Assessment and comparison of pulsed and steady-state tokamak power plants

Size: px
Start display at page:

Download "Assessment and comparison of pulsed and steady-state tokamak power plants"

Transcription

1 Assessment and comparison of pulsed and steady-state tokamak power plants Farrokh Najmabadi UC San Diego 21 st International Toki Conference, 28 Novemeber-1 December 2011 Toki, Japan

2 Choice between steady-state and pulsed operation is purely an economic consideration A widely-held belief is that steady-state operation of a tokamak needs a high bootstrap fraction (e.g., > 85%). It requires operation in reverse-shear mode with high β N and a high degree of control of plasma profiles. Thus, steady-state operation requires a major extrapolation from present data base. However, the first steady-state power plant proposals (ARIES-I and SSTR) operated in the 1 st stability regime (monotonic q profile) Both designs had bootstrap fraction ~60-70% Required current-drive powers of 70 MW (SSTR) to MW (ARIES-I & ARIES-I versions). In fact, ARIES-I plasma profiles are very similar to Hybrid mode (sans pedestal) and a high-degree of profile control is NOT required. Thus, the trade-off is between the cost of additional currentdrive power vs issues associated with pulsed operation.

3 Outline I. System-level issues which are generic to any pulsed power plant (e.g., thermal energy storage). II. Tokamak-specific issues: operating points and magnets. III. Engineering design of power components Recent work on high-heat flux components

4 System Level Issues Thermal Energy Storage

5 A pulsed-power plant requires thermal energy storage Connecting a power plant to the grid is NOT a trivial issue: Utilities require a minimum electric power for a plant to stay on the grid. Load balancing requires a slow rate of change in introducing electric power into the grid. Overall, it is extremely expensive to attach an intermittent electric power source to the grid, a steady electric power is required. Large thermal power equipments such as pumps and heat exchangers cannot operate in a pulse mode. For example, the rate of change of temperature in a steam-generator is < 2 o C/min in order to avoid induced stress and boiling instabilities. Overall, a thermal energy storage is needed to ensure a constant thermal power flow to the balance of the plant.

6 The thermal energy storage system is quite massive. During the dwell time (no fusion power), thermal energy storage should supply thermal energy to the power cycle. Stored energy = M c p (T charge -T discharge ) Rate of change of storage temperature, T/ t, is set by the power cycle. Small T/ t leads to a large mass for the storage system with a complicated design to ensure a relatively uniform storage temperature. During the dwell time, fusion core temperature will follow the storage temperature. At the start of the burn phase, fusion core components see a large temperature change from T discharge to operating temperature (> T charge ) which could result in large strains. There is substantial benefit in minimizing (T charge -T discharge ) or the dwell time. Other critical issues include tritium extraction and permeation to energy storage system, power needed for plasma start-up,

7 Pulsar thermal energy storage system Energy accumulated in the outer shield D=during the burn phase Thermal power is extracted from shield and is regulated by mass-flow-rate control during dwell phase Limited storage capability (limited by shield mass and temperature limit) means limited dwell time (< 200 s). This approach requires precise mass flow rate controlled and assumes good coolant mixing and temperature uniformity. Judged by industrial people to be beyond current capabilities. Extension to modern blanket design (such as DCLL)?

8 Thermal energy storage dictates design choices. Thermal energy storage dictates many aspects of the design (including thermal conversion efficiency). In principle, it would be best to produce a credible storage design/power cycle before optimizing the tokamak. Cost of thermal energy storage scales linearly with the dwell time. Minimizing dwell time is important. Efforts to increase pulse length beyond ~20 X dwell time have little benefits. Average plant power already close to burn value, Impact of reducing number of cycle by a factor of two on fatigue issues are small. Allowable stress for 316LN

9 Tokamak-specific Issues

10 Pulsed and steady-state devices optimize in different regimes Steady-state, 1 st stability tokamaks (monotonic q profiles) Require minimization of current drive power Operate at high aspect ratio (to reduce I), maximize bootstrap fraction (εβ p 1) and raise on-axis q Can achieve 60%-70% bootstrap fraction with β N Current-drive power ~ MW. Typically optimizes at A ~ 4-6. Pulsed plasma Pressure (density/temperature) profile sets the achievable plasma β (no control of current profile). Can achieve 30%-40% bootstrap fraction with β N Optimizes at larger plasma current, medium aspect ratio, and higher β.

11 Magnet systems for steady-state devices can be quite simpler For steady-state devices (assuming a long start-up with current-drive assist), TF system can be substantially simpler Typical ARIES magnets consists of TF coils bucked against a bucking cylinder. The overturning forces are reacted against each other through structural caps on the top and bottom of TF coils. Pulsed plasma Lower allowable stress on the structure and lower current-density in the conductor. Torridly continuous structures are avoided as much as possible in order to minimize large eddy currents during start-up o Large Joule losses in cryogenic structures o Reduced coupling of PF coils to the plasma o Impact on plasma equilibrium and position. For the same magnet technology, we found that the field in the coil is lower and magnet cost are substantially higher.

12 Even with shield-storage, we found the steady-state system to be superior. Major Parameters of ARIES and PULSAR Power Plants PULSAR ARIES-I Aspect ratio Plasma major radius (m) Plasma minor radius (m) Toroidal field on axis (T) Toroidal field on the coil (T) Plasma beta 2.8% 1.9% 1.9% Plasma current (MA) Bootstrap fraction Neutron wall loading (MW/m2) Cost of electricity (mills/kwh) Assuming the same plant availability and unit cost for components.

13 Engineering Design of Power Components

14 Engineering design of components in fusion is mostly based on elastic analysis. Conservative design rules allow elastic analysis to be used, e.g. no ratcheting requires P L +P B <3S m where S m =min(1/3 S u, 2/3 S y ). There are many design rules accounting for primary & secondary stress, fracture, fatigue, Design rules for high-temperature operation are incomplete (e.g., interaction of different failure mechanism such as creep & fatigue).

15 Plastic analysis may yield a significantly larger design window for steady-state For plasma-facing components (first wall, divertors) relaxation from local plasticity can significantly expand the design window, enabling operation at a higher heat flux. Pulsed operation reduces the benefit significantly. High temperature creep and creep-fatigue interaction will restrict the operating space even further. More analysis (and data) is needed.

