to enable Lithium metal electrodes IBA2013, Barcelona, Spain

Size: px
Start display at page:

Download "to enable Lithium metal electrodes IBA2013, Barcelona, Spain"

Transcription

1 Fluorine free ionic liquid electrolytes to enable Lithium metal electrodes IBA2013, Barcelona, Spain A. S. Best, Martin (Hyun Gook) YOON, G. H. Lane, Y. Shekibi, P. C. Howlett, M. Forsyth & D. R. MacFarlane ENERGY TECHNOLOGY

2 Ionic Liquid Electrolyte vs. Conventional Organic Liquid id Electrolyte l t Ionic liquids are molten salts existing in the liquid phase at or around room temperature. Conventional Organic Liquids Ionic Liquids High conductivity Low viscosity High vapor pressure Low flash point Non volatile Non flammable Wide electrochemical window Designable unlimited combinations of organic ions Still relatively low conductivity and high viscosity Pros. Cons. High temp. applications High volt. applications Cons. Ohno, H., Importance and Possibility of Ionic Liquids. In Electrochemical Aspects of Ionic Liquids, Hiroyuki, O., Ed. 2005; A. S. Best, et al. Ch. 10 in Electrochemical properties p and applications of ionic liquids, eds. Angel A. J. Torriero and Muhammad J.A. Shiddiky, Nova Publishers 2011 pgs Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 2

3 Way back in 2004 C 4 mpyr TFSI mol kg 1 LiTFSI Li(s) Li + + e W.E. Pt C.E. Li R.E. Li 100 mvs C Li + + e Li(s) σ = ~1 x Scm S.cm 11 P. C. Howlett, et al., ESSL, 7 (5) 2004 A97 & PCT/AU2004/ Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 3

4 Improved Li behaviour in 2008 C 3 mpyr FSI mol kg 1 LiFSI W.E. Pt C.E. Pt 50 mvs 1 25 C F S N S F O O O O Li(s) Li + + e Li + + e Li(s) J. Saint et al., JES, 2008,155, A172 A. I. Bhatt et al., JES A66 A. S. Best, et al, JES, A903, H. Yoon, et al, JES, submitted 2013 & PCT/AU2008/ / Li Li + reversibility AND FAST CHARGE! Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 4

5 High LiFSI Salt Concentrations C 3 mpyr FSI mol kg 1 LiFSI (1:1 C 3 mpyr : Li) 5C 4C 3C 2C 1C 1.5C 0.5C 0.1C 01C 0.1C Voltag ge (V) C 4C 3C 0.5C 1.5C 1C 2C 01C 0.1C 0.1C H. Yoon, et al, J. Electrochem. Soc., 2013 submitted Capacity (mah.g -1 ) LiCoO 2 90 wt% (C8G, Nippon Chemical Industrial) + Carbon Black 5 wt% (Shawinigan) + PVdF 5 wt%, 4.5 mg.cm 2 Lithium electrochemistry and cyclic behaviour of DCA Martin Yoon Page 5

6 It s the Economy stupid (apologies B. Clinton) Ionic Liquids are expensive*. Small orders of ionic liquids on the kg scale can cost close to US$2000 Fluorination of the anion contributes tib t hugely to the cost Purification and moisture How do we change this? (In part by) Avoiding Fluorination! C 4 mpyr D. R. MacFarlane, et al, Chem. Commun., 2001, DCA Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 6

7 Electrochemistry of Neat ILs * Measured at an ambient temperature in a Arglovebox, 20mV/sec, 0.009cm Pt disc WE, Pt wire CE, 10mmol/kg AgTf in P 14 NTf 2 RE C 4 mpyr DCA C 4 mpyr TCM C 4 mpyr TCB C 4 mpyr NTF 2 E. W. of neat ILs : C 4 mpyrtcm (~ LiFePO 4 ) < (LiCoO 2 )< C 4 mpyrdca < C 4 mpyrntf 2 H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 7

