Chapter 18 Homework Answers

Size: px
Start display at page:

Download "Chapter 18 Homework Answers"

Transcription

1 Chapter 18 Homework Answers (a) AgI(s) Ag + + I K sp = [Ag + ][I ] (b) Ag PO (s) Ag + + PO K sp = [Ag + ] [PO ] (c) PbCrO (s) Pb + + CrO K sp = [Pb + ][CrO ] (d) Al(OH) (s) Al + + OH K sp = [Al + ][OH ] (e) ZnCO (s) Zn + + CO K sp = [Zn + ][CO ] (f) Zn(OH) (s) Zn + + OH K sp = [Zn + ][OH ] 18.5 To solve this problem we need to realize that the concentration of the solution is equal to the number of moles of solid recovered divided by the volume of the solution, i.e., 0.69 g CaCrO 1 mole CaCrO 1000 ml [ CaCrO ] = = M 156 ml g CaCrO 1 L The equilibrium for this problem is CaCrO (s) Ca + + CrO K sp = [Ca + ][CrO ] = (0.067) = Ag CrO (s) Ag + + CrO [Ag + ] [CrO ] I C + x + x E + x + x K sp = (x) (x) = x = , x = = M 18.7 First determine the molar solubility of the M X salt. M X (s) M + (aq) + X (aq) K sp = [M + ] [X ] [M + ] [X ] I C + x + x E + x + x K sp = (x) (x) = = 108x 5 x = M The molar solubility of this compound is moles/l We want the molar solubility of the M X compound to be twice the value just calculated or moles/l. We need to solve the equilibrium expression: M X (s) M + (aq) + X (aq) K sp = [M + ] [X ] [M + ] [X ] I C + x + x E + x + x K sp = (x) (x) = x So, K sp = ( ) = where x = M

2 18. AuCl (s) Au + + Cl K sp = [Au + ][Cl ] = (a) (b) (c) (d) let x = [Au + ]; then [Cl ] = x K sp = (x)(x) = 7x 5 x =. 10 = M 7 The molar solubility of AuCl is M in H O. [Au + ] = x; [Cl ] = x K sp = (x)( x) : Assume x << K sp = (x)(0.010) x = M The molar solubility of AuCl is M in M HCl. [Au + ] = x; [Cl ] = x K sp = (x)( x) : Assume x << 0.00 K sp = (x)(0.00) x = M The molar solubility of AuCl is M in M MgCl. [Au + ] = x; [Cl ] = x K sp = ( x)(x) : Assume x << K sp = (0.010)(x) 5 x =. 10 = M 0.7 The molar solubility of AuCl is M in M Au(NO ) (a) Ca(OH) (s) Ca + (aq) + OH (aq) K sp = [Ca + ][OH ] = let x = [OH ], [Ca + ] = x K sp = ( x)(x) = By successive approximations, x = The molar solubility of Ca(OH) in 0.10 M CaCl is moles/l. (b) Ca(OH) (s) Ca + (aq) + OH (aq) K sp = [Ca + ][OH ] = let x = [Ca + ], [OH ] = x K sp = (x)(x ) = By successive approximations, x =.9 x 10 The molar solubility of Ca(OH) in 0.10 M NaOH is.9 x 10 moles/l This problem is similar to except that the K sp constants are closer in value. We first determine the minimum amount of SO that must be added to initiate the precipitation of CaSO. CaSO will precipitate after SrSO due to its larger value for K sp : K sp (CaSO ) = and K sp (SrSO ) = (see Table 18.1) + (a) Let x = Ca ; + K sp = Ca SO = (0.15)(x) = When the SO x = SO =. 10 M =. 10 the CaSO will start to precipitate. Now we ask, what is the Sr + if SO =. 10 M?

3 SrSO (s) Sr + (aq) + SO (aq) + K sp = Sr SO [Sr + ] [SO ] I. 10 C + x x E + x x + K sp = Sr SO = (x)( x) = For this problem, we must solve the quadratic equation and we determine that x =. 10 M. Thus, the [Sr + ] =. 10 M when the CaSO starts to precipitate. (b) Initially the solution had a concentration of 0.15 M. The solution now has a [Sr + ] =. 10 M. So, the percentage of Sr + precipitated is; % = 99.7 % (a) Ag + (aq) + S O (aq) Ag(S O ) (aq) Ag(S O ) form + Ag SO (b) (c) Zn + (aq) + NH (aq) Zn(NH ) + (aq) Sn + (aq) + S (aq) SnS (aq) Zn(NH ) + form + Zn NH SnS form + Sn S The applicable equilibria are as follows: AgI(s) Ag + (aq) + I + 17 (aq) K sp = Ag I = Ag ( I) Ag + (aq) + I (aq) AgI 11 (aq) K form = = Ag I The two equations above may be combined and K c found as follows: Ag ( I) AgI(s) + I (aq) Ag(I) (aq) K c = = K sp K form = I If all of the AgI dissolves, it will be in the form of Ag(I), therefore the concentration of Ag(I) is: 0.00 mol Ag ( I) [Ag(I) ] = = 0.00 M Ag(I) L solution [CN 0.00 ] = =. 10 M