16 We have performed plasto-elastic analysis of several components. Three components were considered: Finger-type divertor Joint between W and Steel for the divertor First wall (high heat flux and transients due to convective SOL). 3D elastic-plastic analysis with thermal stress relaxation (yield) Application of accumulated strain limit (0.5 e ue ) instead of 3S m Birth-to-death modeling (Fabrication steps, operating scenarios, off-normal events) Plans to analyze high temperature creep and creep-fatigue interaction (which will restrict the operating space further).

17 Examples of birth-to-death thermal cycles. Fabrication Cycle fabrication normal operation with shutdowns transients Temperature Heat Flux (gradients) Time FW Operating Cycle with warm shutdown

18 He-cooled W divertor explored in the ARIES Designs T-tube Plates with jet and/or pin-fin cooling Finger Finger/plate combinations

19 Inclusion of yield extends finger divertor limits Elastic analysis,15 MW/m 2 Elasto-plastic analysis,15 MW/m 2 SF= Allowable (3S m ) / Maximum stress SF > 1 to meet the ASME 3S m criterion The minimum elastic safety factor is 0.3 in the armor and 0.9 in the thimble But plastic strain (one cycle) is well within the 1% strain limit (ε ue /2)

20 External transition joints help alleviate one of the more challenging aspects of HHFC s W Ta ODS steel coolant mat l ε 2d ε allowable ODS 0.77% ~1% Ta 0.54% 5-15% W ~0 % ~1% Cu braze

21 Ratcheting leads to strain (damage) accumulation Cold shutdown Warm shutdown (4 time steps per cycle) Design does not meet 3S m criterion. Cold shutdown is the most severe condition (considering 1050 C stress-free temperature). In our case, ratcheting saturates after ~100 cycles. Creep, fatigue, and creep-fatigue interaction are all expected to be more severe under cyclic loading

22 A modified first wall concept using W pins was proposed to better resist transients Goal of 1 MW/m 2 normal, 2 MW/m 2 transient W pins are brazed into ODS steel plates, which are brazed to RAFS cooling channels Pins help resist thermal transients and erosion Similar to micro brush concept developed for the ITER divertor Minor impact on neutronics

23 Inclusion of thermal stress relaxation also extends the first wall performance Maximum ODS XY shear stress at: Room temperature: 20 C Coolant temperature: 385 C Peak temperature: 582 C 3S m ~ 600 / 550 / 400 MPa Elastic analysis σ xy = 885 / 600 / 450 MPa Plastic analysis σ xy = 460 / 200 / 90 MPa

24 Highlights The trade-off is between the cost of additional current-drive power vs issues associated with pulsed operation. Thermal energy storage is needed. It dictates many aspects of the design. It would be best to produce a credible storage design/power cycle before optimizing the tokamak. Efforts to increase pulse length beyond ~20 X dwell time have little benefits. Pulsed-plasma and steady-state plants operate at different plasma operating regimes. Substantial simplification in TF design and capabilities for long, non-inductive start-up Plasto-elastic analysis of plasma-facing components indicate a larger operating window for steady-state operation.

25 Thank you!

CONCLUSIONS OF THE ARIES AND PULSAR STUDIES: DIRECTIONS FOR AN ATTRACTIVE TOKAMAK POWER PLANT

CONCLUSIONS OF THE ARIES AND PULSAR STUDIES: DIRECTIONS FOR AN ATTRACTIVE TOKAMAK POWER PLANT CONCLUSIONS OF THE ARIES AND PULSAR STUDIES: DIRECTIONS FOR AN ATTRACTIVE TOKAMAK POWER PLANT R. W. Conn, F. Najmabadi for The ARIES Team DOE Headquarters, Germantown May 18, 1994 ARIES Is a Community-Wide

More information

COMPARISON OF STEADY-STATE AND PULSED-PLASMA TOKAMAK POWER PLANTS

COMPARISON OF STEADY-STATE AND PULSED-PLASMA TOKAMAK POWER PLANTS COMPARISON OF STEADY-STATE AND PULSED-PLASMA TOKAMAK POWER PLANTS F. Najmabadi, University of California, San Diego and The ARIES Team IEA Workshop on Technological Aspects of Steady State Devices Max-Planck-Institut

More information

OVERVIEW OF THE ARIES AND PULSAR STUDIES

OVERVIEW OF THE ARIES AND PULSAR STUDIES OVERVIEW OF THE ARIES AND PULSAR STUDIES F. Najmabadi, R. W. Conn, University of California, San Diego and The ARIES Team ISFNT-3 University of California, Los Angeles June 27 July 1, 1994 ARIES Is a Community-Wide

More information

Overview of ARIES ACT-1 Study

Overview of ARIES ACT-1 Study Overview of ARIES ACT-1 Study Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego and the ARIES Team Japan-US Workshop on Fusion Power Plants

More information

THE ARIES-I TOKAMAK REACTOR STUDY

THE ARIES-I TOKAMAK REACTOR STUDY THE ARIES-I TOKAMAK REACTOR STUDY Farrokh Najmabadi, Robert W. Conn, and The ARIES Team 16th SOFT London, September 3-7, 1990 ARIES Is a Community-Wide Study U. W. UCLA ANL U. IL. FEDC ORNL RPI ARIES GA

More information

THE ARIES TOKAMAK REACTOR STUDIES

THE ARIES TOKAMAK REACTOR STUDIES THE ARIES TOKAMAK REACTOR STUDIES Farrokh Najmabadi for The ARIES Team Fusion Power Associates Symposium Pleasanton, CA, April 9-10, 1992 ARIES Is a Community-Wide Study ANL UCLA GA MIT LANL PPPL ARIES

More information

Overview of the ARIES Fusion Power Plant Studies

Overview of the ARIES Fusion Power Plant Studies Overview of the ARIES Fusion Power Plant Studies Farrokh Najmabadi IAEA Technical Committee Meeting on Fusion Power Plant Studies March 24-28, 1998 Culham, United Kingdom The ARIES Team Has Examined Several