8 Li Salt Solubility in Different Nitrile Moieties Dicyanamide (DCA or N(CN) 2- ) Max ~0.7 7mol kg 1 with LiDCA N-butyl-N-methylpyrrolidinium (C + 4 mpyr ) No dissolution with LiDCA, LiTFSI,LiBF LiBF 4, Tricyanomethanide (TCM or C(CN) 3 - ) Tetracyanoborate (TCB or B(CN) 4 - ) LiPF 6 over ~1.5 mol kg 1 with LiDCA We ll focus on DCA from here Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 8

9 Conductivity of Electrolytes C 05mol 4 mpyr DCA kg 1 LiX T (K) m -1 ) Co onductivity (ms.c [C 4 mpyr][dca] [C 4 mpyr][dca] + LiDCA [C 4 mpyr][dca] + LiTFSI [C 4 mpyr][dca] + LiFSI [C 4 mpyr][dca] + LiBF 4 H. Yoon, et al., manuscript in preparation, / T (1000 / K) Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 9

10 Viscosity (m mpa.s) C mpyr DCA mol kg 1 LiX Neat C 4 mpyr DCA LiDCA + C 4 mpyr DCA LiTFSI + C 4 mpyr DCA LiFSI + C 4 mpyr DCA LiBF 4 + C 4 mpyr DCA C 3 mpyr TFSI 3 C 3 mpyr FSI T ( o C) H. Yoon, et al., manuscript in preparation, J. Saint et al., JES, 2008,155, A172 Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 10

11 NMR Diffusion C mpyr DCA mol kg 1 LiX 7 Li NMR diffusion data 13 C NMR Diffusion (DCA) P. Bayley T/K T/K fficient / m 2 s - Diffusion Coef [C 4 mpyr][dca] + LiDCA [C 4 mpyr][dca] + LiTFSA [C mpyr][dca] + LiFSI 4 [C 4 mpyr][dca] + LiBF Diffusion Coef fficient / m 2 s [C 4 mpyr][dca] [C 4 mpyr][dca] + LiDCA [C 4 mpyr][dca] + LiTFSA [C 4 mpyr][dca] + LiFSI [C 4 mpyr][dca] + LiBF /T / K /T / K -1 H. Yoon, et al., manuscript in preparation, We ll focus on DCA from here Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 11

12 Lithium but no cycling.) I (ma cm -2, Arb E (V vs. Li Li + ) ppm of H 2 O E (V vs. Ag Ag + ) + H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 12

13 Moisture effect of Li cycling in C 4 mpyrdca * Measured at an ambient temperature in a Ar glovebox, 20mV/sec, 0.009cm 2 Pt disc WE, Pt wire CE, 10mmol/kg AgTf in P 14 NTf 2 RE (ma cm -2 ) I (ma cm -2 ) I ppm of H 2 O ppm of H 2 O I (ma A cm -2 ) I (ma cm -2 ) ppm of H 2 O ppm of H 2 O E (V vs. Ag Ag + ) E (V vs. Ag Ag + ) H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 13

14 Moisture effect of Li cycling in C 4 mpyrdca * Measured at an ambient temperature t in a Arglovebox, 20mV/sec, 0.009cm Pt disc WE, Pt wire CE, 10mmol/kg AgTf in P 14 NTf 2 RE I (ma cm -2 ) deposition stripping H 2 O contents (ppm) Under 100 ppm of H 2 O, Li does not cycle in DCA. H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 14

15 Symmetrical cells with different moisture Li symmetrical cell : 0.1mA/cm 2, 16min charge / discharge at 50 o C E (V) ppm of H 2 O Time (min) E (V) ppm of H 2 O Time (min.) E (V) 0.00 E (V) ppm of H 2 O Time (min.) 226 ppmof H 2O in the electrolyte shows the most stable over potential. H. Yoon, et al., Energy & Environmental Science, ppm of H 2 O Time (min.) Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 15