4 The amount of KI that must be added is: (. 10 M)(0.100 L) = 00 mol KI g KI = (00 mol KI)(166 g/mol) = g KI The student would not collect PbCl by adding HCl to the final solution. The Pb + would be preciptated in step (1) when H S was added to the acidified solution. This precipitate was separated from the remaining solution. The first precipitate would consist of PbS and CdS while the second precipitate consists of NiS Initially, both Ag + and HC H O are at 1.0 M concentrations. These values will be used to determine if the AgC H O will precipitate. First, determine the concentration of the acetate ion from the equilibrium: HC H O H + + C H O + H CHO K a = = HCHO [HC H O ] [H O + ] [C H O ] I 1.0 C x + x + x E 1.0 x x x Assume x << 1.0 [x][x] 5 - K a = = x =. 10 = [CHO ] 1.0 [ ] Next, using the concentration of the acetate ion, determine whether or not a precipitate will form. AgC H O (s) Ag + + C H O K sp = [Ag + ][C H O ] Q = [Ag + ][C H O ] before equilibrium is established Q = (1.0 M)(. 10 M) =. 10 Q > K sp therefore a precipitate will form To answer this question we can use cation groupings from qualitative analysis. Ag + and Pb + are group I ions. These ions can be separated from the others by adding Cl to the solution. AgCl and PbCl will precipitate and can be filtered off from the solution. AgCl can be separated from PbCl by adding 6 M NH. AgCl will react forming Ag(NH ) + while PbCl will remain a solid. Cu + and Bi + can be separated by adding 0.1 M H S and 6M HCl. This will precipitate CuS and Bi S which can be filtered The solids can be converted to soluble species by adding HNO. Then, base can be added to precipitate hydroxides; Cu(OH) and Bi(OH). The addition of 6M NH will convert the Cu(OH) to Cu(NH ) + leaving the solid Bi(OH). Then add base to the remaining solution along with H S to precipitate CoS and MnS. Filter the solution and dissolve the solid be adding acid. Cobalt can be separated by adding KNO which forms a yellow precipitate while Mn + remains in solution. Finally, Ba + and Ca + can be separated by adding acid to make a weakly acidic solution and then adding Na CrO. BaCrO will precipitate while Ca + will remain in solution.

5 The volume of a cone is given by V=(1/)π r h 1 1 in.5 cm V = x.115 x ( 5 ft ) x 16ft x x ft in V = 1.19 x 10 7 cm The mass of the cone is: 1.19 x 10 7 cm x.71 g cm - =. x 10 7 g CaCO Saturated CaCO has a molar concentration of Ca + equal to: [Ca + ] = [CO - ] = K 1/ sp = (. x 10-9 ) 1/ = 5.8 x 10-5 M Mass of CaCO dissolved in a liter of saturated solution is: 5.8 x 10-5 mol L -1 x ( g/ mol CaCO ) = 5.8 x 10 - g L -1 The volume of solution required to build the cone would be equal to:. x 10 7 g CaCO x (1 L/5.8 x 10 - g) = 5.6 x 10 9 L 10 drops have a volume of 1 ml. (10 drops/1 ml) x (1000 ml/l) = drops/l The number of drops required to deposit enough CaCO is given by: (10000 drops/l) x 5.6 x 10 9 L = 5.6 x 10 1 drops The age of the stalagmite equals: 5.6 x 10 1 drops x (1s/drop) x (1 hr/600 s) x (1 day/ hrs) x (1yr/65 days) = 1.8 x 10 6 yrs

Chapter 17 Solubility and Complex Ion Equilibria

Chapter 17 Solubility and Complex Ion Equilibria Chem 1046 General Chemistry by Ebbing and Gammon, 8th Edition Prof George W.J. Kenney, Jr Last Update: 27Nov2008 Chapter 17 Solubility and Complex Ion Equilibria These Notes are to SUPPLIMENT the Text,

More information

Qualitative Analysis. István Szalai. Institute of Chemistry, Eötvös University

Qualitative Analysis. István Szalai. Institute of Chemistry, Eötvös University Institute of Chemistry, Eötvös University 2011 Solubility of sulfides in acidic solutions Zn 2+ + S 2 ZnS S 2 + H + HS HS + H + H 2 S Does the ZnS precipitate form in a solution which is 0.1M for aceteic

More information

Equilibria of Slightly Soluble Ionic Compounds: We lied to you in chem 115

Equilibria of Slightly Soluble Ionic Compounds: We lied to you in chem 115 Precipitation Reactions Predicting Whether a Precipitate Will Form Note the ions present in the reactants Consider all possible cation-anion combinations Use the solubility rules to decide whether any

More information

SOLUBILITY STUDY GUIDE- Multiple Choice Section

SOLUBILITY STUDY GUIDE- Multiple Choice Section SOLUBILITY STUDY GUIDE- Multiple Choice Section Multiple Choice Section: This study guide is a compilation of questions from provincial exams since 2000. I urge you to become intimately familiar with question

More information

1. The equation that represents the equilibrium in a saturated solution of Fe 2 (SO 4 ) 3 is.. The precipitate which forms first is

1. The equation that represents the equilibrium in a saturated solution of Fe 2 (SO 4 ) 3 is.. The precipitate which forms first is CHEMISTRY 12 UNIT 3 - REVIEW Ksp Part A - Multiple Choice 1. The equation that represents the equilibrium in a saturated solution of Fe 2 (SO 4 ) 3 is A. Fe 2 (SO 4 ) 3 (s) 3 Fe 2+ (aq) + 2 SO 4 3 (aq)

More information

Lecture 11. Solubility of Ionic Compounds in Water

Lecture 11. Solubility of Ionic Compounds in Water Lecture 11 Solubility of Ionic Compounds in Water Soluble Compounds Exceptions Acetates, Nitrates, Chlorates Na +, K +, NH 4 + compounds None None Halides ( Cl -, Br -, I - ) Ag +, Hg 2 2+, Cu +, Pb 2+

More information

Qualitative Analysis. István Szalai. Institute of Chemistry, Eötvös University

Qualitative Analysis. István Szalai. Institute of Chemistry, Eötvös University Institute of Chemistry, Eötvös University 2016 Cations (Group I-III) The cations of Group I can be precipitated as sulfides from acidic solution (ph 2) by H 2 S; the precipitates are insoluble in (NH 4

