitates in Al-Mg-Si Alloys for Automotive Applications UDC 669. 715 721 782 : 629. 11. 011. 5 Characterization of Nano-Scale Fine Precipitates in Al-Mg-Si Alloys for Automotive Applications Makoto SAGA* 1 Naoki MARUYAMA* 1 Abstract Bake-hadenable Al-Mg-Si

More information

National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310

National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 Crystallization Behavior, Nanostructure and Magnetic Properties of Melt-spun (Nd,Pr,Dy) 2 (Fe,Co,Mo) 14 B/α-Fe Nanocomposite Magnets B. Z. Cui 1, 2 *, K. Han 1, Y. Zhang 3, J. P. Liu 2, H. Garmestani 1,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/315/5817/1385/dc1 Supporting Online Material for Super Plastic Bulk Metallic Glasses at Room Temperature Yan Hui Liu, Gang Wang, Ru Ju Wang, De Qian Zhao, Ming Xiang

More information

A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy

A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy Science in China Series G: Physics, Mechanics & Astronomy 2007 SCIENCE IN CHINA PRESS Springer A molecular dynamics study on melting point and specific heat of Ni 3 Al alloy YANG Hong, LÜ YongJun, CHEN

More information

Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints

Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints To cite this article: S Sharafiev

More information

Competitive Nucleation and Growth of {111} with {001} GP Zones and 0 in a Stress-Aged Al-Cu-Mg-Ag Alloy

Competitive Nucleation and Growth of {111} with {001} GP Zones and 0 in a Stress-Aged Al-Cu-Mg-Ag Alloy Materials Transactions, Vol. 45, No. 10 (2004) pp. 2974 to 2980 #2004 The Japan Institute of Metals Competitive Nucleation and Growth of {111} with {001} GP Zones and 0 in a Stress-Aged Al-Cu-Mg-Ag Alloy

More information

NON-LINEAR ULTRASONIC METHOD FOR MATERIAL CHARACTERISTICS

NON-LINEAR ULTRASONIC METHOD FOR MATERIAL CHARACTERISTICS NON-LINEAR ULTRASONIC METHOD FOR MATERIAL CHARACTERISTICS NDE00 predict. assure. improve. National Seminar of ISNT Chennai, 5. 7. 1. 00 www.nde00.org S. Thirunavukkarasu, B.P.C. Rao, T. Jayakumar, K. Balasubramaniam*,

More information

Electronic Supplementary Information (ESI) available for:

Electronic Supplementary Information (ESI) available for: Electronic Supplementary Information (ESI) available for: Supersaturated spontaneous nucleation to TiO 2 microspheres: Synthesis and giant dielectric performance Wanbiao Hu, Liping Li, Wenming Tong, Guangshe

More information

Cold Rolling-Induced Multistage Transformation in Ni-Rich NiTi Shape Memory Alloys

Cold Rolling-Induced Multistage Transformation in Ni-Rich NiTi Shape Memory Alloys Materials Transactions, Vol. 49, No. 9 (2008) pp. 2136 to 2140 #2008 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Cold Rolling-Induced Multistage Transformation in Ni-Rich NiTi Shape Memory Alloys

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Chapter 10, Phase Transformations

Chapter 10, Phase Transformations Chapter Outline: Phase Transformations Heat Treatment (time and temperature) Microstructure Kinetics of phase transformations Homogeneous and heterogeneous nucleation Growth, rate of the phase transformation

More information

Q-P PROCESSING OF HIGH-STRENGTH LOW-ALLOYED STEEL SHEETS

Q-P PROCESSING OF HIGH-STRENGTH LOW-ALLOYED STEEL SHEETS Q-P PROCESSING OF HIGH-STRENGTH LOW-ALLOYED STEEL SHEETS Daniela HAUSEROVÁ a, Zbyšek NOVÝ b, Jaromír DLOUHÝ c, Petr MOTYČKA d a,b,c,d COMTES FHT a.s., Průmyslová 995, 334 41 Dobřany, Czech Republic, comtesfht@comtesfht.cz

More information

Analysis of electrical explosion of wire systems for the production of nanopowder