More information

Advanced Study of a Tokamak Transmutation System

Advanced Study of a Tokamak Transmutation System Abstract Advanced Study of a Tokamak Transmutation System L. J. Qiu, Y. C. Wu, B. Wu, X.P. Liu, Y.P. Chen, W.N. Xu, Q.Y. Huang Institute of Plasma Physics, Chinese Academy of Sciences P.O. Box 1126, Hefei,

More information

Improved Design of a Helium- Cooled Divertor Target Plate

Improved Design of a Helium- Cooled Divertor Target Plate Improved Design of a Helium- Cooled Divertor Target Plate By X.R. Wang, S. Malang, R. Raffray and the ARIES Team ARIES-Pathway Meeting University of Wisconsin, Madison April 23-24, 2009 Critical Design

More information

Development Scenario of Tokamak Reactor for Early Demonstration of Electric Power Generation

Development Scenario of Tokamak Reactor for Early Demonstration of Electric Power Generation Development Scenario of Tokamak Reactor for Early Demonstration of Electric Power Generation US/Japan Workshop on Power Plant Studies and Related Advanced Technologies With EU Participation 24-25 January

More information

TOROIDAL REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

TOROIDAL REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO TOROIDAL REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO C.P.C. Wong, J.C. Wesley, R.D. Stambaugh, E.T. Cheng General Atomics, San Diego, California TSI Research Inc., Solana Beach, California e-mail contact

More information

Conceptual design of a demonstration reactor for electric power generation

Conceptual design of a demonstration reactor for electric power generation 1 FT/P7-4 Conceptual design of a demonstration reactor for electric power generation Y. Asaoka 1), R. Hiwatari 1), K. Okano 1), Y. Ogawa 2), H. Ise 3), Y. Nomoto 3), T. Kuroda 3), S. Mori 3), K. Shinya

More information

Toroidal Reactor Designs as a Function of Aspect Ratio

Toroidal Reactor Designs as a Function of Aspect Ratio Toroidal Reactor Designs as a Function of C.P.C. Wong ), J.C. Wesley ), R.D. Stambaugh ), E.T. Cheng ) ) General Atomics, San Diego, California ) TSI Research Inc., Solana Beach, California e-mail contact

More information

DEMO Concept Development and Assessment of Relevant Technologies

DEMO Concept Development and Assessment of Relevant Technologies 1 FIP/3-4Rb DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, H. Utoh, N. Asakura, Y. Someya, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team Japan

More information

Integrated System Level Simulation and Analysis of DEMO with Apros. Sami Kiviluoto

Integrated System Level Simulation and Analysis of DEMO with Apros. Sami Kiviluoto Integrated System Level Simulation and Analysis of DEMO with Apros Sami Kiviluoto 3.11.2016 DEMO modelling project Fortum joined FinnFusion consortium in the fall 2015 EUROfusion WPPMI project (Plant Level

More information

Overview of the ARIES Program

Overview of the ARIES Program Overview of the ARIES Program Farrokh Najmabadi University of California San Diego Presentation to: ARIES Program Peer Review August 18, 2000 UC San Diego Electronic copy: http://aries.ucsd.edu/najmabadi/talks/

More information

Status of Fusion Research

Status of Fusion Research Status of Fusion Research Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego NCSU Seminar North Carolina September 2, 2010 World uses (& needs) a lot

More information

Status Report and Documentation of DCLL Design

Status Report and Documentation of DCLL Design Status Report and Documentation of DCLL Design He primary and secondary loops footprint at TCWS DCLL design evolution DCLL, DEMO inboard routing assessment Documentation of DCLL design Clement Wong, Dick

More information

POSSIBILITY OF THE HE-COOLED SIC-COMPOSITE DIVERTOR

POSSIBILITY OF THE HE-COOLED SIC-COMPOSITE DIVERTOR POSSIBILITY OF THE HE-COOLED SIC-COMPOSITE DIVERTOR X.R. Wang 1, S. Malang 2, M. S. Tillack 1 1 University of California, San Diego, CA 2 Fusion Nuclear Technology Consulting, Germany ARIES-Pathways Project

More information

ARIES Systems Code Development, Visualization and Application

ARIES Systems Code Development, Visualization and Application ARIES Systems Code Development, Visualization and Application Lane Carlson 1, Mark Tillack 1, Farrokh Najmabadi 1 1 University of California San Diego Center for Energy Research La Jolla, CA, USA lcarlson@ucsd.edu

More information

The ARIES-AT advanced tokamak, Advanced technology fusion power plant

The ARIES-AT advanced tokamak, Advanced technology fusion power plant Fusion Engineering and Design 80 (2006) 3 23 The ARIES-AT advanced tokamak, Advanced technology fusion power plant Farrokh Najmabadi a,, The ARIES Team: A. Abdou b, L. Bromberg c, T. Brown d, V.C. Chan

More information

EU DEMO Design Point Studies

EU DEMO Design Point Studies EU DEMO Design Point Studies R. Kemp 1, D. J. Ward 1, G. Federici 2, R. Wenninger 2,3 and J. Morris 1 1 CCFE, Culham Science Centre, Oxfordshire OX14 3DB, United Kingdom 2 EFDA PPPT, Boltzmannstr.2, Garching

More information

ARIES-ST: A Spherical Torus Fusion Power Plant

ARIES-ST: A Spherical Torus Fusion Power Plant ARIES-ST: A Spherical Torus Fusion Power Plant Farrokh Najmabadi University of California, San Diego, La Jolla, CA, United States of America 9 th Course on Technology of Fusion Reactors 26 July 1 August

More information

Magnetohydrodynamics (MHD) III

Magnetohydrodynamics (MHD) III Magnetohydrodynamics (MHD) III Yong-Su Na National Fusion Research Center POSTECH, Korea, 8-10 May, 2006 Review II 1. What is Stability? 2. MHD Instability Interchange Mode Flux Tube Instabilities 3. Formulation

More information

A Pilot Plant as the Next Step toward an MFE Demo, )