More information

14.4 (Chp16) Solubility and Solubility Product

14.4 (Chp16) Solubility and Solubility Product 14.4 (Chp16) Solubility and Solubility Product What drives substances to dissolve and others to remain as a precipitate? Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Solubility and Solubility

More information

Tutorial 3 Unit 3 - Solubility

Tutorial 3 Unit 3 - Solubility Tutorial 3 Unit 3 - Solubility The Answer is A Answer A is the primary condition for solubility equilibrium. Remember the solution is also called saturated. B, of course is wrong because these opposing

More information

Solubility Equi librium Ksp. Chapter 17 Sections

Solubility Equi librium Ksp. Chapter 17 Sections Solubility Equi librium Ksp Chapter 17 Sections 17.4 17.6 1 Precipitation Reactions Earlier in this course, we considered precipitation reactions zinc nitrate reacts with sodium hydroxide Zn(NO3)2 + 2NaOH

More information

AP*Chemistry Solubility Equilibria

AP*Chemistry Solubility Equilibria AP*Chemistry Solubility Equilibria SOLUBILITY EQUILIBRIA (K sp, THE SOLUBILITY PRODUCT) Saturated solutions of salts are another type of chemical equilibria. Remember those solubility rules? The fine print

More information

Solubility Equi librium Ksp. Chapter 17 Sections

Solubility Equi librium Ksp. Chapter 17 Sections Solubility Equi librium Ksp Chapter 17 Sections 17.4 17.6 Precipitation Reactions Earlier in this course, we considered precipitation reactions zinc nitrate reacts with sodium hydroxide Zn(NO3)2 + 2NaOH

More information

Solubility Equilibrium

Solubility Equilibrium Solubility Equilibrium This is an X-ray of the large intestine. The patient was given a drink of barium sulfate to drink which is insoluble (does NOT dissolve) and gives the doctor a better image. Barium

More information

Chem 1120 Pretest 3 Fall 2015

Chem 1120 Pretest 3 Fall 2015 Chem 1120 Pretest 3 Fall 2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following solubility product expressions is incorrect? a. Cu

More information

Chapter six. Precipitate is separated by filtration, washing,drying and finally is accurately weighed.

Chapter six. Precipitate is separated by filtration, washing,drying and finally is accurately weighed. Gravimetric Analysis Chapter six Gravimetric Analysis :- Is one of the most accurate and precise methods of quantative analysis.it is based on the measurements of the mass of solid product of a chemical

More information

Chapter 9. Dissolution and Precipitation Equilibria

Chapter 9. Dissolution and Precipitation Equilibria Chapter 9 Dissolution and Precipitation Equilibria 9-1 The Nature of Solubility Equilibria 9-2 The Solubility of Ionic Solids 9-3 Precipitation and the Solubility Product 9-4 The Effects of ph on Solubility

More information

Solutions Unit Exam Name Date Period

Solutions Unit Exam Name Date Period Name Date Period Ms. Roman Page 1 Regents Chemistry 1. Which mixture can be separated by using the equipment shown below? 6. Which ion, when combined with chloride ions, Cl, forms an insoluble substance

More information

Exercises. Solubility Equilibria. a. AgC 2 H 3 O 2 b. Al(OH) 3 c. Ca 3 (PO 4 ) Write balanced equations for the dissolution reactions and the

Exercises. Solubility Equilibria. a. AgC 2 H 3 O 2 b. Al(OH) 3 c. Ca 3 (PO 4 ) Write balanced equations for the dissolution reactions and the 766 Active Learning Questions These questions are designed to be used by groups of students in class. 1. Which of the following will affect the total amount of solute that can dissolve in a given amount

More information

2/24/2003 OFB Chapter 9 1

2/24/2003 OFB Chapter 9 1 2/24/2003 OFB Chapter 9 1 Chapter 9 Dissolution and Precipitation Equilibria 9-1 The Nature of Solubility Equilibria 9-2 The Solubility of Ionic Solids 9-3 Precipitation and the Solubility Product 9-4

More information

Predicting Reaction Products

Predicting Reaction Products Predicting Reaction Products Once you classify a chemical reaction, write the products and balance the reaction. Review Diatomic Molecules! Elements that exist only as compounds in the natural world: Iodine

More information

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A 1. Consider the following reaction: A + B C + D What are the signs of ΔH and ΔS for the reaction to always be spontaneous? ΔH ΔS A. + + B. C. + D. + 2. What is

More information

ANALYTICAL LABORATORY MANUAL I QUALITATIVE ANALYSIS OF ANIONS CATIONS

ANALYTICAL LABORATORY MANUAL I QUALITATIVE ANALYSIS OF ANIONS CATIONS ANALYTICAL LABORATORY MANUAL I QUALITATIVE ANALYSIS OF ANIONS CATIONS ANKARA UNIVERSITY, FACULTY OF PHARMACY DEPARTMENT OF ANALYTICAL CHEMISTRY TABLE OF CONTENTS 1) QUALITATIVE ANALYSIS OF ANIONS... 2

More information

Periodic Properties: Analysis of Group I, II and Transition Metals

Periodic Properties: Analysis of Group I, II and Transition Metals Periodic Properties: Analysis of Group I, II and Transition Metals Procedure All solutions should be mixed thoroughly after any additions. Clearly record all observations (indicating what you did), even

More information

Periodic Properties: Analysis of Group I, II and Transition Metals. Prelab. 2. Refer to the flowcharts on the pages 5 and 6 to answer the following:

Periodic Properties: Analysis of Group I, II and Transition Metals. Prelab. 2. Refer to the flowcharts on the pages 5 and 6 to answer the following: 1. What is the purpose of this experiment? Periodic Properties: Analysis of Group I, II and Transition Metals Prelab 2. Refer to the flowcharts on the pages 5 and 6 to answer the following: a. What does

More information

Unit F FR (part B) Solubility Equilibrium, Ksp (pg 1 of 16)

Unit F FR (part B) Solubility Equilibrium, Ksp (pg 1 of 16) Unit F FR (part B) Solubility Equilibrium, Ksp (pg 1 of 16) 1. Answer the following questions about the solubility of some fluoride salts of alkaline earth metals. (a) A student prepares 100. ml of a saturated

More information

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s), 1. Which change in oxidation number represents oxidation? A) Sn 2+ (aq) Sn 4+ (aq) B) Sn 2+ (aq) Sn(s) C) Sn 4+ (aq) Sn 2+ (aq) D) Sn 4+ (aq) Sn(s) E) Sn(s) Sn 2 (aq) 2. In the reaction Sn 2+ (aq) + 2

More information

Qualitative Analysis: Group I, II and Transition Metals. Prelab. 2. Refer to the flowcharts on the pages 5 and 6 to answer the following:

Qualitative Analysis: Group I, II and Transition Metals. Prelab. 2. Refer to the flowcharts on the pages 5 and 6 to answer the following: 1. What is the purpose of this experiment? Qualitative Analysis: Group I, II and Transition Metals Prelab 2. Refer to the flowcharts on the pages 5 and 6 to answer the following: a. What does a double

More information

Exercise 6a. Balancing equations

Exercise 6a. Balancing equations Exercise 6a Balancing equations Balance the following equations. To get you started _ indicates the first six questions where numbers need to be inserted to achieve the balance. In one or two difficult

More information

Unit 3 - Solubility Practice Test # 2

Unit 3 - Solubility Practice Test # 2 1. onsider the following experiment: Unit 3 Solubility Practice Test # 2 1.0 ml 0.20 M g + + an unknown solution precipitate 1.0 ml 020 M Sr 2+ + an unknown solution no precipitate The unknown solution

More information

EXPERIMENT 15C. Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste

EXPERIMENT 15C. Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste EXPERIMENT 15C Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste The following experiment is intended to continue the introduction of qualitative analysis through

More information

Chapter 9 Systematic Equilibrium

Chapter 9 Systematic Equilibrium Chapter 9 Systematic Equilibrium 1 What we Skipped Ch. 8 discussed Activity (γ) This is what should be used in equilibrium calculations rather than conc. (molarity) In Ch. 9 in later chapters, you will

More information

PO 4 NH 4 H + + SO 3

PO 4 NH 4 H + + SO 3 KEY TO AP CHEMISTRY EQUATIONS BY TYPE 196882, 198588, 199093, 1995 Double Replacement 1. Hydrogen sulfide is bubbled through a solution of silver nitrate. H 2 S + Ag 1+ Ag 2 S + H + 2. An excess of sodium

More information

3. [7 points] How many significant figures should there be in the answer to the following problem?

3. [7 points] How many significant figures should there be in the answer to the following problem? 1 of 6 10/20/2009 3:52 AM 1. [7 points] What is the correct name for ZnF 2? (a) zinc fluorine (b) zinc (II) fluoride (c) zinc fluoride (d) fluoride zinc 2. [7 points] What is the correct name for P 2 O

More information

Slide 1. Slide 2. Slide 3 Equilibrium problems involve 3 parts: The End of Equilibrium! K sp. (well, for us!) What is the solubility of FeCO 3?

Slide 1. Slide 2. Slide 3 Equilibrium problems involve 3 parts: The End of Equilibrium! K sp. (well, for us!) What is the solubility of FeCO 3? Slide 1 The End of Equilibrium! (well, for us!) 1 Slide 2 K sp What is the solubility of FeCO 3? Solubility = MAXIMUM amount of a compound that can dissolve in water. This is actually an equilibrium. 2

More information

Name: Date: Period: Page: Predicting Products. Predict the products, and balance each reaction. Use the reaction type as a hint.

Name: Date: Period: Page: Predicting Products. Predict the products, and balance each reaction. Use the reaction type as a hint. Name: Date: Period: Page: Predicting Products Predict the products, and balance each reaction. Use the reaction type as a hint. For reactions with a transition metal, the most likely charge on the metal

More information

Group IV and V Qualitative Analysis

Group IV and V Qualitative Analysis Group IV/V Analysis Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Group IV and V Qualitative Analysis Name: Equipment 1-tray of dropper bottles 2-micro spatulas 2-wooden test tube blocks

More information

The ion with Vanadium in its oxidation state of 5 exists as a solid compound in the form of a VO 3

The ion with Vanadium in its oxidation state of 5 exists as a solid compound in the form of a VO 3 Chemistry of some Transition elements: V, Mn, Co, Cu, Cr and Ag Vanadium Vanadium has four main oxidation states. Each one has a different colour. VO 2 VO 2 V 3 V 2 O.N. 5 yellow O.N. 4 blue O.N. 3 green

More information

CHM101 SECOND EXAM 162. Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017

CHM101 SECOND EXAM 162. Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017 Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017 Student no. Section: Useful Information:Gas Constant R= 0.08206 L.atm/K.mol, Specific heat of H 2 O=4.18 J/g. C 1 atm. = 760 mmhg. H 1 He 2 1.000 4

More information

Chemistry. TOPIC : Redox Reactions. products are PH3 and NaH2PO2. This reaction is an examplee of. (b) Reduction (d) Neutralization

