The Relationship between Composition and Density in Binary Master Alloys for Titanium. Abstract

Size: px
Start display at page:

Download "The Relationship between Composition and Density in Binary Master Alloys for Titanium. Abstract"

Transcription

1 The Relationship between Composition and Density in Binary Master Alloys for Titanium Dr. James W. Robison, Jr. and Scott M. Hawkins Reading Alloys, Inc. Abstract Each year we field several calls from consumers of master alloys asking how they can estimate the density of master alloys. Common approaches are weighted averages of elemental densities and mole-fraction averaging. As several lower-density titanium alloys are showing growth, there is accompanying interest in master alloys with lower density and often lower melting ranges. To address these issues, in this paper we examine the variation of measured densities as a function of composition for Al-V, Al-Cr, Al-Mo and Al-Nb alloys across the entire range of possible composition. We also compare the estimated densities obtained by the above approximations, and the composition-liquidus curve for each of the four binaries. It is hoped this information will be useful to the titanium industry. Introduction When people ask me about the relation between master alloy composition and density, they often are making some dubious assumptions about the behavior of alloys and metals, and about the most appropriate ways to estimate densities for new alloys or extrapolations from known alloys. The first questionable assumption is that binary alloys that form numerous relatively stable compounds are likely to be denser than the pure elements, because the compounds squeeze the atoms together more tightly. The following assumption is that a simple linear relation exists between the weight percentage of each element and the density of the alloy. Or, that such a relation exists between the atom fraction (i.e., mole fraction for a monatomic species) of each element and the alloy density. These assumptions can be addressed by considering an atom of a metallic element such as aluminum as a sphere of fixed diameter. The diameter and weight of such a sphere are different for each metallic element. How many spheres of a given diameter (and therefore, weight) can we stuff into a finite volume? In the eighteenth century the British navy explored this same question, but they used cannon balls and ships magazines. The conclusion was that for each diameter the maximum number of balls per unit volume was obtained by closely-packing the balls in what we today call hexagonal-close-packed (HCP) or facecentered-cubic (FCC) structures. In each structure the solids theoretically occupy 74% of the volume, while 26% is the volume of voids between balls. Any other arrangement has lower solids and greater voids. Aluminum is face-centered-cubic (i.e., maximum possible density), but vanadium, chromium, molybdenum and niobium are a lower-density form, bodycentered-cubic. The solids spheres in a theoretical body-centered-cubic structure occupy 68% of the volume, while 32% is void space. To combine two different ball sizes, such as 6 and 8, leads to lower percentages of solids and greater percentages of void space, unless one size

2 of balls was small enough to fit into the voids formed by the larger balls. Much later the great Linus Pauling expanded this work to crystallography, with what became known as Pauling s Rules of Packing. In applying this information to master alloy systems for the titanium industry, we are seeking to produce alloys with densities compatible with the titanium alloy in which they will be used, and with melting ranges that support rapid dissolution if not actual melting in the titanium alloy. The four alloys we are discussing today are used not only in high-titanium alloys, but also in lower-density, lower-melting alloys like Gamma Ti. How well do the estimates reflect the reality? Experimental Method At Reading Alloys we measure the density of our alloys using a simple volumedisplacement device called a pyncnometer, Figure 1. The values we obtain may not be as precise as those offered by more sophisticated instruments, but they are measurements of actual production alloys. The values we have obtained for our alloys are shown on the graphs that follow. Each point is the average of multiple determinations from different production lots. Figure 1. Typical Pyncnometer with working volume of 25 ml. Discussion The Al-V System Figure 2. Al-V Phase Diagram The aluminum-vanadium phase diagram, Figure 2, has two intermetallic compounds with melting points above 1200ºC, one at 55% V and one at about 39% V, so we might anticipate some variation in density in this composition range. This variation, if it exists, would not be predicted by either estimating technique. Using our hard-sphere model, one might expect the density to vary linearly with weight percentage from pure aluminum at 2.7 g/cm 3 to pure vanadium at 6.11 g/cm 3, as shown in Figure 3. We also might approximate the density by converting weight percentage to atom percentage (or atom fraction) and adding the atom fraction of each element times the density of the pure element. The formulas for this conversion are in Appendix A. Table 1 in Appendix A summarizes the calculated densities for alloys in the Al-V; Al-Cr; Al-Mo; and Al-Nb systems based on the atom fraction of each element in the alloy. The calculated densities for Al-V alloys are included in Figure 3. Note that the values are significantly lower for the 2

3 curve based on atom fraction than the curve (straight line) based on weighted averages of the elemental densities. g/cm Measured Atom Fraction Weight Percent Density of Al-V Alloys The Al-Cr System The Al-Cr phase diagram, Figure 4, has only one intermetallic phase melting above 1200ºC, at approximately 56 weight per cent chromium, but six relatively stable intermetallic compounds ranging from 20 % to 83 % by weight. In Figure 5 the calculated densities based on both methods of estimation are shown as well as the results of our determination of actual densities, again from production heats with multiple samples % 20% 40% 60% 80% 100% Wt % V Figure 3. Density of Al-V Alloys The experimental values are extremely close to the curve calculated using atom fractions, and there is no discernable deviation in the area of the previously identified stable compounds. In this case, the atom fraction method provides an excellent approximation of the density of the Al-V alloys. The weight-percent weighted average model is a very poor approximation. All of the measured data lie well below the linear estimate curve, and have no inflections. The lack of inflections indicates that rather than squeezing the atoms together the intermetallic compounds either have little effect or exacerbate the expansion of the lattice caused by interposing larger and smaller atoms, as predicted by the hard sphere model. Comparing figures 2 and 3, it is apparent that Al-V alloys with 40% to 50% vanadium have densities compatible with lower-density titanium alloys such as Gamma Ti, and the liquidus ranges also are compatible with the Gamma Ti alloys. g/cm Figure 4. Al-Cr Phase Diagram Measured Atom Fraction Weight Percent Density of Al-Cr Alloys 2 0% 20% 40% 60% 80% 100% Wt % Cr Figure 5. Density of Al-Cr Alloys Clearly, the linear weighted-average model deviates too far from the measured values to be of use. In the Al-Cr system the 3