A Pilot Plant as the Next Step toward an MFE Demo, ) A Pilot Plant as the Next Step toward an MFE Demo, ) George H. NEILSON, David A. GATES, Charles E. KESSEL, Jonathan E. MENARD, Stewart C. PRAGER, Steven D. SCOTT, James R. WILSON and Michael C. ZARNSTORFF

More information

Disruptions in ITER: Major Catastrophe or Minor Annoyance? Sarah Angelini April 21, 2011

Disruptions in ITER: Major Catastrophe or Minor Annoyance? Sarah Angelini April 21, 2011 Disruptions in ITER: Major Catastrophe or Minor Annoyance? Sarah Angelini April 21, 2011 Disruptions Types of Disruptions Time Scales from the IDDB Thermal Quench Current Quench DINA Simulation Results

More information

Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan

Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan M. Enoeda, Y. Kosaku, T. Hatano, T. Kuroda, N. Miki, T. Honma and M. Akiba Japan Atomic Energy Research

More information

DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT

DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT X.R. Wang a, S. Malang b, A.R. Raffray a and the ARIES Team a Center for Energy Research, University of California, San Diego,

More information

Design and Development of Lower Divertor for JT-60SA

Design and Development of Lower Divertor for JT-60SA 1 FTP/P1-29 Design and Development of Lower Divertor for JT-60SA S. Sakurai, H. Higashijima, H. Kawashima, Y. K. Shibama, T. Hayashi, H. Ozaki, K. Shimizu, K. Masaki, K. Hoshino, S. Ide, K. Shibanuma,

More information

High performance blanket for ARIES-AT power plant

High performance blanket for ARIES-AT power plant Fusion Engineering and Design 58 59 (2001) 549 553 www.elsevier.com/locate/fusengdes High performance blanket for ARIES-AT power plant A.R. Raffray a, *, L. El-Guebaly b, S. Gordeev c, S. Malang c, E.

More information

DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII D

DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII D GA A24056 DESIGN, FABRICATION, INSTALLATION AND TESTING OF IN-VESSEL CONTROL COILS FOR DIII D by P.M. ANDERSON, C.B. BAXI, A.G. KELLMAN, E.E. REIS, and J.I. ROBINSON OCTOBER 2002 DISCLAIMER This report

More information

Simulation of Power Exhaust in Edge and Divertor of the SlimCS Tokamak Demo Reactor

Simulation of Power Exhaust in Edge and Divertor of the SlimCS Tokamak Demo Reactor J. Plasma Fusion Res. SERIES, Vol. 9 (2010) Simulation of Power Exhaust in Edge and Divertor of the SlimCS Tokamak Demo Reactor Nobuyuki ASAKURA, Katsuhiro SHIMIZU, Hisato KAWASHIMA, Kenji TOBITA and Tomonori

More information

ARIES: Fusion Power Core and Power Cycle Engineering

ARIES: Fusion Power Core and Power Cycle Engineering ARIES: Fusion Power Core and Power Cycle Engineering The ARIES Team Presented by A. René Raffray ARIES Peer Review Meeting University of California, San Diego ARIES: Fusion Power Core and Power Cycle Engineering/ARR

More information

LOSS OF COOLANT ACCIDENT AND LOSS OF FLOW ACCIDENT ANALYSIS OF THE ARIES-AT DESIGN

LOSS OF COOLANT ACCIDENT AND LOSS OF FLOW ACCIDENT ANALYSIS OF THE ARIES-AT DESIGN LOSS OF COOLANT ACCIDENT AND LOSS OF FLOW ACCIDENT ANALYSIS OF THE ARIES-AT DESIGN E. A. Mogahed, L. El-Guebaly, A. Abdou, P. Wilson, D. Henderson and the ARIES Team Fusion Technology Institute University

More information

CERAMIC BREEDER BLANKET FOR ARIES-CS

CERAMIC BREEDER BLANKET FOR ARIES-CS CERAMIC BREEDER BLANKET FOR ARIES-CS A.R. Raffray 1, S. Malang 2, L. El-Guebaly 3, X. Wang 4, and the ARIES Team 1 Mechanical and Aerospace Engineering Department and Center for Energy Research, 460 EBU-II,

More information

EX/9-1 Progress in Preparing Scenarios for ITER Operation

EX/9-1 Progress in Preparing Scenarios for ITER Operation EX/9-1 Progress in Preparing Scenarios for ITER Operation George Sips (JET-EFDA, UK) G. Giruzzi, S. Ide, C. Kessel, T. Luce, J. Snipes, J. Stober For the IOS-TG of the ITPA FEC 2014, St Petersburg, Russia

More information

GA A22436 CREEP-FATIGUE DAMAGE IN OFHC COOLANT TUBES FOR PLASMA FACING COMPONENTS

GA A22436 CREEP-FATIGUE DAMAGE IN OFHC COOLANT TUBES FOR PLASMA FACING COMPONENTS GA A22436 CREEP-FATIGUE DAMAGE IN OFHC COOLANT TUBES FOR PLASMA FACING COMPONENTS by E.E. REIS and R.H. RYDER OCTOBER 1996 GA A22436 CREEP-FATIGUE DAMAGE IN OFHC COOLANT TUBES FOR PLASMA FACING COMPONENTS

More information

THE ARIES research team continues to develop integrated

THE ARIES research team continues to develop integrated 552 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 40, NO. 3, MARCH 2012 Development, Visualization, and Application of the ARIES Systems Code Lane Carlson, Mark Tillack, Farrokh Najmabadi, and Charles Kessel

More information

ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THESTARLITESTUDY

ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THESTARLITESTUDY ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THESTARLITESTUDY Farrokh Najmabadi Dept. of Electrical & Computer Eng. and Fusion Energy Research Program, University of California,

More information

Design of Solid Breeder Test Blanket Modules in JAERI

Design of Solid Breeder Test Blanket Modules in JAERI Design of Solid Breeder Test Blanket Modules in JAERI Presented by: S. Suzuki, Blanket Engineering Lab., Japan Atomic Energy Research Institute, JAERI Contents 1. Outline of blanket development in JAERI