Chemistry. TOPIC : Redox Reactions. products are PH3 and NaH2PO2. This reaction is an examplee of. (b) Reduction (d) Neutralization TOPIC : Redox Reactions Date : Marks : 1 mks Time : ½ hr 1. When P reacts with caustic soda, the products are PH and NaHPO. This reaction is an examplee of (a) Oxidation (c) Oxidation and reduction (redox)

More information

to water. You add 1 drop of phenolphthalein and the solution turns pink. This observation tells you Na 2

to water. You add 1 drop of phenolphthalein and the solution turns pink. This observation tells you Na 2 1A End of Lab Questions Notes 9/11/18 Lab 4 1 You add 100 g of to water You add 1 drop of phenolphthalein and the solution turns pink This observation tells you is a base 2 You add vinegar (09 M acetic

More information

McCord CH302 Exam 1 Spring 2017

McCord CH302 Exam 1 Spring 2017 112 version last name first name signature McCord CH302 Exam 1 Spring 2017 50375 / 50380 Reminder: Be sure and correctly bubble in your name, uteid, and version number on your bubblesheet. The Periodic

More information

CHEM 1151 Review Chapter 3 and 4 Chapter 3: Molecules, Compounds, and Chemical Formulas

CHEM 1151 Review Chapter 3 and 4 Chapter 3: Molecules, Compounds, and Chemical Formulas CHEM 1151 Review Chapter 3 and 4 Chapter 3: Molecules, Compounds, and Chemical Formulas 1. What are the two different ions present in the compound FeCl3? A) Fe 2+, Cl 3- B) Fe 3+, Cl 3- C) Fe +, Cl - D)

More information

1. Which of the given statements about the reaction below are incorrect?

1. Which of the given statements about the reaction below are incorrect? 1. Which of the given statements about the reaction below are incorrect? 2PbO(s) + C(s) 2Pb(s) + CO 2 (g) a. Lead is getting reduced b. Carbon dioxide is getting oxidised c. Carbon is getting oxidised

More information

Group I Qualitative Analysis

Group I Qualitative Analysis Group I Analysis Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Group I Qualitative Analysis Name: Equipment 1-tray of dropper bottles 2-micro spatulas 2-wooden test tube blocks 4-medicine

More information

Balance the following equations: 1. Al + N 2 AlN. 2. Fe + O 2 Fe 3 O CaCO 3 CaO + CO 2 4. NH 4 NO 3 N 2 O + H 2 O. 5. KI + Cl 2 KCl + I 2

Balance the following equations: 1. Al + N 2 AlN. 2. Fe + O 2 Fe 3 O CaCO 3 CaO + CO 2 4. NH 4 NO 3 N 2 O + H 2 O. 5. KI + Cl 2 KCl + I 2 Balance the following equations: 1. Al + N 2 AlN 2. Fe + O 2 Fe 3 O 4 3. CaCO 3 CaO + CO 2 4. NH 4 NO 3 N 2 O + H 2 O 5. KI + Cl 2 KCl + I 2 6. Pb(NO 3 ) 2 + HCl PbCl 2 + HNO 3 7. BaO 2 BaO + O 2 8. Al

More information

2.4 Period 3. Na Mg Al Si P S Cl Ar

2.4 Period 3. Na Mg Al Si P S Cl Ar 2.4 Period 3 Period 3 Na Mg Al Si P S Cl Ar Periodicity: Periodicity: The repeating trends in physical and chemical properties of elements as you go across the Periodic Table Periods often show gradual

More information

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4. BALANCING EQUATIONS PRACTICE WORKSHEET 1.) CH4 + O2 CO2 + H2O 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.) N2 + H2 NH3 5.) KI + Cl2 KCl + I2 6.) HCl + Ca(OH)2 CaCl2 + H2O 7.) KClO3 KCl + O2 8.) K3PO4 + HCl KCl

More information

Solution 2: Class X Chapter-4 Analytical Chemistry Chemistry. Book Name: Selina Concise EXERCISE- 1 (A)

Solution 2: Class X Chapter-4 Analytical Chemistry Chemistry. Book Name: Selina Concise EXERCISE- 1 (A) EXERCISE- 1 (A) Book Name: Selina Concise Question 1: Write the probable colour of the following salts. (a) Ferrous salts (b) Ammonium salts (c) Cupric salts (d) Calcium salts (e) Aluminium Salts Solution

More information

METALS AND THEIR COMPOUNDS

METALS AND THEIR COMPOUNDS METALS AND THEIR COMPOUNDS Metals are elements whose atoms ionize by electron loss, while non-metals are elements whose atoms ionize by electron gain. Metals are in groups 1, 2 and 3 of the periodic table.

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

Combination Reactions 2H 2 + O 2 2H 2 O. 2Na + I 2 2NaI. Ca + Cl 2 CaCl 2. C + O 2 CO 2 or 2C + O 2 2CO 3H 2 + N 2 2NH 3

Combination Reactions 2H 2 + O 2 2H 2 O. 2Na + I 2 2NaI. Ca + Cl 2 CaCl 2. C + O 2 CO 2 or 2C + O 2 2CO 3H 2 + N 2 2NH 3 Combination Reactions Predict the product and write balanced reactions for each of the following. 1. Hydrogen burned in oxygen. 2H 2 + O 2 2H 2 O 2. Sodium plus iodine. 2Na + I 2 2NaI 3. Calcium burned

More information

Test sticks and test papers for semi-quantitative determinations

Test sticks and test papers for semi-quantitative determinations QUANTOFIX test sticks for semi-quantitative determinations QUANTOFIX test sticks meet the most important requirements for a modern quick-test: rapid dip and read convenient the analysis can be carried