16 Kinetic or Electrochemical? Li symmetrical cell : 0.1mA/cm 2, 16min charge / discharge at 50 o C cycles 10 cycles 30 cycles 50 cycles (V) E h waiting 1 h 24 h waiting 226 ppm of H2O Time (min.) 226 ppm of H 2 O in the electrolyte shows the most stable over potential. H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 16

17 SEM 226ppm cycled symmetrical cell Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 17

18 In situ 7 Li NMR Cathode Material or Lithium metal Copper wire mesh Plastic Bag Pristine Cycled Copper (or Aluminum) wire mesh Separator (soaked with electrolyte) Lithium metal Chemical Shift / ppm in-situ RC N. M. Trease C. Grey Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 18

19 EIS Symmetrical Cells C 4 mpyr DCA mol kg 1 LiDCA Li symmetrical cell stored at 50 o C Li symmetrical cell cycled at 50 o C Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 19

20 Equivalent circuit Evenly distributed SEI was assumed. Evenly distributed SEI equivalent circuit C_DL CPE_SEI Rs R_CT W R_SEI Solution P + DCA- 14 P + DCA - 14 Li + DCA - e - e SEI - e - C_DL, R_CT P + 14 P + 14 P + Li + Li + Li + 14 Li + e - e - e - e - e - e - e - e - e - C_DL, R_CT Li metal Li + e - Rs SEI Lewandowski, et al., J. Power Sources 2009, 194 (1), Lane, et al., Electrochim. Acta 2010, 55 (28), Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 20

21 Fitting results C mpyr DCA mol kg 1 LiX R_CT / (ohm) R SEI / (ohm) Cycled 10 Stored Time (hrs) 5 Cycled Stored Time (hrs) Fitting error (z plot) varies from 4% to 28% Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 21

22 How does the SEI form? 200ppm H 2 O G. Lane, et al., Ph.D. Thesis, Monash University 2011 Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 22

23 LiFePO 4 cells with moisture 3.8 LiFePO 4 (HP,Phostech ) 75 wt% : Shawinigan Black 15 wt% : PVdF 10 wt%, Loading : 2.48mg/cm 2 /Solupor 5P09B / Li disc. / 0.5 mol/kg LiDCA in P 14 DCA Test Condition : 0.026mA/cm 2 CC to 3.8V, 0.026mA/cm 2 CC to 3.0V, 50 o C th 10th E (V) st Capacity (mah g -1 ) Cap pacity (mah g -1 ) ppm of H 2 O, charging ppm of H 2 O, discharging ppm of H 2 O, charging 226ppm of H 2 O, discharging Cycle number C 4 mpyr DCA showed over 130 mah g 1 of discharge capacity retaining over 94% of its initial discharge capacity after 20 cycles in Li LiFePO 4 cells. H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 23

24 Solid State Electrolyte C 1 mpyr DCA mol kg 1 C (mah.g -1 ) Capacity Charge capacity Discharge capacity Cycle number H. Yoon, et al., Energy & Environmental Science, Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 24

25 Summary 1. The electrochemical window of the cyano based ILs show that DCA has the greater cathodic stability than other nitrile moieties. However, these windows are still inferior to NTf 2 based ILs. 2. The presence of water in a C 4 mpyrdca IL improves the SEI cathodic stability suchthatrelatively efficient lithium reductionandoxidation oxidation becomespossible The use of additives can further stabilise the electrode electrolyte interface ppm to 200 ppm of H 2 O shows the best cycling ability in a Li Li symmetrical cell and a Li LiFePO 4 cell. 4. Solid (plastic crystal) electrolytes show extremely good cycling behaviour against LFP Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 25

26 Acknowledgements This research is funded by the Australian Research Council (ARC) andcsiro snationalresearch Research Flagship Energy Transformed Thanks to: Energy Storage Group, CSIRO Energy Technology Fluorine Free Electrolytes IBA2013 Barcelona A. S. Best Page 26

27 Thank You CSIRO Energy Technology Dr. Adam Best Senior Research Scientist t e Adam.Best@csiro.au w ENERGY TECHNOLOGY

28 SEM 97ppm cycled symmetrical cell Lithium electrochemistry and cyclic behaviour of DCA Martin Yoon Page 28

29 SEM 443ppm cycled symmetric cell Lithium electrochemistry and cyclic behaviour of DCA Martin Yoon Page 29

Supplementary Information.