Analysis of electrical explosion of wire systems for the production of nanopowder Sādhanā Vol. 37, Part 5, October 2012, pp. 629 635. c Indian Academy of Sciences Analysis of electrical explosion of wire systems for the production of nanopowder RASHMITA DAS, BASANTA KUMAR DAS, ROHIT

More information

4.0 Alloying Elements and Microstructural Phases

4.0 Alloying Elements and Microstructural Phases 4.0 Alloying Elements and Microstructural Phases There is a direct link between microstructure and properties and if the microstructure is altered by heat treatment, fabrication or composition then the

More information

FREQUENCY, DC-FIELD AND TEMPERATURE DEPENDENCE OF THE AC-SUSCEPTIBILITY OF Nd 60 Fe 30 Al 10 ALLOY

FREQUENCY, DC-FIELD AND TEMPERATURE DEPENDENCE OF THE AC-SUSCEPTIBILITY OF Nd 60 Fe 30 Al 10 ALLOY Journal of Optoelectronics and Advanced Materials Vol. 6, No. 2, June 2004, p. 609-614 FREQUENCY, DC-FIELD AND TEMPERATURE DEPENDENCE OF THE AC-SUSCEPTIBILITY OF ALLOY R. Sato Turtelli *, J. P. Sinnecker

More information

LECTURE 8. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 8. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 8 Dr. Teresa D. Golden University of North Texas Department of Chemistry Practical applications for lattice parameter measurements: -determine composition (stoichiometry) of the sample -determine

More information

Kinetics of austenite formation during continuous heating in a low carbon steel

Kinetics of austenite formation during continuous heating in a low carbon steel Materials Characterization 58 (2007) 256 261 Kinetics of austenite formation during continuous heating in a low carbon steel F.L.G. Oliveira a, M.S. Andrade b, A.B. Cota c, a REDEMAT, Federal University

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 799 Investigation of Mechanical Properties and Microstructure of Brass Alloys Obtained from Recycled Copper

More information

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition Hyperfine Interact (2006) 168:1065 1071 DOI 10.1007/s10751-006-9406-2 CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition K. Nomura & K. Inaba & S. Iio & T. Hitosugi

More information

Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition

Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition Materials Transactions, Vol. 44, No. 10 (2003) pp. 1948 to 1954 Special Issue on Nano-Hetero Structures in Advanced Metallic Materials #2003 The Japan Institute of Metals Nanocrystalline structure and

More information

STRUCTURAL CHARACTERISTICS OF SOME TERNARY Ag-In-Sn ALLOYS

STRUCTURAL CHARACTERISTICS OF SOME TERNARY Ag-In-Sn ALLOYS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.225'872'6.017.3:620.182.183=20 STRUCTURAL CHARACTERISTICS OF SOME TERNARY Ag-In-Sn ALLOYS A. MILOSAVLJEVIĆ 1*, D. ŽIVKOVIĆ

More information

Phase transformation kinetics and microstructure of NiTi shape memory alloy: effect of hydrostatic pressure

Phase transformation kinetics and microstructure of NiTi shape memory alloy: effect of hydrostatic pressure Bull. Mater. Sci., Vol., No. 4, August 2017, pp. 799 803 DOI.07/s12034-017-1413-1 Indian Academy of Sciences Phase transformation kinetics and microstructure of NiTi shape memory alloy: effect of hydrostatic

More information

doi: /

doi: / doi: 10.1063/1.362881 Influence of oxygen precipitation along dislocations on the strength of silicon crystals Ichiro Yonenaga and Koji Sumino a) Institute for Materials Research, Tohoku University, Sendai

More information

Local decomposition induced by dislocation motions inside precipitates in an Al-alloy

Local decomposition induced by dislocation motions inside precipitates in an Al-alloy Supplementary information Local decomposition induced by dislocation motions inside precipitates in an -alloy B. Yang, Y. T. Zhou, D. Chen, X. L. Ma* Shenyang National Laboratory for Materials Science,

More information

Binary Phase Diagrams - II

Binary Phase Diagrams - II Binary Phase Diagrams - II Note the alternating one phase / two phase pattern at any given temperature Binary Phase Diagrams - Cu-Al Can you spot the eutectoids? The peritectic points? How many eutectic