4 calculated densities based on atom fraction are not quite as good an approximation as in the Al-V case, but they probably are close enough for most applications. The maximum error is about 0.2 g/cm Density of Al-Mo Alloys Measured Atom Fraction Weight Percent From the melting ranges and densities of Figures 4 and 5, Al-Cr alloys with 40% Cr or greater would be suitable for use in lower density and lower melting titanium alloys. The Al-Mo System The Al-Mo system has multiple stable compounds, but only two are stable from above 1200ºC to room temperature. This system is shown in Figure 6, below. Once the weight percent molybdenum falls below approximately 55%, the only solid phase present at normal processing temperatures for titanium or Gamma-Ti alloys is Mo 3 Al 8. In the region from 0 to 55% molybdenum we might expect density increasing linearly with the fraction of (Mo 3 Al 8 ), but aluminum-rich alloys tend to segregate, so we have not reported experimental data, shown in Figure 7, in that range. The experimental data do support the atom fraction model as an excellent predictor of alloy density in this system. g/cm % 20% 40% 60% 80% 100% Wt % Mo Figure 7. Density of Al-Mo Alloys (45% Al-55% Mo contains ~2.5% Ti) The Al-Nb System Similar to the Al-Mo system, there are no stable phases in the aluminum-rich region below Al 3 Nb, at 53.4% Nb. The aluminumrich alloys tend to segregate, so our experimental data is focused on alloys with greater than 55% niobium. Once again, the experimental data are in close agreement with density predictions based on the atom fraction model, as shown in Figure 9. Figure 6. The Al-Mo Phase Diagram Figure 8. The Al-Nb Phase Diagram 4

5 10 Density of Al-Nb Alloys as the previous four examples. The results are summarized in the table below. g/cm Measured Atom Fraction Weight Percent For aluminum-zirconium and aluminumcobalt, the atom fraction method provides the closer approximation of the measured density, but for aluminum-silicon the two estimating techniques have negligible difference. However, in silicon-titanium, the measured density is much greater than either estimate. 2 0% 20% 40% 60% 80% 100% Figure 9 Wt % Nb The Density of Al-Nb Alloys We also looked at several other binary alloys to see if they followed the same trend While the atom fraction technique can provide good estimates of the actual alloy densities, a good measurement is the preferred option. Reading Alloys, Inc. would be glad to provide such measurements. Table 2 Density of Other Binary Alloys, grams/cm 3 Alloy, Weight % Wt % Estimate At. Fr. Estimate Measured 40Al-60Zr Al-50Co Al-50Si Si-47Ti Conclusions 1. Estimating the density of binary Al-X alloys using the weight percentage technique is inaccurate and may lead to erroneous conclusions. 2. Estimating densities using the atom fraction technique provides excellent estimates for most of the alloys examined, and is more likely to lead to correct conclusions. 3. The pyncnometer is easy to use, quick, non-destructive, and simple. However, it requires careful use and does not work accurately on samples with internal voids, non-wetted cracks or powders. Acknowledgements The authors appreciate Reading Alloys allowing us to prepare and present this paper, the Reading Alloys Analytical Lab for performing the density measurements, and the ITA for their many kindnesses, and for offering us the opportunity to present this paper. 5

6 References All phase diagrams are from Binary Alloy Phase Diagrams, edited by T. B. Massalski, ASM, 1st ed., 1986 and 2 nd ed., Appendix A For Atom Fraction At. Fr. X = wt.% X at. wt. X wt at +.% X. wt. X 100 wt.% at. wt. Y X For Density estimated from Atom Fraction est. ( At. Fr. X ) ( Density ) + ( 1 At. Fr X ) ( Density ) Density =. purex purey Density (g/cm 3 ) Table 1 Calculated densities from Atom Fraction Wt % Al 100% 80% 60% 40% 20% 0% Balance V Balance Cr Balance Mo Balance Nb

7 The Relationship between Composition and Density in Binary Master Alloys for Titanium Dr. James W. Robison, Jr. & Scott M. Hawkins Reading Alloys, Inc.

8 Pyncnometer

9

10 7 6 Density of Al-V Alloys Measured Atom Fraction Weight Percent 5 g/cm % 20% 40% 60% 80% 100% Wt % V

11

12 8 7 Density of Al-Cr Alloys Measured Atom Fraction Weight Percent 6 g/cm % 20% 40% 60% 80% 100% Wt % Cr

13

14 12 10 Density of Al-Mo Alloys Measured Atom Fraction Weight Percent 8 g/cm % 20% 40% 60% 80% 100% Wt % Mo

15

16 Density of Al-Nb Alloys Measured Atom Fraction Weight Percent 7 g/cm % 20% 40% 60% 80% 100% Wt % Nb

17 Density of Other Binary Alloys, in gr/cm 3 Alloy, Wt. % At. Fr. Measured Nominal Estimate Estimate 40Al-60Zr Al-50Co Al-50Si Si-47Ti

18 Conclusions: 1. The Weight-Percent density model is inaccurate in most situations and should be avoided. 2. The Atom-Fraction density model is a much better predictor of alloy density in many situations. 3. A Pyncnometer can provide quick and inexpensive density data dt on suitable itbl samples, but btith has limitations itti that must be considered. It may give erroneous results if the sample has internal voids, non-wetted cracks, or is a powder.