Supplementary Information. Supplementary Information. This file contains additional experimental and analytical information. The organic ionic plastic crystals were synthesised according to the literature procedures. 1-4 Chemicals:

More information

Designing of Battery System and Study of Anode Alloy Materials for Improved Lithium Battery Performance

Designing of Battery System and Study of Anode Alloy Materials for Improved Lithium Battery Performance 1 Designing of Battery System and Study of Anode Alloy Materials for Improved Lithium Battery Performance Final Report (05/25/11) Dr. Paul Kohl, Hyea Kim, Johanna Stark The views, opinions, and/or findings

More information

electrolytes Kristina Edström, Bertrand Philippe (Pau/Uppsala), Fredrik Lindgren, Remi Dedryvère, Håkan Rensmo and Danielle Ångström Lab.

electrolytes Kristina Edström, Bertrand Philippe (Pau/Uppsala), Fredrik Lindgren, Remi Dedryvère, Håkan Rensmo and Danielle Ångström Lab. Silicon in Li-ion ion batteries and its reaction different electrolytes Kristina Edström, Bertrand Philippe (Pau/Uppsala), Fredrik Lindgren, Remi Dedryvère, Håkan Rensmo and Danielle Gonbeau Ångström Lab.,

More information

Factors Governing Life of High-Energy Lithium-Ion Cells

Factors Governing Life of High-Energy Lithium-Ion Cells Factors Governing Life of High-Energy Lithium-Ion Cells D.P. Abraham IBA 2013 March 11, 2013 Barcelona, Spain Research sponsors are both Government and Private Sector 2 Diagnostics Overview Use of characterization

More information

Supporting Information for

Supporting Information for Supporting Information for Self-stabilized solid electrolyte interface on host-free Li metal anode towards high areal capacity and rate utilization Zhenglin Hu 1,3, Shu Zhang 1, Shanmu Dong*,1, Quan Li

More information

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling

More information

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplemental Information Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using

More information

Supplementary Figure 1:

Supplementary Figure 1: b a c Supplementary Figure 1: Calibration of the Cs + sputtering rate on composite LiNi 0.7 Mn 0.15 Co 0.15 O 2 electrodes (500 ev ion energy, ~40 na measured sample current): (a) Optical profilometry

More information

Supplemental Information for:

Supplemental Information for: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Supplemental Information for: A Novel Lithium-sulfur Battery Cathode from Butadiene Rubber-caged

More information

Electrochemical properties of alkal. Citation Electrochimica Acta (2010), 55(3):

Electrochemical properties of alkal. Citation Electrochimica Acta (2010), 55(3): KURENAI : Kyoto University Researc Title Electrochemical properties of alkal bis(trifluoromethylsulfonyl)amides Author(s) Kubota, Keigo; Tamaki, Kenichiro; N Takuya; Hagiwara, Rika Citation Electrochimica

More information

Highly Efficient Li 2 O 2 Oxidation System in Li-O 2 Batteries

Highly Efficient Li 2 O 2 Oxidation System in Li-O 2 Batteries Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supplementary Information for Highly Efficient Li 2 2 xidation System in Li- 2 Batteries

More information

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media RIL-128 Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media Michael C. Kimble, Thomas J. Blakley, Daniel R. Carr, and Karen D. Jayne 2 Park Drive, Suite 4 Westford, MA 01886 Presented

More information

How initial nucleation influences discharge capacities of Li-O 2 cells

How initial nucleation influences discharge capacities of Li-O 2 cells How initial nucleation influences discharge capacities of Li-O 2 cells Ali Rinaldi 1, Olivia Wijaya 1, Denis Yu 2, Harry.E. Hoster 1 1TUM CREATE Centre for Electromobility #10-02 CREATE Tower, Singapore

More information

Li-S S and Li-Air Systems: The Characterization Challenge

Li-S S and Li-Air Systems: The Characterization Challenge Li-S S and Li-Air Systems: The Characterization Challenge Petr Novák Anna Evans Arnd Garsuch (BASF SE) Hermann Kaiser Pascal Maire Tiphaine Poux Holger Schneider 2 Go beyond Li-ion! But what is there???