More information

Building blocks for a digital twin of additive manufacturing

Building blocks for a digital twin of additive manufacturing Building blocks for a digital twin of additive manufacturing - a path to understand the most important metallurgical variables H.L. Wei, T. Mukherjee and T. DebRoy, Department of Materials Science and

More information

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys Materials Transactions, Vol. 43, No. 5 (2002) pp. 1230 to 1234 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys Akihisa

More information

Light and electron microscopy of microstructure and fractography of an ultrahigh-strength martensitic steel

Light and electron microscopy of microstructure and fractography of an ultrahigh-strength martensitic steel Light and electron microscopy of microstructure and fractography of an ultrahigh-strength martensitic steel Shi, X., Wang, W., Ye, W., Sha, W., Shan, Y., Shen, M., & Yang, K. (2014). Light and electron

More information

Large-scale Spinning of Silver Nanofibers as Flexible and. Reliable Conductors

Large-scale Spinning of Silver Nanofibers as Flexible and. Reliable Conductors Supporting Information For Large-scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors Ya Huang 1, Xiaopeng Bai 1, Ming Zhou 2, Suiyang Liao 1, Zongfu Yu 2, Yaping Wang 3 and Hui Wu 1,*

More information

An Investigation of Microstructural Change of Low Alloy Steel AISI 4150 by Seebeck Coefficient

An Investigation of Microstructural Change of Low Alloy Steel AISI 4150 by Seebeck Coefficient Journal of Metals, Materials and Minerals, Vol.0 No.1 pp.1-6, 010 An Investigation of Microstructural Change of Low Alloy Steel AISI 4150 by Seebeck Coefficient Teerapong SAMRAN 1 and Preecha TERMSUKSAWAD

More information

Recombination-Enhanced Dislocation Motion in SiGe and Ge

Recombination-Enhanced Dislocation Motion in SiGe and Ge I. Yonenaga et al.: Recombination-Enhanced Dislocation Motion in SiGe and Ge 35 phys. stat. sol. (a) 171, 35 (1999) Subject classification: 61.72.Lk; 61.72.Ff; 62.20. ±x; S5.12; S6 Recombination-Enhanced

More information

High speed steels are widely used in making highspeed

High speed steels are widely used in making highspeed Solidification microstructure of M2 high speed steel by different casting technologies *Zhou Xuefeng, Fang Feng and Jiang Jianjing (Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University,

More information

Consolidation of rapidly solidified aluminum alloy powder by high pressure torsion

Consolidation of rapidly solidified aluminum alloy powder by high pressure torsion Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 2156-2161 2156 Consolidation of rapidly solidified

More information

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties Graphene/Fe 3 O 4 @Fe/ZnO Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties Yu Lan Ren, Hong Yu Wu, Ming Ming Lu, Yu Jin Chen, *, Chun Ling Zhu, # Peng Gao *, # Mao

More information

Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109, Berlin, Germany

Hahn-Meitner-Institut Berlin, Glienicker Str. 100, D-14109, Berlin, Germany Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 35-40 online at http://www.scientific.net (2004) Trans Tech Publications, Switzerland Crystallization of Pd 40 Cu 30 Ni 10 P 20

More information

Phase field modeling of Microstructure Evolution in Zirconium base alloys

Phase field modeling of Microstructure Evolution in Zirconium base alloys Phase field modeling of Microstructure Evolution in Zirconium base alloys Gargi Choudhuri, S.Chakraborty, B.K.Shah, D. Si Srivastava, GKD G.K.Dey Bhabha Atomic Research Centre Mumbai, India- 400085 17

More information

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure Materials Transactions, Vol. 47, No. 4 (2006) pp. 959 to 965 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, III #2006 The Japan Institute of Light Metals Microstructure

More information

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated Bull. Mater. Sci., Vol. 34, No. 4, July 2011, pp. 805 810. Indian Academy of Sciences. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling X P ZHANG, *, M J TAN, T H YANG,

More information

Effect of the Twins on Mechanical Properties of AISI 304 Stainless Steel Wire Using Electrical Current Method