19

Physcial Metallurgy and Microstructure of Superalloys

Physcial Metallurgy and Microstructure of Superalloys www.materialstechnology.org Physcial Metallurgy and Microstructure of Superalloys Roger Reed University of Birmingham The definition of superalloys utilized in the classic textbook 'The Superalloys' which

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS

COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS COMPUTED PHASE EQUILIBRIA IN IRON-BASE TERNARY ALLOYS by K.C. HARI KUMAR APPLIED MECHANICS DEPARTMENT Thesis submitted in fulfilment of the requirements of the Degree of DOCTOR OF PHILOSOPHY be vt, to

More information

www-materials.eng.cam.ac.uk/typd

www-materials.eng.cam.ac.uk/typd Part IB Paper 3: MATERIALS Examples Paper 3/1: TEACH YOURSELF PHASE DIAGRAMS This examples paper forms part of an interactive online resource Teach Yourself Phase Diagrams which is available at: www-materials.eng.cam.ac.uk/typd

More information

CHAPTER 2 - OBJECTIVES

CHAPTER 2 - OBJECTIVES CHAPTER 2 - OBJECTIVES LIQUID PHASE DIFFUSION BONDING OF NICKEL-BASE SUPERALLOY COMPONENTS USING NOVEL BRAZE FILLER METALS 2.1) Background Turbine vanes or nozzles operating in power generation engines

More information

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially. Crystal structure A crystalline material :- is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material :- the manner in which

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution 3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices

More information

Influence of Niobium or Molybdenum in Titanium Alloy for Permanent Implant Application Yuswono Marsumi 1, a and Andika Widya Pramono 1,b

Influence of Niobium or Molybdenum in Titanium Alloy for Permanent Implant Application Yuswono Marsumi 1, a and Andika Widya Pramono 1,b Advanced Materials Research Vol. 900 (2014) pp 53-63 (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.900.53 Influence of Niobium or Molybdenum in Titanium Alloy for Permanent

More information

Material Product Data Sheet Amdry Activated Diffusion Braze Alloys

Material Product Data Sheet Amdry Activated Diffusion Braze Alloys Material Product Data Sheet Activated Diffusion Braze Alloys Products: 485, 485/509, 718B, 775, 788, 8249, 8626, BRB, BRB-325, D-15, DF-3, DF-3-325, DF-4B, DF-5, DF-6A, MM509B-C, MM509B-F 1 Introduction

More information

Titanium and titanium alloys. Josef Stráský

Titanium and titanium alloys. Josef Stráský Titanium and titanium alloys Josef Stráský Lecture 2: Fundamentals of Ti alloys Polymorphism Alpha phase Beta phase Pure titanium Titanium alloys alloys alloys alloys Phase transformation β α phase Hardening

More information

Phase diagrams are diagrammatic representations of the phases present in a

Phase diagrams are diagrammatic representations of the phases present in a Chapter 4 What is a binary phase diagram? Phase diagrams are diagrammatic representations of the phases present in a system under specified equilibrium conditions, most often composition, temperature and

More information

Analysis of Cast Iron Using Shimadzu PDA-7000

Analysis of Cast Iron Using Shimadzu PDA-7000 Analysis of Cast Iron Using Shimadzu PDA-7000 C112-0510M The analysis of low and high alloy cast iron by optical emission spectrometry is presented. Cast iron alloys are classified by their mechanical

More information

SEGREGATION DURING SOLIDIFICATION

SEGREGATION DURING SOLIDIFICATION SEGREGATION DURING SOLIDIFICATION IN THE MAR-M247 SYSTEM K.L. Zeisler-Mash1 and B.J. Pletka Department of Metallurgical and Materials Engineering Michigan Technological University Houghton, Michigan 49931

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

Ti Titanium. Leading the Way in the Production of Plasma Atomized Spherical Metal Powders. Specialists in Powders for Additive Manufacturing

Ti Titanium. Leading the Way in the Production of Plasma Atomized Spherical Metal Powders. Specialists in Powders for Additive Manufacturing Leading the Way in the Production of Plasma Atomized Spherical Metal Powders Specialists in Powders for Additive Manufacturing 22 Ti 47.867 Titanium 10+ years servicing major customers AP&C: Large Scale

More information

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA ICS 77.140.01 H 40 GB NATIONAL STANDARD OF THE PEOPLE'S REPUBLIC OF CHINA GB/T 221-2008 Replacing GB/T 221-2000 Notations for Designations of Iron and Steel GB/T 221-2008 How to BUY & immediately GET a

More information

High Quality Multi-arc Targets

High Quality Multi-arc Targets High Quality Multi-arc Targets IKS provides high-quality multi-arc targets for a wide range of applications for ferromagnetic, complex oxides, and semiconducting films. Our targets are offered in various

More information

Chapter 9: Phase Diagrams

Chapter 9: Phase Diagrams Chapter 9: Phase Diagrams When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu - wt% Ni), and --a temperature (T ) then... How

More information

Ferro alloys. 1) Ferro silicon. 2) Ferro manganese. 3) Ferro chrome. 4) Silicon manganese. 5) Ferro aluminium. 6) Ferro titanium. 7) Ferro molybdenum