More information

Studies of Impurity Seeding and Divertor Power Handling in Fusion Reactor

Studies of Impurity Seeding and Divertor Power Handling in Fusion Reactor 1 FIP/P8-11 Studies of Impurity Seeding and Divertor Power Handling in Fusion Reactor K. Hoshino 1, N. Asakura 1, K. Shimizu 2 and S. Tokunaga 1 1 Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212

More information

Summary of Major Features of ARIES- ST and ARIES-AT Blanket Designs

Summary of Major Features of ARIES- ST and ARIES-AT Blanket Designs Summary of Major Features of ARIES- ST and ARIES-AT Blanket Designs Presented by A. René Raffray University of California, San Diego with the Contribution of the ARIES Team and S. Malang APEX Meeting,

More information

ARIES-AT BLANKET AND DIVERTOR

ARIES-AT BLANKET AND DIVERTOR ARIES-AT BLANKET AND DIVERTOR A. R. Raffray, M.S.Tillack, X. Wang L. El-Guebaly, I. Sviatoslavsky S. Malang University of California, San Diego University of Wisconsin Forschungszentrum Karlsruhe EBU-II,

More information

Research and Development Status of Reduced Activation Ferritic/Martensitic Steels Corresponding to DEMO Design Requirement

Research and Development Status of Reduced Activation Ferritic/Martensitic Steels Corresponding to DEMO Design Requirement Research and Development Status of Reduced Activation Ferritic/Martensitic Steels Corresponding to DEMO Design Requirement Hiroyasu Tanigawa 1, Hisashi Tanigawa 1, M. Ando 1, S. Nogami 2, T. Hirose 1,

More information

DCLL Blanket for ARIES-AT: Major Changes to Radial Build and Design Implications

DCLL Blanket for ARIES-AT: Major Changes to Radial Build and Design Implications DCLL Blanket for ARIES-AT: Major Changes to Radial Build and Design Implications L. El-Guebaly Fusion Technology Institute UW - Madison ARIES-Pathways Project Meeting December 12-13, 2007 Georgia Tech

More information

Plasma Scenarios and Control

Plasma Scenarios and Control Plasma Scenarios and Control R. J. Hawryluk Presented at the SECOND IAEA DEMO PROGRAMME WORKSHOP December 19, 2013 What is the Difference in the Scenario and Control Requirements Between ITER and DEMO?

More information

5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA PHYSICS AND TECHNOLOGY April 21, 2011, Singapore

5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA PHYSICS AND TECHNOLOGY April 21, 2011, Singapore 5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA PHYSICS AND TECHNOLOGY April 21, 2011, Singapore Outline Early history the underpinnings in Basic Studies Tokamak program Aditya and SST-1 - Some

More information

DEVELOPMENT OF PHYSICS AND ENGNEERING DESIGNS FOR JAPAN S DEMO CONCEPT

DEVELOPMENT OF PHYSICS AND ENGNEERING DESIGNS FOR JAPAN S DEMO CONCEPT Y. SAKAMOTO et al. DEVELOPMENT OF PHYSICS AND ENGNEERING DESIGNS FOR JAPAN S DEMO CONCEPT Y. SAKAMOTO National Institutes for Quantum and Radiological Science and Technology, Fusion Energy Research Development

More information

2. Fusion Engineering Research Project

2. Fusion Engineering Research Project 2. Fusion Engineering Research Project Fusion Engineering Research Project (FERP) started in FY2010 at NIFS. Along with a conceptual design of the helical fusion reactor FFHR-d1, the project is conducting

More information

EUROPEAN FUSION DEVELOPMENT AGREEMENT. PPCS Reactor Models. 9 th Course on Technology of Fusion Tokamak Reactors

EUROPEAN FUSION DEVELOPMENT AGREEMENT. PPCS Reactor Models. 9 th Course on Technology of Fusion Tokamak Reactors PPCS Reactor Models 9 th Course on Technology of Fusion Tokamak Reactors International School of Fusion Reactor Technology - 2004 David Maisonnier EFDA CSU Garching (david.maisonnier@tech.efda.org) PPCS

More information

HAPL Blanket Strategy

HAPL Blanket Strategy HAPL Blanket Strategy A. René Raffray UCSD With contributions from M. Sawan and I. Sviatoslavsky UW HAPL Meeting Georgia Institute of Technology Atlanta, GA HAPL meeting, G.Tech. 1 Outline Background Strategy

More information

Design and analysis of the ARIES-ACT1 fusion core

Design and analysis of the ARIES-ACT1 fusion core Design and analysis of the ARIES-ACT1 fusion core M. S. Tillack, X. R. Wang, D. Navaei, H. H. Toudeshki, A. F. Rowcliffe, F. Najmabadi and the ARIES Team University of California San Diego 9500 Gilman

More information

Technical Challenges on the Path to DEMO and the Strategy of EFDA on the Power Plant Physics and Technology

Technical Challenges on the Path to DEMO and the Strategy of EFDA on the Power Plant Physics and Technology Technical Challenges on the Path to DEMO and the Strategy of EFDA on the Power Plant Physics and Technology Gianfranco Federici Head of PPPT Department HTS Fusion Conductor Workshop, KIT Karlsruhe 26 27.05.2011

More information

The ITER Blanket System Design Challenge

The ITER Blanket System Design Challenge The ITER Blanket System Design Challenge Presented by A. René Raffray Blanket Section Leader; Blanket Integrated Product Team Leader ITER Organization, Cadarache, France With contributions from B. Calcagno

More information

Development and Application of System Analysis Program for Parameters Optimization and Economic Assessment of Fusion Reactor (SYSCODE)

Development and Application of System Analysis Program for Parameters Optimization and Economic Assessment of Fusion Reactor (SYSCODE) Development and Application of System Analysis Program for Parameters Optimization and Economic Assessment of Fusion Reactor (SYSCODE) Presented By Dehong Chen Contributed by FDS Team Key Laboratory of

More information

EU Designs and Efforts on ITER HCPB TBM

EU Designs and Efforts on ITER HCPB TBM EU Designs and Efforts on ITER HCPB TBM L.V. Boccaccini Contribution: S. Hermsmeyer and R. Meyder ITER TBM Project Meeting at UCLA February 23-25, 2004 UCLA, February 23rd, 2004 EU DEMO and TBM L.V. Boccaccini