Effect of the Twins on Mechanical Properties of AISI 304 Stainless Steel Wire Using Electrical Current Method Materials Transactions, Vol. 52, No. 1 (2011) pp. 25 to 30 #2011 The Japan Institute of Metals Effect of the Twins on Mechanical Properties of AISI 304 Stainless Steel Wire Using Electrical Current Method

More information

Volume 8, ISSN (Online), Published at:

Volume 8, ISSN (Online), Published at: IMPACT OF POWDERY OXIDE LAYER IN THE TITANIUM/RUTILE SYSTEM PREPARED BY OXIDATIVE CONSTRUCTING OF CERAMIC MATERIALS Sergey V. Shevtsov, Nikolay A. Alad ev, Konstantin A. Solntsev Baikov Institute of Metallurgy

More information

Effect of Heat Treatment on Interfacial Strengthening Mechanisms of Second Phase Particulate Reinforced Aluminium Alloy

Effect of Heat Treatment on Interfacial Strengthening Mechanisms of Second Phase Particulate Reinforced Aluminium Alloy 24-26.5.2005, Hradec nad Moravici Effect of Heat Treatment on Interfacial Strengthening Mechanisms of Second Phase Particulate Reinforced Aluminium Alloy S.T. Hasan Faculty of Arts, Computing, Engineering

More information

EFFECT OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 6061 ALUMINUM ALLOY

EFFECT OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 6061 ALUMINUM ALLOY Effect of Heat Treatment on Microstructure and Mechanical Properties of 6061 Aluminum Alloy EFFECT OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 6061 ALUMINUM ALLOY J. Ridhwan 1*, J.

More information

INTERACTION OF SOLID NICKEL WITH LIQUID MIXTURE OF ALUMINUM AND NICKEL AND FORMATION OF INTERMETALLIC PHASES. Blagoj Rizov *, Jon Magdeski

INTERACTION OF SOLID NICKEL WITH LIQUID MIXTURE OF ALUMINUM AND NICKEL AND FORMATION OF INTERMETALLIC PHASES. Blagoj Rizov *, Jon Magdeski Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC: 669.248:668.718 INTERACTION OF SOLID NICKEL WITH LIQUID MIXTURE OF ALUMINUM AND NICKEL AND FORMATION OF INTERMETALLIC PHASES

More information

STUDY ON SiCP/6063Al COMPOSITES LASER WELDING PROCESS WITH Al75Cu20Ti5 FOIL INTERLAYER

STUDY ON SiCP/6063Al COMPOSITES LASER WELDING PROCESS WITH Al75Cu20Ti5 FOIL INTERLAYER Engineering Review, Vol. 37, Issue 2, 235-242, 2017. 235 STUDY ON SiCP/6063Al COMPOSITES LASER WELDING PROCESS WITH Al75Cu20Ti5 FOIL INTERLAYER Dongfeng Cheng 1* Peng Wang 1 Jitai Niu 1,2 Zeng Gao 1 1

More information

The peritectic transformation, where δ (ferrite) and L (liquid)

The peritectic transformation, where δ (ferrite) and L (liquid) Cellular automaton simulation of peritectic solidification of a C-Mn steel *Su Bin, Han Zhiqiang, and Liu Baicheng (Key Laboratory for Advanced Materials Processing Technology (Ministry of Education),

More information

A new quaternary phase observed in a laser treated Zn-Al-Mg-Si coating

A new quaternary phase observed in a laser treated Zn-Al-Mg-Si coating University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2014 A new quaternary phase observed in a laser

More information

Practical 2P8 Transmission Electron Microscopy

Practical 2P8 Transmission Electron Microscopy Practical 2P8 Transmission Electron Microscopy Originators: Dr. N.P. Young and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course on

More information

Chinese Academy of Sciences, Shenyang, China. Baltimore, MD 21218, USA. First Published: May 2008 PLEASE SCROLL DOWN FOR ARTICLE

Chinese Academy of Sciences, Shenyang, China. Baltimore, MD 21218, USA. First Published: May 2008 PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[national Institute for Materials Science] On: 21 May 2008 Access Details: [subscription number 776099147] Publisher: Taylor & Francis Informa Ltd Registered in England and

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information