Ferro alloys. 1) Ferro silicon. 2) Ferro manganese. 3) Ferro chrome. 4) Silicon manganese. 5) Ferro aluminium. 6) Ferro titanium. 7) Ferro molybdenum Ferro alloys 1) Ferro silicon 2) Ferro manganese 3) Ferro chrome 4) Silicon manganese 5) Ferro aluminium 6) Ferro titanium 7) Ferro molybdenum 8) Ferro silicon calcium 9) Ferro silicon magnesium 10) Ferro

More information

Chrystal Structures Lab Experiment 1. Professor Greene Mech Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa

Chrystal Structures Lab Experiment 1. Professor Greene Mech Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa Chrystal Structures Lab Experiment 1 Professor Greene Mech 496-02 Submitted: 4 February, 2009 Max Nielsen Trevor Nickerson Ben Allen Kushal Sherpa Abstract: The study of materials science requires an understanding

More information

PHASE EQUILIBRIUM P + F = C + 2

PHASE EQUILIBRIUM P + F = C + 2 PHASE EQUILIBRIUM Component: is either pure metal and/or compound of which an alloy is composed. They refer to the independent chemical species that comprise the system. Solid Solution: It consists of

More information

HIGH TEMPERATURE OXIDATION OF A MODIFIED ALLOY 625. Eric Whitney, George Simkovich, Jeremy Fink

HIGH TEMPERATURE OXIDATION OF A MODIFIED ALLOY 625. Eric Whitney, George Simkovich, Jeremy Fink HIGH TEMPERATURE OXIDATION OF A MODIFIED ALLOY 625 Eric Whitney, George Simkovich, Jeremy Fink The Pennsylvania State University University Park, PA 16802 Abstract The isothermal oxidation behavior of

More information

Effects in Ductile Iron

Effects in Ductile Iron Summary of Element Effects in Ductile Iron Rick Gundlach Element Materials Technology Wixom Insert Company Logo Here DIS Annual Meeting, June 7, 2012 Muskegon, Michigan Types of Alloying Elements Substitutional

More information

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff Dave Neff OUTLINE Where aluminum comes from Why alloys are useful Alloy designation and nomenclature Specific roles of alloy elements Properties

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

SUPERALLOYS. Superalloys are high-performance materials AGE-HARDENABLE

SUPERALLOYS. Superalloys are high-performance materials AGE-HARDENABLE AGE-HARDENABLE SUPERALLOYS To select the most suitable wrought age-hardenable superalloy for a specific application, engineers must know the basic mechanical properties as well as other characteristics

More information

CompuTherm LLC Thermodynamic Databases. PanTitanium. Thermodynamic Database for Titanium-Based Alloys. Al B C. Ni Nb N. Copyright CompuTherm LLC

CompuTherm LLC Thermodynamic Databases. PanTitanium. Thermodynamic Database for Titanium-Based Alloys. Al B C. Ni Nb N. Copyright CompuTherm LLC PanTitanium Thermodynamic Database for Titanium-Based Alloys V Zr Al B C Ta Cr Sn Si Ti Cu Fe O H Ni Nb N Mo Mn Copyright CompuTherm LLC 1 Components A total of 19 components are included in the database

More information

Chapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.)

Chapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.) Chapter 12 Metals 12.1 Classification of Solids Covalent Ionic Molecular Metallic Solids Solids Solids Solids Molecular consist of molecules held next to each other by IMF s. Relatively low to moderate

More information

CH445/545 Winter 2008

CH445/545 Winter 2008 CH445/545 Winter 2008 Assignment # 1 - due 01/18/08 60 total points SHOW ALL WORKING FOR FULL CREDIT, ANSWERS WITHOUT WORKING WILL BE PENALIZED! 1. Text Ch. 1 # 2 "Calculate the size of the largest sphere

More information

Database. Sept , 2014, Aachen, Germany. Thermo-Calc Anwendertreffen

Database. Sept , 2014, Aachen, Germany. Thermo-Calc Anwendertreffen Database Sept. 11-12, 2014, Aachen, Germany Thermo-Calc Anwendertreffen Thermodynamic and kinetic databases New Databases, June 2014 TCAL3 TCMG3 TCSLD2 TCSI1 TCNI7 MOBNI3 TCAL3.0 TCAL3.0 TCAL1.0 2011.05

More information

Incorporation of Titanium, Tantalum, and Vanadium Into the Hexagonal WC Lattice. A. Pasquazzi*, W.D. Schubert*, E. Halwax*, G.

Incorporation of Titanium, Tantalum, and Vanadium Into the Hexagonal WC Lattice. A. Pasquazzi*, W.D. Schubert*, E. Halwax*, G. 18 th Plansee Seminar HM 108/1 Incorporation of Titanium, Tantalum, and Vanadium Into the Hexagonal WC Lattice A. Pasquazzi*, W.D. Schubert*, E. Halwax*, G. Kremser** * Vienna University of Technology,

More information

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10 ME 274 Dr Yehia M. Youssef 1 The Structure of Crystalline Solids Solid materials may be classified according to the regularity with which atoms or ions are arranged with respect to one another. A crystalline

More information

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood Alloy Steels Introduction : Steels are, essentially, alloys of iron and carbon, containing up to 1.5 % of carbon. Steel is made by oxidizing away the impurities that are present in the iron produced in

More information

Oxidation of Chromium

Oxidation of Chromium Oxidation of Chromium Oxidation of chromium is very simple as it usually forms a single oxide Cr 2 O 3, It is a p-type of oxide with Cr 3+ ions diffusing outward. Since the defect concentration is so low

More information

THE REGULARITIES OF PHASE AND STRUCTURAL TRANSFORMATION IN BINARY TITANIUM ALLOYS WITH METALS OF IV VIII GROUPS OF THE PERIODIC TABLE