More information

Concept Development of DEMO in Japan

Concept Development of DEMO in Japan US-JPN WS on Fusion Power Reactor 2014.3.13, UCSD Concept Development of DEMO in Japan JAEA Kenji Tobita 2/22 OUTLINE 1. Circumstances Surrounding DEMO 2. DEMO Design Activity 3. Safety Study 1. Circumstances

More information

Impact of Advanced Technologies on Fusion Power Plant Characteristics: The ARIES-AT Study

Impact of Advanced Technologies on Fusion Power Plant Characteristics: The ARIES-AT Study Impact of Advanced Technologies on Fusion Power Plant Characteristics: The ARIES-AT Study Farrokh Najmabadi University of California, San Diego, La Jolla, CA, United States of America ANS 14 th Topical

More information

We can describe a simple power balance for a fusion power plant in steady state with the following definitions,

We can describe a simple power balance for a fusion power plant in steady state with the following definitions, Producing Electricity in a Fusion Nuclear Science Facility or Similar C. E. Kessel, PPPL 1. Introduction The ultimate goal of fusion plasma and fusion nuclear science is the construction and operation

More information

EU considerations on Design and Qualification of Plasma Facing Components for ITER

EU considerations on Design and Qualification of Plasma Facing Components for ITER EU considerations on Design and Qualification of Plasma Facing Components for ITER Patrick Lorenzetto, F4E Barcelona with inputs from B. Riccardi (F4E), V. Barabash and M. Merola (ITER IO) on Readiness

More information

Fusion Nuclear Science & Technology. PFC Concepts and R&D towards DEMO Divertor Technology

Fusion Nuclear Science & Technology. PFC Concepts and R&D towards DEMO Divertor Technology Fusion Nuclear Science & Technology PFC Concepts and R&D towards DEMO Divertor Technology D.L. Youchison & R.E. Nygren Sandia National Laboratories A.R. Raffray Univ. of California San Diego Los Angeles,

More information

Development of High Heat Flux Components in JAERI

Development of High Heat Flux Components in JAERI US-Japan Workshop on Fusion High Power Density Device and Design, UCLA, February, 16-19, 1999 Development of High Heat Flux Components in JAERI K. Ezato, NBI Heating Lab., Dept. Of Fusion Engineering,

More information

Concept of power core components of the SlimCS fusion DEMO reactor

Concept of power core components of the SlimCS fusion DEMO reactor Concept of power core components of the SlimCS fusion DEMO reactor K. Tobita, H. Utoh, Y. Someya, H. Takase, N. Asakura, C. Liu and the DEMO Design Team Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193

More information

FUSION TECHNOLOGY INSTITUTE

FUSION TECHNOLOGY INSTITUTE FUSION TECHNOLOGY INSTITUTE Apollo-L2, An Advanced Fuel Tokamak Reactor Utilizing Direct Conversion W I S C O N S I N G.A. Emmert, G.L. Kulcinski, J.P. Blanchard, L.A. El-Guebaly, H.Y. Khater, J.F. Santarius,

More information

Cyclic Stress-Strain Curve for Low Cycle Fatigue Design and Development of Small Specimen Technology

Cyclic Stress-Strain Curve for Low Cycle Fatigue Design and Development of Small Specimen Technology 1 PD/P8-2 Cyclic Stress-Strain Curve for Low Cycle Fatigue Design and Development of Small Specimen Technology A. Nishimura 1, S. Nogami 2, E. Wakai 3 1 National Institute for Fusion Science (NIFS), Toki,

More information

Reflections on Fusion Chamber Technology and SiC/SiC Applications Mohamed Abdou UCLA

Reflections on Fusion Chamber Technology and SiC/SiC Applications Mohamed Abdou UCLA Reflections on Fusion Chamber Technology and SiC/SiC Applications Mohamed Abdou UCLA Presented at CREST Conference, Kyoto, Japan, May 21, 2002 The Region Immediately Surrounding the Plasma Divertor / First

More information

AN OVERVIEW OF DUAL COOLANT Pb-17Li BREEDER FIRST WALL AND BLANKET CONCEPT DEVELOPMENT FOR THE US ITER-TBM DESIGN

AN OVERVIEW OF DUAL COOLANT Pb-17Li BREEDER FIRST WALL AND BLANKET CONCEPT DEVELOPMENT FOR THE US ITER-TBM DESIGN GA A24985 AN OVERVIEW OF DUAL COOLANT Pb-17Li BREEDER FIRST WALL AND BLANKET CONCEPT by C.P.C. WONG, S. MALANG, M. SAWAN, M. DAGHER, S. SMOLENTSEV, B. MERRILL, M. YOUSSEF, S. REYES, D.K. SZE, N.B. MORLEY,

More information

Thermal-Hydraulic Study of ARIES-CS Ceramic Breeder Blanket Coupled with a Brayton Cycle

Thermal-Hydraulic Study of ARIES-CS Ceramic Breeder Blanket Coupled with a Brayton Cycle Thermal-Hydraulic Study of ARIES-CS Ceramic Breeder Blanket Coupled with a Brayton Cycle Presented by A. R. Raffray With contributions from L. El-Guebaly, S. Malang, X. Wang and the ARIES team ARIES Meeting

More information

Development of Advanced Operation Scenarios in Weak Magnetic-Shear Regime on JT-60U

Development of Advanced Operation Scenarios in Weak Magnetic-Shear Regime on JT-60U EX/1-4Rc Development of Advanced Operation Scenarios in Weak Magnetic-Shear Regime on JT-60U T. Suzuki 1), N. Oyama 1), A. Isayama 1), Y. Sakamoto 1), T. Fujita 1), S. Ide 1), Y. Kamada 1), O. Naito 1),

More information

Experimental Study of Plasma Confinement on EAST

Experimental Study of Plasma Confinement on EAST IAEA-F1-CN-180- EXC/P4-06 Experimental Study of Plasma Confinement on EAST Xiang Gao, Yao Yang, Zixi Liu, Long Zeng, Shoubiao Zhang, Nan Shi, Yinxian Jie, Wei Liao, Yumin Wang, Jingliang Bu, Baonian Wan,