More information

ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, April 2013

ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, April 2013 ISL Mining in Kazakhstan and Technology Development Vienna, IAEA, 15-18 April 2013 O. Gorbatenko Uranium resources in Kazakhstan Kazakhstan Identified Resources of uranium amount to 900 thousand tons,

More information

1. What volume of water is required to make a 4.65 M solution from 5.2 g of NaBr (MM = g/mol)?

1. What volume of water is required to make a 4.65 M solution from 5.2 g of NaBr (MM = g/mol)? CHEMISTRY 110 EXAM II Answer Key March 22, 2013 1. What volume of water is required to make a 4.65 M solution from 5.2 g of NaBr (MM = 102.894 g/mol)? A. 4.65 ml B. 10.9 ml C. 11 ml D. 235 ml E. 240 ml

More information

Solubility Product Constant Lab Calcium Hydroxide Results

Solubility Product Constant Lab Calcium Hydroxide Results Constant Lab Calcium Hydroxide Results Free PDF ebook Download: Constant Lab Calcium Hydroxide Results Download or Read Online ebook solubility product constant lab calcium hydroxide results in PDF Format

More information

Some Basic Concepts of Chemistry

Some Basic Concepts of Chemistry Q 1. Some Basic Concepts of Chemistry What weight of AgCI will be precipitated when a solution containing 4.77 g of NaCI is added to a solution of 5.77 g of AgNO 3? (IIT JEE 1978 3 Marks) Q 2. One gram

More information

Total Grade /150 Checked by

Total Grade /150 Checked by FIRST LETTER OF YOUR LAST NAME CHEMISTRY 1127 EXAM I NAME (PRINT) SECTION SIGNATURE TA PLEASE READ THE FOLLOWING INSTRUCTIONS Do NOT begin the exam until asked to do so. There are 8 numbered pages, a useful

More information

REMOVAL OF HARDNESS BY PRECIPITATION

REMOVAL OF HARDNESS BY PRECIPITATION REMOVAL OF HARDNESS BY PRECIPITATION Hardness divalent cations If hardness is too high Ca 2+ + Mg 2+ + Fe 2+ + Mn 2+ + Sr 2+... precipitation of soap, scaling on pipes, boilers, cooling towers, heat exchangers.

More information

GEOL360 Homework 3 : Aqueous Geochemistry

GEOL360 Homework 3 : Aqueous Geochemistry GEOL360 HOMEWORK 3: AQUEOUS GEOCHEMISTRY 1/8 GEOL360 Homework 3 : Aqueous Geochemistry Name: Fill in the final answers in the blank spaces provided after each question. Staple all other pieces of paper

More information

Ksp Take Home Recitation

Ksp Take Home Recitation Ksp Take Home Recitation Names: Compound Formula Ksp at 298 K, 1 atm Aluminum hydroxide Al(OH)3 1.3x10-33 Aluminum phosphate Al(PO4)3 9.84x10-21 Aluminum nitrate Al(NO3)3 1.6x10-2 Barium carbonate BaCO3

More information

Chemical Precipitation

Chemical Precipitation Chapter 9 Chemical Precipitation 9.1 INTRODUCTION The main chemical processes used in water and wastewater treatment practice include (1) Chemical coagulation, which is used to remove colloidal material

More information

Sample Answers/Solutions - Study of Compounds

Sample Answers/Solutions - Study of Compounds Sample Answers/Solutions - Study of Compounds Hydrogen Chloride 1. It is a gas at room temperature. 2. Refer to pg.128 right side section 2. 3. If the reaction is carried out above 200 o C, then the by-product

More information

INTERPRETING CHEMICAL FORMULAS AND SYMBOLS

INTERPRETING CHEMICAL FORMULAS AND SYMBOLS INTERPRETING CHEMICAL FORMULAS AND SYMBOLS THE FORMULA OR SYMBOL REPRESENTS: CHEMICAL FORMULA OR SYMBOL NUMBER OF ATOMS TOTAL CHARGE NUMBER OF PROTONS NUMBER OF ELECTRONS Atom Molecule Monatomic Cation

More information

Summer Assignment Coversheet

Summer Assignment Coversheet Summer Assignment Coversheet Course: A.P. Chemistry Teachers Names: Mary Engels Assignment Title: Summer Assignment A Review Assignment Summary/Purpose: To review the Rules for Solubility, Oxidation Numbers,

More information

Analysis of group III

Analysis of group III 1 Analysis of group III Radicals Fe 3+, Al 3+ and Cr 3+ Group Reagent NH4OH in presence of NH4Cl Principle: Hydroxides of Fe 3+, Al 3+ and Cr 3+ are insoluble in water. In presence of NH4Cl, NH4OH is feebly

More information

JSUNIL TUTORIAL, SAMASTIPUR

JSUNIL TUTORIAL, SAMASTIPUR Chapter 1 Chemical Reactions and Equations Q 1. Why should a magnesium ribbon be cleaned before burning in air? Ans. Before burning in air, the magnesium ribbon is cleaned by rubbing with a sandpaper.

More information

Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1.

Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1. Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1. Topics: 1. Properties of ionic substances 7. Octahedral and tetrahedral holes 2. Cubic lattices and the periodic table 8. The cesium chloride

More information

Complex formation metal ion=lewis acid=electron-pair acceptor ligand = Lewis base= electron-pair donor

Complex formation metal ion=lewis acid=electron-pair acceptor ligand = Lewis base= electron-pair donor Complex formation titrations Complex formation Chelate effect EDTA Conditional formation constant EDTA titration Indicators Types of titrations Auxiliary complexing agents Complex formation metal ion=lewis

More information

2K CrO H SO K CrO K SO H O potassium dichromate yellow. orange

2K CrO H SO K CrO K SO H O potassium dichromate yellow. orange Potassium dichromate, (KCrO7) Potassium dichromate is one of the most important compound of chromium, and also among dichromates. In this compound Cr is in the hexavalent (+6) state. Preparation : It can

More information

Stoichiometric Calculations 1. The weight of calcium carbonate required to produce carbon-dioxide that is sufficient for conversion of one 0.1 mole sodium carbonate to sodium bicarbonate is 1) 1gm 2) 10gm

More information

Sodium Peroxides (Na 2 O 2 ): Preparation: It is formed by heating the metal in excess of air or oxygen at 300, which is free from

Sodium Peroxides (Na 2 O 2 ): Preparation: It is formed by heating the metal in excess of air or oxygen at 300, which is free from S-Block Elements Generally one question was asked every year from this topic. This is completely theoretical and little memory based. Last minute revision generally helps. The general trends in the properties

More information

9.2.1 Similarities and trends in the properties of the Group II metals magnesium to barium and their compounds

9.2.1 Similarities and trends in the properties of the Group II metals magnesium to barium and their compounds 9.2 Group II Content 9.2.1 Similarities and trends in the properties of the Group II metals magnesium to barium and their compounds Learning Outcomes Candidates should be able to: (a) (b) (c) (d) describe

More information

27 Co Ni Fe Cu Ag Ru Pd Rh Pt Os Ir 192.

27 Co Ni Fe Cu Ag Ru Pd Rh Pt Os Ir 192. UW VERSIONA CHEM152,Sp11 1A 1 H 1.008 3 Li 6.941 11 Na 22.99 2A 4 Be 9.012 UsefulConstants: R=8.314J/mol.K=0.08206liter.atm/mol.K Avogadro snumber:n a =6.022x10 23 molecules/mol Boltzmann sconstant:k=1.38x10

More information

Precipitation Reactions and Gravimetric Analysis

Precipitation Reactions and Gravimetric Analysis Precipitation Reactions and Gravimetric Analysis Titrations where the titrant forms a precipitate with the analyte. Not always so straightforward a number of requirements need to be met. Precipitation

More information

Thermal decomposition. Metal carbonates

Thermal decomposition. Metal carbonates Decomposition reactions Copy correctly Up to 3% of a workbook Copying or scanning from ESA workbooks is subject to the New Zealand Copyright Act which limits copying to 3% of this workbook. Many compounds

More information

Applications of Oxidation/Reduction Titrations. Lecture 6

Applications of Oxidation/Reduction Titrations. Lecture 6 Applications of Oxidation/Reduction Titrations Lecture 6 Pretreatmentauxiliary oxidizing/reducing reagent Ex: when a sample containing iron is dissolved, the resulting solution usually contains a mixture

More information

6 METALS & NON METALS

6 METALS & NON METALS Grade-8 Chemistry Chapter- 6 METALS & NON METALS 1. What happens in each of the following cases? a) Magnesium is burnt in oxygen. Ans: When magnesium burns in oxygen it produces magnesium oxide with dazzling

More information

Lab #4 Gravimetric Analysis of a Metal Carbonate (adapted from Flinn Scientific ChemFax, 2005)

Lab #4 Gravimetric Analysis of a Metal Carbonate (adapted from Flinn Scientific ChemFax, 2005) Ms. Sonderleiter AP Chemistry Name: Date: Lab #4 Gravimetric Analysis of a Metal Carbonate (adapted from Flinn Scientific ChemFax, 2005) Background: In this experiment, an unknown alkali metal carbonate,

More information

Properties of II B Group Elements

Properties of II B Group Elements Properties of II B Group Elements d-block Transition Elements VIIIB IIIB IVB VB VIB VIIB IB IIB Sc Ti V Cr Mn Fe Co Ni Cu Zn Y Zr Nb Mo Tc Ru Rh Pd Ag Cd La Hf Ta W Re Os Ir Pt Au Hg II B Group Elements

More information

The Aluminum Group. Separation of the Aluminum Group from all others

The Aluminum Group. Separation of the Aluminum Group from all others 5/18/09 :6 PM The Aluminum Group Separation of the Aluminum Group from all others Facts: Addition of NHCl, NH40H, and (NH 4) 2S to a solution containing all the cations not precipitated in the preceding

More information

COPPER CYCLE EXPERIMENT 3

COPPER CYCLE EXPERIMENT 3 COPPER CYCLE EXPERIMENT 3 INTRODUCTION One simple way to state the aim of chemistry is: The study of matter and its transformations. In this experiment, a copper sample will appear in five different forms

More information

CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS

CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS CHAPTER 9 PHASE DIAGRAMS PROBLEM SOLUTIONS Solubility Limit 9.1 Consider the sugar water phase diagram of Figure 9.1. (a) How much sugar will dissolve in 1500 g water at 90 C (194 F)? (b) If the saturated

More information

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions Partner: Cathy 22 March 2012 Separation and Qualitative Determination of Cations and Anions Purpose: The purpose of this lab is to identify the cations and anions components in the unknown solution. This

More information

Solubility Product Constant Ksp Of Kno3

Solubility Product Constant Ksp Of Kno3 Constant Ksp Of Kno3 Free PDF ebook Download: Constant Ksp Of Kno3 Download or Read Online ebook solubility product constant ksp of kno3 in PDF Format From The Best User Guide Database The objective of

More information

Topic Reacting masses Level GCSE Outcomes 1. To calculate reacting masses 2. To set out mole calculations in a grid format