THE REGULARITIES OF PHASE AND STRUCTURAL TRANSFORMATION IN BINARY TITANIUM ALLOYS WITH METALS OF IV VIII GROUPS OF THE PERIODIC TABLE DOI: 10.2478/v10077-008-0004-7 A.V. Dobromyslov Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Еkaterinburg, Russia THE REGULARITIES OF PHASE AND STRUCTURAL TRANSFORMATION IN BINARY

More information

CERTIFICATE OF ANALYSIS 1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION

CERTIFICATE OF ANALYSIS 1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION 300 Technology Drive Christiansburg, VA 24073. USA inorganicventures.com CERTIFICATE OF ANALYSIS tel: 800.669.6799. 540.585.3030 fax: 540.585.3012 info@inorganicventures.com 1.0 ACCREDITATION / REGISTRATION

More information

atoms g/mol

atoms g/mol CHAPTER 2 ATOMIC STRUCTURE 2 6(a) Aluminum foil used for storing food weighs about 0.05 g/cm². How many atoms of aluminum are contained in this sample of foil? In a one square centimeter sample: number

More information

OK STROIBIS LTD. Tel: + 7 (495)

OK STROIBIS LTD. Tel: + 7 (495) OK STROIBIS LTD Tel: + 7 (495) 648 69 04 Stroibis@stroibis.com www.stroibis.ru 1 OK STROIBIS LTD Types of defects and rejects during fluxes and alloying tablets production and product quality control at

More information

CERTIFICATE OF ANALYSIS 1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION

CERTIFICATE OF ANALYSIS 1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION 300 Technology Drive Christiansburg, VA 24073. USA inorganicventures.com CERTIFICATE OF ANALYSIS tel: 800.669.6799. 540.585.3030 fax: 540.585.3012 info@inorganicventures.com 1.0 ACCREDITATION / REGISTRATION

More information

EFFECT OF SOME GRAIN REFINERS ON THE MECHANICAL PROPERTIES OF ALUMINUM

EFFECT OF SOME GRAIN REFINERS ON THE MECHANICAL PROPERTIES OF ALUMINUM EFFECT OF SOME GRAIN REFINERS ON THE MECHANICAL PROPERTIES OF ALUMINUM Prof. Adnan I.O.Zaid e-mail: adnan_kilani@yahoo.com ABSTRACT It is well established that aluminum and its alloys are grain refined

More information

Mohammad Anwar Karim Id :

Mohammad Anwar Karim Id : Department of Mechanical and Industrial Engineering ME 8109 Casting and Solidification of Materials EFFECTS OF RAPID SOLIDIFICATION ON MICROSTRUCTURE AND PROPERTIES OF AL, MG & TI ALLOYS Winter 2012 Presented

More information

7.3 Bonding in Metals > Chapter 7 Ionic and Metallic Bonding. 7.3 Bonding in Metals. 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds

7.3 Bonding in Metals > Chapter 7 Ionic and Metallic Bonding. 7.3 Bonding in Metals. 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU What

More information

Chapter 2 Metallurgy and Microstructure

Chapter 2 Metallurgy and Microstructure Chapter 2 Metallurgy and Microstructure 2.1 The General Metallurgy of Titanium Alloys Unalloyed titanium has two allotropic forms. The low temperature form, a, exists as an hexagonal-close-packed (hcp)

More information

MECHANICAL PROPERTIES AND MICROSTRUCTURE OF IN713LC NICKEL SUPERALLOY CASTINGS

MECHANICAL PROPERTIES AND MICROSTRUCTURE OF IN713LC NICKEL SUPERALLOY CASTINGS MECHANICAL PROPERTIES AND MICROSTRUCTURE OF IN713LC NICKEL SUPERALLOY CASTINGS Jiří ZÝKA 1, Irena ANDRŠOVÁ 1, Božena PODHORNÁ 1, Karel HRBÁČEK 2 1 UJP PRAHA a.s., Nad Kamínkou 1345, Prague, Czech republic,

More information

Safety Data Sheets (SDSs) Soon To be Avalable for Purchase from AFS

Safety Data Sheets (SDSs) Soon To be Avalable for Purchase from AFS Steel SC002 High Alloy Steel Chromium (Cr) 10.0 52.0 7440 47 3 Cobalt (Co) 0 2.5 7440 48 4 Copper (Cu) 0 4.0 7440 50 8 Iron (Fe) Remainder 7439 89 6 Manganese (Mn) 0.3 6.0 7439 96 5 Molybdenum (Mo) 2.0

More information

SUB-Programs - Calibration range Fe Base for "PMI-MASTER Pro" Spark - mode Fe 000

SUB-Programs - Calibration range Fe Base for PMI-MASTER Pro Spark - mode Fe 000 SUB-Programs - Calibration range Fe Base for "PMI-MASTER Pro" Spark - mode Fe 100 Fe 200 *** Fe 250 *** Fe 300 Fe 400 Fe 500 Fe 000 Fe low alloy steel cast iron Cr hard / Ni resist stainless steel tool

More information

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit.