More information

EAST(HT-7U ) Physics and Experimental Plan

EAST(HT-7U ) Physics and Experimental Plan EAST(HT-7U ) Physics and Experimental Plan EAST team, presented by Jiangang Li Institute of Plasma Physics, CAS 1 st EAST IAC meeting Hefei, Oct.10-11 The mission of EAST To explore the methods to achieve

More information

An overview of dual coolant Pb 17Li breeder first wall and blanket concept development for the US ITER-TBM design

An overview of dual coolant Pb 17Li breeder first wall and blanket concept development for the US ITER-TBM design Fusion Engineering and Design 81 (2006) 461 467 An overview of dual coolant Pb 17Li breeder first wall and blanket concept development for the US ITER-TBM design C.P.C. Wong a,, S. Malang b,m.sawan c,

More information

He-cooled Divertor Development in the EU: The Helium Jet cooled Divertor HEMJ

He-cooled Divertor Development in the EU: The Helium Jet cooled Divertor HEMJ He-cooled Divertor Development in the EU: The Helium Jet cooled Divertor HEMJ Presented by Thomas Ihli * Contributors: Divertor Group at, Germany and Efremov Institute, Russia ARIES Meeting General Atomics,

More information

ARIES-ACT-DCLL NWL Distribution and Revised Radial Build

ARIES-ACT-DCLL NWL Distribution and Revised Radial Build ARIES-ACT-DCLL NWL Distribution and Revised Radial Build L. El-Guebaly and A. Jaber Fusion Technology Institute University of Wisconsin-Madison http://fti.neep.wisc.edu/uwneutronicscenterofexcellence Contributors:

More information

FUSION TECHNOLOGY INSTITUTE

FUSION TECHNOLOGY INSTITUTE FUSION TECHNOLOGY INSTITUTE An Improved First Stability Advanced Fuel Tokamak, Apollo-L3 W I S C O N S I N G.A. Emmert, G.L. Kulcinski, J.P. Blanchard, L.A. El-Guebaly, H.Y. Khater, C.W. Maynard, E.A.

More information

Taming Plasma-Materials Interface for Steady-State Fusion

Taming Plasma-Materials Interface for Steady-State Fusion Taming Plasma-Materials Interface for Steady-State Fusion by H.Y. Guo, with H. Wang, J.G. Watkins, A.L. Moser, J. Boedo, L. Casali, B. Covele, B. Grierson, M. Groth, D.N. Hill, A.W. Hyatt, L.L. Lao, A.W.

More information

W. M. Stacey, J. Mandrekas, E. A. Hoffman, G. P. Kessler, C. M. Kirby, A.N. Mauer, J. J. Noble, D. M. Stopp and D. S. Ulevich

W. M. Stacey, J. Mandrekas, E. A. Hoffman, G. P. Kessler, C. M. Kirby, A.N. Mauer, J. J. Noble, D. M. Stopp and D. S. Ulevich A FUSION TRANSMUTATION OF WASTE REACTOR W. M. Stacey, J. Mandrekas, E. A. Hoffman, G. P. Kessler, C. M. Kirby, A.N. Mauer, J. J. Noble, D. M. Stopp and D. S. Ulevich Nuclear & Radiological Engineering

More information

Feedback Stabilization of Vertical Instabilities. Gratefully Acknowledge Chuck Kessel for assistance with ARIES comparisons

Feedback Stabilization of Vertical Instabilities. Gratefully Acknowledge Chuck Kessel for assistance with ARIES comparisons Feedback Stabilization of Vertical Instabilities Mike Kotschenreuther University of Texas Gratefully Acknowledge Chuck Kessel for assistance with ARIES comparisons Introduction The conducting shell needed

More information

Critical Physics Issues for Tokamak Power Plants

Critical Physics Issues for Tokamak Power Plants Critical Physics Issues for Tokamak Power Plants D J Campbell 1, F De Marco 2, G Giruzzi 3, G T Hoang 3, L D Horton 4, G Janeschitz 5, J Johner 3, K Lackner 4, D C McDonald 6, D Maisonnier 1, G Pereverzev

More information

Recent Results and Plans for the Advanced Tokamak Program

Recent Results and Plans for the Advanced Tokamak Program Recent Results and Plans for the Advanced Tokamak Program Program Advisory Committee Review February 6-7, 2002 MIT PSFC Presented by A. Hubbard Outline Overview Results from 2001and plans for 2002 - Internal

More information

Wendelstein 7-X A technology step towards DEMO

Wendelstein 7-X A technology step towards DEMO A technology step towards DEMO Hans-Stephan Bosch Max-Planck Institute for Plasma Physics Greifswald, Germany 18th Internatinal Toki Conference, December 9 13, 2008, Toki-City, Japan 1-YKA06-Y0001.0 The

More information

R&D required to place a test module on FNF (how does it compare to ITER TBM?) R&D required for base blanket

R&D required to place a test module on FNF (how does it compare to ITER TBM?) R&D required for base blanket Testing Strategy, Implications for R&D and Design What are the preferred blankets options for testing on FNF and what are the implications for R&D? Comparison of strategies for testing space allocation

More information

Fusion power core engineering for the ARIES-ST power plant

Fusion power core engineering for the ARIES-ST power plant Fusion Engineering and Design 65 (2003) 215/261 www.elsevier.com/locate/fusengdes Fusion power core engineering for the ARIES-ST power plant M.S. Tillack a, *, X.R. Wang a, J. Pulsifer a, S. Malang b,

More information

AN ADVANCED COMPUTATIONAL APPROACH TO SYSTEM MODELING OF TOKAMAK POWER PLANTS

AN ADVANCED COMPUTATIONAL APPROACH TO SYSTEM MODELING OF TOKAMAK POWER PLANTS AN ADVANCED COMPUTATIONAL APPROACH TO SYSTEM MODELING OF TOKAMAK POWER PLANTS Zoran Dragojlovic 1, Charles Kessel 2, Rene Raffray 1, Farrokh Najmabadi 1, Lester Waganer 3, Laila El-Guebaly 4, Leslie Bromberg