More information

Electrochemical performance of lithium-rich layered oxides for

Electrochemical performance of lithium-rich layered oxides for IBA 2013 Electrochemical performance of lithium-rich layered oxides for electric vehicle applications Jay Hyok Song, Andrei Kapylou, Chang Wook Kim, Yong Chan You, and Sun Ho Kang* SAMSUNG SDI Contents

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

Cycle life performance of lithium-ion pouch cells

Cycle life performance of lithium-ion pouch cells Journal of Power Sources 158 (2006) 679 688 Cycle life performance of lithium-ion pouch cells Karthikeyan Kumaresan, Qingzhi Guo, Premanand Ramadass, Ralph E. White Department of Chemical Engineering,

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell, Kristina Edström, Matthew J. Lacey Department of Chemistry - Ångström Laboratory, Uppsala University,

More information

Towards Sustainable Electrochemical Energy Storage: Potassium-Based Dual-Graphite Batteries

Towards Sustainable Electrochemical Energy Storage: Potassium-Based Dual-Graphite Batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 217 Electronic supplementary information Towards Sustainable Electrochemical Energy

More information

Supporting Information

Supporting Information Supporting Information Conditioning-Free Electrolytes for Magnesium Batteries Using Sulfone-Ether Mixtures with Increased Thermal Stability Laura C. Merrill and Jennifer L. Schaefer*, University of Notre

More information

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery**

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery** Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for Li-S battery**

More information

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy. ELECTROLYSIS: -the process of supplying electrical energy to a molten ionic compound or a solution containing ions so as to produce a chemical change (causing a non-spontaneous chemical reaction to occur).

More information

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator 217 BLI X, Symposium on Energy Storage, June 27-29, 217, at IBM- Research Almaden in San Jose, CA, USA Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with

More information

Supporting Information

Supporting Information Supporting Information Mg 2 B 2 O 5 Nanowires Enabled Multifunctional Solid-State Electrolyte with High Ionic Conductivity, Excellent Mechanical Properties and Flame-retardant Performance Ouwei Sheng,

More information

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes Supplementary Information for Extremely Stable Sodium Metal Batteries Enabled by Localized High Concentration Electrolytes Jianming Zheng, Shuru Chen, Wengao Zhao, Junhua Song, Mark H. Engelhard, Ji-Guang

More information

The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for. Advanced Li-S Battery Systems

The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for. Advanced Li-S Battery Systems Supporting information for: The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for Advanced Li-S Battery Systems Stefano Meini 1,, Ran Elazari 2,,, Ariel Rosenman 2, Arnd Garsuch 3

More information

Re-building Daniell Cell with a Li-Ion exchange Film

Re-building Daniell Cell with a Li-Ion exchange Film Supplementary Information Re-building Daniell Cell with a Li-Ion exchange Film Xiaoli Dong, Yonggang Wang*, Yongyao Xia Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative

More information

Stability of Sodium Couple in Organic and Inorganic Molten Salt Electrolytes Investigated with Electrochemical Quartz Crystal Microbalance

Stability of Sodium Couple in Organic and Inorganic Molten Salt Electrolytes Investigated with Electrochemical Quartz Crystal Microbalance A346 0013-4651/2001/148 4 /A346/5/$7.00 The Electrochemical Society, Inc. Stability of Sodium Couple in Organic and Inorganic Molten Salt Electrolytes Investigated with Electrochemical Quartz Crystal Microbalance

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell,

More information

IBA Meeting, BARCELONA IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ.