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. (1) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. The next page is left blank for your use, but no partial will

More information

Wear Resistant Tool Steels with Niobium Carbide Dispersions

Wear Resistant Tool Steels with Niobium Carbide Dispersions Wear Resistant Tool Steels with Niobium Carbide Dispersions Dr. Rafael Mesquita Consultant, CBMM Technology mesquita@rafconsult.com CONTENT Introduction: Niobium in Steels Undissolved Carbides and Wear

More information

THE INFLUENCE OF Nb AND C ON THE SOLIDIFICATION MICROSTRUCTURES OF Fe-Ni-Cr ALLOYS

THE INFLUENCE OF Nb AND C ON THE SOLIDIFICATION MICROSTRUCTURES OF Fe-Ni-Cr ALLOYS Pergamon Scripta Materialia, Vol. 41, No. 4, pp. 449 454, 1999 Elsevier Science Ltd Copyright 1999 Acta Metallurgica Inc. Printed in the USA. All rights reserved. 1359-6462/99/$ see front matter PII S1359-6462(99)00102-5

More information

Chapter 11: Phase Diagrams

Chapter 11: Phase Diagrams Chapter 11: Phase Diagrams ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify... -- the composition (e.g., wt% Cu - wt% Ni), and

More information

Combined effect of molten fluoride salt and irradiation on Ni-based alloys

Combined effect of molten fluoride salt and irradiation on Ni-based alloys Combined effect of molten fluoride salt and irradiation on Ni-based alloys A.S.Bakai, Kharkiv Institute of Physics &Technology, Ukraine e-mail: bakai@kipt.kharkov.ua Molten Salt Reactor Background MSR

More information

MODELLING OF THE THERMO-PHYSICAL AND PHYSICAL PROPERTIES FOR SOLIDIFICATION OF AL-ALLOYS

MODELLING OF THE THERMO-PHYSICAL AND PHYSICAL PROPERTIES FOR SOLIDIFICATION OF AL-ALLOYS Light Metals 23 Edited by P. Crepeau (Warrendale, PA: TMS, 23), 999. MODELLING OF THE THERMO-PHYSICAL AND PHYSICAL PROPERTIES FOR SOLIDIFICATION OF AL-ALLOYS N.Saunders 1, X.Li 2, A.P.Miodownik 1 and J.-P.Schillé

More information

MODELLING OF THE THERMO-PHYSICAL AND PHYSICAL PROPERTIES FOR SOLIDIFICATION OF AL-ALLOYS

MODELLING OF THE THERMO-PHYSICAL AND PHYSICAL PROPERTIES FOR SOLIDIFICATION OF AL-ALLOYS Light Metals 23 Edited by P. Crepeau TMS (The Minerals, Metals & Materials Society), 23 MODELLING OF THE THERMO-PHYSICAL AND PHYSICAL PROPERTIES FOR SOLIDIFICATION OF AL-ALLOYS N.Saunders 1, X.Li 2, A.P.Miodownik

More information

TALAT Lecture Phase Diagrams. 14 pages, 13 Figures. Basic Level

TALAT Lecture Phase Diagrams. 14 pages, 13 Figures. Basic Level TALAT Lecture 1203 Phase Diagrams 14 pages, 13 Figures Basic Level prepared by M H Jacobs * Interdisciplinary Research Centre in Materials The University of Birmingham, UK (Based on approach adopted by

More information

X-rays were discovered by the German physicist

X-rays were discovered by the German physicist Calculating Crystal Structure and Lattice Parameters Using X-ray Diffraction Robert Welch Abstract Certain materials, such as Molybdenum and NaCl, have repeating crystal structures with lattice parameters

More information

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal.

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. The circles represent atoms: (a) To what crystal system does the unit cell belong? (b) What would

More information

CHAPTER9. Phase Diagrams Equilibrium Microstructural Development

CHAPTER9. Phase Diagrams Equilibrium Microstructural Development CHAPTER9 Phase Diagrams Equilibrium Microstructural Development The microstructure of a slowly cooled eutectic soft solder ( 38 wt%pb wt % Sn) consists of a lamellar structure of tin-rich solid solution

More information

Use the arrow keys to easily navigate through the course.

Use the arrow keys to easily navigate through the course. STEEL Use the arrow keys to easily navigate through the course. Back Next 1 STEEL 2 A BRIEF HISTORY OF STEEL The history of steel is closely connected to the development of human culture and civilization.

More information

COOPERATIVE PATENT CLASSIFICATION

COOPERATIVE PATENT CLASSIFICATION CPC C COOPERATIVE PATENT CLASSIFICATION CHEMISTRY; METALLURGY (S omitted) METALLURGY C22 METALLURGY (of iron C21); FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS (production of

More information

DEVELOPMENT OF AN α - EMITTING WASTES IMMOBILIZATION TECHNIQUE USING URANIUM CHROMITE MATRICES WITH ADDED BASALT-LIKE MATERIALS

DEVELOPMENT OF AN α - EMITTING WASTES IMMOBILIZATION TECHNIQUE USING URANIUM CHROMITE MATRICES WITH ADDED BASALT-LIKE MATERIALS WM 00 Conference, February 27 March 2, 2000, Tucson, AZ DEVELOPMENT OF AN α - EMITTING WASTES IMMOBILIZATION TECHNIQUE USING URANIUM CHROMITE MATRICES WITH ADDED BASALT-LIKE MATERIALS ABSTRACT A.A.Minaev,

More information

of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test

of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test Chapter 11 Applications and Processing of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test As usual, everything is standardized! After the Jominy

More information

Thermotech AL-DATA INFORMATION

Thermotech AL-DATA INFORMATION Thermotech AL-DATA INFORMATION N.SAUNDERS THERMOTECH LTD, SURREY TECHNOLOGY CENTRE 40 OCCAM RD, THE SURREY RESEARCH PARK GUILDFORD, SURREY GU2 7YG, U.K. AL-DATA (VER.8) Thermotech has developed a database

More information

Phase Diagrams. Phases

Phase Diagrams. Phases Phase Diagrams Reading: Callister Ch. 10 What is a phase? What is the equilibrium i state t when different elements are mixed? What phase diagrams tell us. How phases evolve with temperature and composition