More information

Prospects for a next-step ST

Prospects for a next-step ST Prospects for a next-step ST Jon Menard (PPPL) with contributions from: Ray Fonck (UW Madison) Stan Kaye (PPPL) Dick Majeski (PPPL) Masa Ono (PPPL) Steve Sabbagh (Columbia U.) October 24, 2009 Comprehensive

More information

Integrated Scenarios: Advanced Regimes

Integrated Scenarios: Advanced Regimes Integrated Scenarios: Advanced Regimes Program Advisory Committee Meeting February 6-8, 2008 MIT PSFC Presented by A. Hubbard, for the Advanced Scenarios thrust group Outline Scope and niche of Advanced

More information

Magnetic Confinement Fusion: Progress and Recent Developments

Magnetic Confinement Fusion: Progress and Recent Developments Magnetic Confinement Fusion: Progress and Recent Developments Howard Wilson, Dept Physics, University of York, Heslington, York YO10 5DD With thanks to A Field, K Gibson and A Kirk howard.wilson@york.ac.uk

More information

GA A FUSION TECHNOLOGY FACILITY KEY ATTRIBUTES AND INTERFACES TO TECHNOLOGY AND MATERIALS by C.P.C. WONG

GA A FUSION TECHNOLOGY FACILITY KEY ATTRIBUTES AND INTERFACES TO TECHNOLOGY AND MATERIALS by C.P.C. WONG GA A27273 FUSION TECHNOLOGY FACILITY KEY ATTRIBUTES AND INTERFACES TO TECHNOLOGY AND MATERIALS by C.P.C. WONG MARCH 2012 DISCLAIMER This report was prepared as an account of work sponsored by an agency

More information

Role of Fusion Energy in the 21 st Century

Role of Fusion Energy in the 21 st Century Role of Fusion Energy in the 21 st Century Farrokh Najmabadi Prof. of Electrical Engineering Director of Center for Energy Research UC San Diego Lehigh University Physics Department Colloquium April 26,

More information

Competed ITER Task Agreements (ITAs, for information and expression of interest)

Competed ITER Task Agreements (ITAs, for information and expression of interest) Competed ITER Task Agreements (ITAs, for information and expression of interest) ONGOING CALLS Ref F4E-CITA-002: "Evaluation of edge MHD stability and uncontrolled ELM energy losses for ITER H-mode plasmas

More information

Lithium and Liquid Metal Studies at PPPL

Lithium and Liquid Metal Studies at PPPL Lithium and Liquid Metal Studies at PPPL LTX R. Maingi, M. Jaworski, R. Kaita, R. Majeski, J. Menard, M. Ono PPPL High Power Devices NSTX-U Surface Analysis EAST Test stands IAEA TM on Divertor Concepts

More information

R & D of the Fabrication Technology for ITER Magnet Supports

R & D of the Fabrication Technology for ITER Magnet Supports ITR/P1-45 R & D of the Fabrication Technology for ITER Magnet Supports 1 P. Y. Lee*, 1 C.J.Pan, 1. L. Hou, 1 S.L.Han, 1 Z.C.Sun, 1 X. R. Duan, 1 Y. Liu, 2 F. Savary, 2 Y. K. Fu and 2 R. Gallix, 2 N. Mitchell

More information

Development of Low Activation Structural Materials

Development of Low Activation Structural Materials Materials Challenge for Clean Nuclear Fusion Energy Development of Low Activation Structural Materials T. Muroga National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan Symposium on Materials

More information

ITER R&D Needs, Challenges, and the Way Forward

ITER R&D Needs, Challenges, and the Way Forward ITER R&D Needs, Challenges, and the Way Forward Bernard Bigot Director General ITER Organization, Cadarache, France Fusion Power Co-ordinating Committee Mtg, IO Headquarters, 24 Jan 2018 1 Context of ITER

More information

Fusion Transmutation Reactor -Feasible early use of fusion fast neutron

Fusion Transmutation Reactor -Feasible early use of fusion fast neutron Fusion Transmutation Reactor -Feasible early use of fusion fast neutron Jung-Hoon HAN, CARFRE, SNU October 2, 2009 Fusion-Fission Hybrid workshop, Gaithersburg, MD 1 contents 1. prologue, atmosphere and

More information

A feasible DEMO blanket concept based on water cooled solid breeder

A feasible DEMO blanket concept based on water cooled solid breeder 1 FTP/P7-33 A feasible DEMO blanket concept based on water cooled solid breeder Y. Someya 1, K. Tobita 1, H. Utoh 1, K. Hoshino 1, N. Asakura 1, M. Nakamura 1, Hisashi Tanigawa 2, M. Enoeda 2, Hiroyasu

More information

Preliminary Design of ITER Component Cooling Water System and Heat Rejection System

Preliminary Design of ITER Component Cooling Water System and Heat Rejection System Preliminary Design of ITER Component Cooling Water System and Heat Rejection System A.G.A. Kumar 1, D.K. Gupta 1, N. Patel 1, G. Gohil 1, H. Patel 1, J. Dangi 1, L. Sharma 1, M. Jadhav 1, L. Teodoros 2,

More information

Maintenance Concept for Modular Blankets in Compact Stellarator Power Plants

Maintenance Concept for Modular Blankets in Compact Stellarator Power Plants Maintenance Concept for Modular Blankets in Compact Stellarator Power Plants Siegfried Malang With contributions of Laila A. EL-Guebaly Xueren Wang ARIES Meeting UCSD, San Diego, January 8-10, 2003 Overview

More information

ReNeW PMI Theme PFC Panel Report

ReNeW PMI Theme PFC Panel Report ReNeW PMI Theme PFC Panel Report Organization First question at the beginning: What are we doing? Technologists to physicists: What heat fluxes will the DEMO have? Physicists to technologists: What are

More information

High heat flux components for a DEMO fusion reactor: material and technology development

High heat flux components for a DEMO fusion reactor: material and technology development High heat flux components for a DEMO fusion reactor: material and technology development Matti Coleman Power Plant Physics and Technology Department EUROfusion G. Federici, J-H. You, T. Barrett, C. Bachmann,

More information