IBA Meeting, BARCELONA IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ. 2013/03/11-1515 IBA Meeting, BARCELONA SAFETY ISSUE OF GRAPITE ANODE IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ. yoshio@cc.saga-u.ac.jp Fire from PC

More information

PERFORMANCE OF DIFFERENT COAL-TAR PITCH DERIVED CARBONS IN LI-ION BATTERIES

PERFORMANCE OF DIFFERENT COAL-TAR PITCH DERIVED CARBONS IN LI-ION BATTERIES PERFORMANCE OF DIFFERENT COAL-TAR PITCH DERIVED CARBONS IN LI-ION BATTERIES A. Concheso, R. Santamaría, R. Menéndez, R. Alcántara #, P. Lavela #, J.L. Tirado # Instituto Nacional del Carbón (CSIC), Apdo.

More information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information Lithium Batteries with Nearly Maximum Metal Storage Supporting Information Abdul-Rahman O. Raji,, Rodrigo Villegas Salvatierra,, Nam Dong Kim, Xiujun Fan, Yilun Li, Gladys A. L. Silva, Junwei Sha and James

More information

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R.

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R. Supplementary Information. Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells Jennifer M. Pringle,* Vanessa Armel and Douglas R. MacFarlane Experimental. 3,4-ethylenedioxythiophene

More information

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal Supporting Information An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal Adam P. Cohn 1, Nitin Muralidharan 2, Rachel Carter 1, Keith Share 2, and Cary L. Pint 1,2 * 1 Department of

More information

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes Haiping Wu 1, Yue Cao 1, Linxiao Geng 2 & Chao Wang 1* 1 Department of Chemistry, University of California Riverside,

More information

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery Kosuke Nakamoto, Ayuko Kitajou*, Masato Ito* and Shigeto Okada* (IGSES, Kyushu University, *IMCE, Kyushu University) Oct 6.

More information

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University IBM Almaden June 27, 2017 Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University (ktlee@snu.ac.kr) 1) Introduction 2) Failure mechanism of a redox mediator

More information

Power the future CIC March 21st 2012

Power the future CIC March 21st 2012 Power the future CIC March 21st 2012 Batteries, Past, Present and Future Michel Armand 2010 CIC energigune. 2010 All rights reserved 1 Billion Cars in 2010 and and 1.3 Millions fatalities on the roads!

More information

Route to sustainable lithium-sulphur batteries with high practical capacity

Route to sustainable lithium-sulphur batteries with high practical capacity Route to sustainable lithium-sulphur batteries with high practical capacity through a fluorine free polysulfide catholyte and self-standing Carbon Nanofiber membranes. Du-Hyun Lim a,b, Marco Agostini a,

More information

Carbon Nanotubes for Li + Batteries. U.S. Government

Carbon Nanotubes for Li + Batteries. U.S. Government Assistant Professor Chemical & Biomedical Engineering Group Leader of CNT and Advanced Batteries NanoPower Research Laboratories (NPRL) Golisano Institute for Sustainability (GIS) Rochester Institute of

More information

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4 Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4 Brett L. Lucht Department of Chemistry University of Rhode Island Source of Energy Fade of Lithium-ion Batteries Poor calendar

More information

Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from

Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from polyimide used to seal Titanium (Ti) current collectors

More information

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation JRC Exploratory Research Workshop Safer Li-Ion Batteries by Preventing Thermal

More information

An Ultrafast Rechargeable Lithium Metal Battery

An Ultrafast Rechargeable Lithium Metal Battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting information for An Ultrafast Rechargeable Lithium Metal Battery

More information

Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface

Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface Xiaobiao Wu a, Sihui Wang a, Xiaochen Lin a, Guiming Zhong a, Zhengliang Gong

More information

mixtures of alkali bis(fluorosulfon Author(s) Kubota, Keigo; Nohira, Toshiyuki; H Citation Electrochimica Acta (2012), 66: 320

mixtures of alkali bis(fluorosulfon Author(s) Kubota, Keigo; Nohira, Toshiyuki; H Citation Electrochimica Acta (2012), 66: 320 New inorganic ionic liquids Titletemperatures and wide electrochemic possess mixtures of alkali bis(fluorosulfon Author(s) Kubota, Keigo; Nohira, Toshiyuki; H Citation Electrochimica Acta (2012), 66: 320