More information

A New Dental Superalloy System: IV. X-Ray Diffraction Analysis

A New Dental Superalloy System: IV. X-Ray Diffraction Analysis A New Dental Superalloy System: IV. X-Ray Diffraction Analysis HAMDI MOHAMMED,* KAMAL ASGAR, and 0. F. KIMBALL School of Dentistry, University of Michigan, Ann Arbor, Michigan 48104, USA X-ray diffraction

More information

(iii) Describe how you would use a powder diffraction pattern of this material to measure

(iii) Describe how you would use a powder diffraction pattern of this material to measure Supplemental Problems for Chapter 5 100 45.29 Intensity, au 80 60 40 20 38.95 65.98 30 40 50 60 70 2!, 1) The figure above shows a schematic diffraction pattern for a cubic material, recorded with an X-ray

More information

Mo, Nb-based refractory alloy for ultra-high temperature applications

Mo, Nb-based refractory alloy for ultra-high temperature applications Mo, Nb-based refractory alloy for ultra-high temperature applications 2017. 04. 24 Sang Jun Kim 초내열신합금개발의필요성 원자력발전의안전문제제고 신에너지원셰일가스의등장 가스복합화력발전원리 가스복합화력발전수요증가 전세계적가스발전소신설증대 고효율의화력발전기술필요성증가 ( 복합화력발전효율 60%

More information

Licensed Copy: John May, Powertrain Ltd., February 20, 2002, Uncontrolled Copy, (c) BSI

Licensed Copy: John May, Powertrain Ltd., February 20, 2002, Uncontrolled Copy, (c) BSI BRITISH STANDARD BS 70-3: Incorporating Amendment Nos. 1 and 2 Specification for Wrought steel for mechanical and allied engineering purposes Part 3: Bright bars for general engineering purposes BS70-3:

More information

Comparison of Experimental and Theoretical CTE of Al/h-BN Metal Matrix Composites

Comparison of Experimental and Theoretical CTE of Al/h-BN Metal Matrix Composites International Journal of Material Sciences and Technology. ISSN 2249-3077 Volume 6, Number 1 (2016), pp. 13-20 Research India Publications http://www.ripublication.com Comparison of Experimental and Theoretical

More information

Formation of Primary TiAlSi Intermetallic Compounds in Al-Si Foundry Alloys

Formation of Primary TiAlSi Intermetallic Compounds in Al-Si Foundry Alloys Proceedings of the 9 th International Conference on Aluminium Alloys (2004) Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd 659 Formation of Primary TiAlSi

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

MME 2001 MATERIALS SCIENCE

MME 2001 MATERIALS SCIENCE MME 2001 MATERIALS SCIENCE 1 20.10.2015 crystal structures X tal structure Coord. # Atoms/ unit cell a=f(r) APF % SC 6 1 2R 52 BCC 8 2 4R/ 3 68 FCC 12 4 2R 2 74 HCP 12 6 2R 74 Theoretical Density, knowing

More information

B16 Case 4 13 Cr Stainless Steel ASME B16.5 and ASME B16.47 Flanges ASTM A182 F6a Class 1, A182 F6a Class 2, and A217 CA15 Material

B16 Case 4 13 Cr Stainless Steel ASME B16.5 and ASME B16.47 Flanges ASTM A182 F6a Class 1, A182 F6a Class 2, and A217 CA15 Material CASES OF THE B16 VALVE, FLANGES, FITTINGS AND GASKETS STANDARDS Approval Date: May 27, 2016 Cases will remain available for use until annulled by the applicable Standards Committee B16 Case 4 13 Cr Stainless

More information

The internal structure of a material plays an important part on its mechanical properties.!

The internal structure of a material plays an important part on its mechanical properties.! Phase Diagrams The internal structure of a material plays an important part on its mechanical properties.! There is a strong correlation between micro structure and mechanical properties. Definitions Component!

More information

Nickel Based Superalloy Hastelloy B-3 (UNS N10675)

Nickel Based Superalloy Hastelloy B-3 (UNS N10675) Nickel Based Superalloy Hastelloy B-3 (UNS N10675) Hastelloy B-3 is manufactured for providing excellent resistance to reducing acids at the different content %s and temperature limits. It shows better

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3.

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3. Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3. Name(s): Element: Topics: 1. Octahedral and tetrahedral holes and the hcp lattice 2. Occupying the octahedral and tetrahedral

More information

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiAl-Nb ALLOY PREPARED BY PLASMA METALLURGY. Jan JUŘICA, Monika LOSERTOVÁ, Daniel PETLÁK

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiAl-Nb ALLOY PREPARED BY PLASMA METALLURGY. Jan JUŘICA, Monika LOSERTOVÁ, Daniel PETLÁK MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TiAl-Nb ALLOY PREPARED BY PLASMA METALLURGY Jan JUŘICA, Monika LOSERTOVÁ, Daniel PETLÁK Authors: Jan Juřica, MSc. Eng., Monika Losertová, Assoc. Prof. Dr., Daniel

More information

High-Strength Low-Alloy Steels

High-Strength Low-Alloy Steels High-Strength Low-Alloy Steels Introduction and Overview High-strength low-alloy (HSLA) steels, or microalloyed steels, are designed to provide better mechanical properties and/or greater resistance to

More information

CompuTherm LLC Thermodynamic Databases. PanMolybdenum. Thermodynamic database for multi-component Mo-rich alloys. Al B. Copyright CompuTherm LLC

CompuTherm LLC Thermodynamic Databases. PanMolybdenum. Thermodynamic database for multi-component Mo-rich alloys. Al B. Copyright CompuTherm LLC PanMolybdenum Thermodynamic database for multi-component Mo-rich alloys Zr Al B Si Ti Mo Cr Fe Re O Mn Hf Copyright CompuTherm LLC 1 Components Total of 12 components are included in the database as listed