Topic Reacting masses Level GCSE Outcomes 1. To calculate reacting masses 2. To set out mole calculations in a grid format Topic Reacting masses Level GCSE Outcomes 1. To calculate reacting masses 2. To set out mole calculations in a grid format Problems on Reacting Masses of Solids Section 1 1. What is the mass of magnesium

More information

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY Unit 2 Metals Part 2 Metals differ in their reactivity with other chemicals and this influences their uses. Describe observable changes when metals react

More information

Electro-refining: How it Works

Electro-refining: How it Works Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Analysis of group IV Radicals

Analysis of group IV Radicals 1 Analys of group IV Radicals Radicals : Zn 2+, Ni 2+, Co 2+ and Mn 2+ Group reagent : H2S in presence of NH4OH. Precipitate : Sulphides of Zn 2+, Ni 2+, Co 2+ or Mn 2+ Principle: In alkaline medium, H2S

More information

Oxidation and Reduction

Oxidation and Reduction Oxidation and Reduction An oxidation reaction is one in which oxygen is added to a substance. Example: Methane is oxidised when it burns in air. Oxygen is added to the carbon in methane, forming carbon

More information

Name: Mods: Date Agenda Homework

Name: Mods: Date Agenda Homework Name: Mods: UNIT 6 FORMULA WRITING, FORMULA WEIGHTS, and PERCENT COMPOSITION Date Agenda Homework Wed Dec 3 Thurs Dec 4 Fri Dec 5 Mon Dec 8 Tues Dec 9 Wed Dec 10 (1/2 Day) Thurs Dec 11 Fri Dec 12 Mon Dec

More information

1A End of Lab Questions Notes

1A End of Lab Questions Notes 1A End of Lab Questions Notes 11/1/18 Lab 9, Part 1 Lava lamp 1 Ethanol is not soluble in vegetable oil because Ethanol is polar and vegetable oil is non-polar 2 Most lava lamps use water and oil A secret

More information

JACOBS NEW PROCESS FOR REMOVING IRON FROM PHOSPHORIC ACID FINAL REPORT

JACOBS NEW PROCESS FOR REMOVING IRON FROM PHOSPHORIC ACID FINAL REPORT JACOBS NEW PROCESS FOR REMOVING IRON FROM PHOSPHORIC ACID FINAL REPORT Stephen W. Hilakos Process Engineer 3149 Winter Lake Road, Lakeland, FL 33803 P.O. Box 2008, Lakeland, FL 33806-2008 Prepared for

More information

1. How many moles of calcium chloride are there in a sample containing x particles? l

1. How many moles of calcium chloride are there in a sample containing x particles? l 1. How many moles of calcium chloride are there in a sample containing 1.0038x 10 22 particles? l 2. A sample of water contains 3.01x10 23 water molecules a. How many moles of water molecules are present

More information

BALANCING EQUATIONS: PRACTICE PROBLEMS - NORTH ALLEGHENY

BALANCING EQUATIONS: PRACTICE PROBLEMS - NORTH ALLEGHENY BALANCING CHEMICAL EQUATIONS 1 PDF BALANCING EQUATIONS: PRACTICE PROBLEMS - NORTH ALLEGHENY BALANCING CHEMICAL EQUATIONS WORKSHEET 1 1 / 5 2 / 5 3 / 5 balancing chemical equations 1 pdf Balancing Equations:

More information

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD (GENERAL EDUCATION EXAMINATION) MAY/JUNE 2007 SECTION B CHEMISTRY (ESSAY) TIME: 1 HOUR 40 MINUTES 1. (a) Give THREE differences between a physical and

More information

Chapter 2 - Practice Test #1

Chapter 2 - Practice Test #1 Chapter 2 - Practice Test #1 6. Chemical systems tend to move toward positions of A. minimum enthalpy and maximum entropy. B. maximum enthalpy and minimum entropy. C. minimum enthalpy and minimum entropy.

More information

Slide 1. Slide 2. Slide 3. Hardness. Concentration is. What s the concentration of red triangles? What s in your pipes? 500 ml

Slide 1. Slide 2. Slide 3. Hardness. Concentration is. What s the concentration of red triangles? What s in your pipes? 500 ml Slide 1 Hardness What s in your pipes? Slide 2 What s the concentration of red triangles? 500 ml 1 g 1 g 1 g A. 10 B. 10 C. D. 1 g 1 g It s all of the above! Slide 3 Concentration is any statement of the

More information

Lecture Document for Metal Analysis (by the JICA Expert Team) Theoretical Training for AAS

Lecture Document for Metal Analysis (by the JICA Expert Team) Theoretical Training for AAS 31 3 1 32 1000/1 1000000/1 100000/1 01 31 01 ppm 1000 ppm 20 15 10 05 20 ppm ppm 05 10 05 31 4 2 1 41 1 41 1 2 41 42 2 41 x 100 42 30 20 10 0 ppm 100 Mg 10 ppm 10 Mg 100 03+x 02+x 01+x x x ppm 2 42 10

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Solve: 1. a 4 a 5 = 2. ( )/10 4 = 3. a(2a) 2 = 4. (6-1 ) 3 = a /10 4 a(4a 2 ) a 3

Solve: 1. a 4 a 5 = 2. ( )/10 4 = 3. a(2a) 2 = 4. (6-1 ) 3 = a /10 4 a(4a 2 ) a 3 Solve: 1. a 4 a 5 = 2. (10 2 10 3 )/10 4 = 3. a(2a) 2 = 4. (6-1 ) 3 = a 9 10 5 /10 4 a(4a 2 ) 6 2 10 1 4a 3 5. 12y 2 / 4y 3 = 6. (a 3 ) 0 = 7. x 2 y 4 z 3 x 1 y 2 z 5 = 3y -1 1 x 1 y 2 z -2 Solve for x:

More information