More information

The Effects of LaF 3 Coating on the Electrochemical Property of Li[Ni 0.3 Co 0.4 Mn 0.3 ]O 2 Cathode Material

The Effects of LaF 3 Coating on the Electrochemical Property of Li[Ni 0.3 Co 0.4 Mn 0.3 ]O 2 Cathode Material 2584 Bull. Korean Chem. Soc. 2009, Vol. 30, No. 11 Su Hyun Yun et al. The Effects of LaF 3 Coating on the Electrochemical Property of Li[ Co 0.4 Cathode Material Su Hyun Yun, Seuk Buom Kim, and Yong Joon

More information

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode.

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode. Supplementary Figure 1.The lithium polysulfide distribution on the patterned electrode. SEM image of the ITO-carbon electrode after dipping into Li 2 S 8 solution and drying, which shows the random distribution

More information

The below identified patent application is available for licensing. Requests for information should be addressed to:

The below identified patent application is available for licensing. Requests for information should be addressed to: DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708 IN REPLY REFER TO Attorney Docket No. 300139 15 December 2017 The below identified

More information

Novel Materials for Lithium-Ion Batteries

Novel Materials for Lithium-Ion Batteries Novel Materials for Lithium-Ion Batteries John Bradley May 18th 2012 Project Supervisors: Prof. West & Chaou Tan Abstract The effect of carbon coating on two novel battery cathode materials LiMnP 2 O 7

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2017 Supplementary Information Self-Standing Bi 2 O 3 Nanoparticles/Carbon Nanofiber

More information

Final Report for AOARD Grant AOARD Carbon-coated current collectors for high-power Li-ion secondary batteries /20

Final Report for AOARD Grant AOARD Carbon-coated current collectors for high-power Li-ion secondary batteries /20 Final Report for AOARD Grant AOARD-10-4155 Carbon-coated current collectors for high-power Li-ion secondary batteries 2011.9/20 Name of Principal Investigators: - e-mail address : nlw001@ntu.edu.tw - Institution

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High Electrochemical Activity of the Oxide Phase in Model Ceria- and Ceria-Ni Composite Anodes William C. Chueh 1,, Yong Hao, WooChul Jung, Sossina M. Haile Materials Science, California Institute of Technology,

More information

Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials

Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials Chemistry Symposium, AABC Europe, 30 January 2 February, 2017, Mainz, GER Simple Experiments Giving Deep Insights into Capacity Fade and Capacity Loss Mechanisms of Li Battery Materials Florian Holtstiege

More information

INSTITUTE OF INTEGRATED ELECTRICAL ENGINEERS OF THE PHILIPPINES, INC. (IIEE-ERCSA) First IIEE Accredited Foreign Chapter (Charter

INSTITUTE OF INTEGRATED ELECTRICAL ENGINEERS OF THE PHILIPPINES, INC. (IIEE-ERCSA)  First IIEE Accredited Foreign Chapter (Charter INSTITUTE OF INTEGRATED ELECTRICAL ENGINEERS OF THE PHILIPPINES, INC. () www.iiee-ercsa.org First IIEE Accredited Foreign Chapter (Charter No. 62) Most Outstanding Chapter Overseas for the year 1998, 1999,

More information

A Quantum Leap Forward for Li-Ion Battery Cathodes

A Quantum Leap Forward for Li-Ion Battery Cathodes A Quantum Leap Forward for Li-Ion Battery Cathodes Josh Thomas Ångström Advanced Battery Centre, Uppsala University, Sweden. josh.thomas@mkem.uu.se GCEP Research Symposium: Energy Research Five Years and

More information

Supporting Information. Investigation of the Reversible Intercalation/Deintercalation of Al

Supporting Information. Investigation of the Reversible Intercalation/Deintercalation of Al Supporting Information Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li 3 VO 4 @C Microsphere Composite Cathode Material for Aluminum-Ion Batteries Jiali Jiang, He

More information

The Li-O 2 Battery with a Dimethylformamide Electrolyte

The Li-O 2 Battery with a Dimethylformamide Electrolyte The Li-O 2 Battery with a Dimethylformamide Electrolyte Yuhui Chen, Stefan A. Freunberger, Zhangquan Peng, Fanny Bardé and Peter G. Bruce* School of Chemistry, University of St. Andrews, North Haugh, St.