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor PHASE DIAGRAMS Phase a chemically and structurally homogenous region of a material. Region of uniform physical and chemical characteristics. Phase boundaries separate two distinct phases. A single phase

More information

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components

Joint Technology Initiatives Collaborative Project (FCH) FCH-JU WP4 - Development of lab-scale cell components Joint Technology Initiatives Collaborative Project (FCH) FCH-JU-2010-1 WP4 - Development of lab-scale cell components DELIVERABLE 4.3- Prepared by: HOGANAS Document control data Document ref. : METPROCELL-WP4-

More information

RITES Lab, Western Region, 210, Amit Industrial Estate, 61, Dr. S.S. Rao Road, Parel, Mumbai, Maharashtra

RITES Lab, Western Region, 210, Amit Industrial Estate, 61, Dr. S.S. Rao Road, Parel, Mumbai, Maharashtra Last Amended on - Page 1 of 5 I. METALS & ALLOYS 1. Low-Alloy Steel Carbon ASTM E 415-08/ Manganese ASTM E 415-08/ Silicon ASTM E 415-08/ Sulphur ASTM E 415-08/ Phosphorous ASTM E 415-08/ Chromium ASTM

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy. Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Steel Properties. History of Steel

Steel Properties. History of Steel History of Steel Steel Properties Cast Iron Cast iron preceded wrought iron. It is brittle, has high carbon content with low tensile strength. It has excellent casting properties. It was mainly used to

More information

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures

Chapter 1. The Structure of Metals. Body Centered Cubic (BCC) Structures Chapter 1 The Structure of Metals Body Centered Cubic (BCC) Structures Figure 1. The body-centered cubic (bcc) crystal structure: (a) hard-ball model; (b) unit cell; and (c) single crystal with many unit

More information

Thintri Inc Business Intelligence Technology Assessment. Minor Metals: A Thintri MARKET STUDY. Contents.

Thintri Inc Business Intelligence Technology Assessment. Minor Metals: A Thintri MARKET STUDY. Contents. A Thintri MARKET STUDY 2018 Minor Metals: A Market Analysis Thintri, Inc. announces the release of Minor Metals: A Market Analysis, a new report that explores markets in minor metals. Minor metals are

More information

EFFECT OF EAF AND ESR TECHNOLOGIES ON THE YIELD OF ALLOYING ELEMENTS IN TOOL STEELS

EFFECT OF EAF AND ESR TECHNOLOGIES ON THE YIELD OF ALLOYING ELEMENTS IN TOOL STEELS EFFECT OF EAF AND ESR TECHNOLOGIES ON THE YIELD OF ALLOYING ELEMENTS IN TOOL STEELS T. Mattar, H.S.R. El-Faramawy, A. Fathy, M. Eissa, K.A. El-Fawakhry Steel Metallurgy & Ferroalloys Dept. Central Metallurgical

More information

Cu/Ag Eutectic System

Cu/Ag Eutectic System Eutectic Systems The simplest kind of system with two solid phases is called a eutectic system. A eutectic system contains two solid phases at low temperature. These phases may have different crystal structures,

More information

Chapter 11 Part 2. Metals and Alloys

Chapter 11 Part 2. Metals and Alloys Chapter 11 Part 2 Metals and Alloys Nomenclature of Steels Historically, many methods for identifying alloys by their composition have been developed The commonly used schemes in this country are those

More information

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C).

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). Iron-Carbon Phase Diagram Its defined as:- A map of the temperature at which different phase changes occur on very slow heating and cooling in relation to Carbon content. is Isothermal and continuous cooling

More information

CRYSTAL STRUCTURE TERMS

CRYSTAL STRUCTURE TERMS CRYSTAL STRUCTURE TERMS crystalline material - a material in which atoms, ions, or molecules are situated in a periodic 3-dimensional array over large atomic distances (all metals, many ceramic materials,

More information

TE5 DEVELOPKEN!C OF ODS SUPERAILOYS FOR INDUSTRUULGAS TURBINES. R. C. Berm* and G. M. McColvin**

TE5 DEVELOPKEN!C OF ODS SUPERAILOYS FOR INDUSTRUULGAS TURBINES. R. C. Berm* and G. M. McColvin** TE5 DEVELOPKEN!C OF ODS SUPERAILOYS FOR INDUSTRUULGAS TURBINES R. C. Berm* and G. M. McColvin** fi Into Alloys International, Inc. Huntington, WV 25720 USA *A Into Alloys, Limited Hereford, HR4 95L, England

More information

solvent: component of a solution present in the greatest amount in alloy.

solvent: component of a solution present in the greatest amount in alloy. Phase Equilibrium Diagrams:- Phase equilibrium diagram is a graphic relationship between temperature and weight ratios of elements and alloys contribute to the built of the diagram. Phase diagrams provide

More information

Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition Journal of Physics: Conference Series PPER OPEN CCESS Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition To cite this article: Lozovan

More information

DILATOMETRIC STUDY ON LIQUID PHASE SINTERING OF Al-Ni POWDER COMPACTS

DILATOMETRIC STUDY ON LIQUID PHASE SINTERING OF Al-Ni POWDER COMPACTS Powder Metallurgy Progress, Vol.6 (2006), No 3 128 DILATOMETRIC STUDY ON LIQUID PHASE SINTERING OF Al-Ni POWDER COMPACTS G. N. Romanov, P. P. Тarasov, P. K. D yachkovskiy, A. P. Savitskii, H. Danninger

More information

Energy and Packing. Materials and Packing

Energy and Packing. Materials and Packing Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information