More information

Advanced Energy Storage and the Importance of Graphite Anode Materials

Advanced Energy Storage and the Importance of Graphite Anode Materials Advanced Energy Storage and the Importance of Graphite Anode Materials Dr. John C. Burns CEO Novonix, Canada Dr. Edward R. Buiel CEO PUREgraphite, USA July 19, 2017 1 Overview LIB Raw Materials + How much

More information

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Supporting Information Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Bin Liu, Jun Zhang, Xianfu Wang, Gui Chen, Di

More information

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT Yasushi Katayama Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1, Hiyoshi,

More information

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Korean J. Chem. Eng., 27(1), 91-95 (2010) DOI: 10.1007/s11814-009-0298-0 RAPID COMMUNICATION Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Sung-Chul Hong*,

More information

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017 Lower Cost Higher Performance Graphite for LIBs Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017 Outline Company overview Review of natural graphite resources

More information

Capacity fade study of lithium-ion batteries cycled at high discharge rates

Capacity fade study of lithium-ion batteries cycled at high discharge rates Journal of Power Sources 117 (2003) 160 169 Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov * Department of Chemical Engineering, University

More information

State of Lithium Ion Battery Research

State of Lithium Ion Battery Research State of Lithium Ion Battery Research Professor Vanessa Wood Department of Information Technology and Electrical Engineering ETH Zürich 2/5/2018 1 Lithium ion batteries can be used for many applications

More information

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable)

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable) Batteries Self contained electrochemical cell Dry Cell (Flashlight Battery)! Primary batteries (not rechargeable)! Secondary batteries (rechargeable) Anode: Zn(s)! Research Needed to Improve Batteries:

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

Electrode and Molecular Architectures for Iron based Multivalent Systems

Electrode and Molecular Architectures for Iron based Multivalent Systems Electrode and Molecular Architectures for Iron based Multivalent Systems Jagjit Nanda Materials Science and Technology Division 2 nd MRES, North Eastern University August 20 th 2014 Collaborators S. K.

More information

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

More information

Thermal Management of Lithium-ion Batteries

Thermal Management of Lithium-ion Batteries Thermal Management of Lithium-ion Batteries APEC 2018 Greg Albright 1 What Are We Talking About? Maximize Vehicle Range (battery kwh; regen; charge time) Maximize Performance (power) Minimize Cost ($/mile)

More information

THERMAL PROPAGATION IN LITHIUM-ION BATTERIES

THERMAL PROPAGATION IN LITHIUM-ION BATTERIES THERMAL PROPAGATION IN LITHIUM-ION BATTERIES Fredrik Larsson, PhD March 2018 Research Institutes of Sweden SAFETY AND TRANSPORT ELECTRONICS Gasoline very dangerous We have learnt how to make it safe Li-ion

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

THE UNIVERSITY OF QUEENSLAND

THE UNIVERSITY OF QUEENSLAND THE UNIVERSITY OF QUEENSLAND Improving the Electrochemical Performance of Lithium-Sulfur Batteries via Separator Coating Student Name: Jun Ma Course Code: ENGG7281 Supervisor: Dr. Ruth Knibbe Submission

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 199 (2012) 239 246 Contents lists available at SciVerse ScienceDirect Journal of Power Sources jo ur nal homep age: www.elsevier.com/locate/jpowsour Development of ionic liquid-based

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH Nanocrystalline LiFePO as cathode material for lithium battery applications Abstract S.C SIAH Engineering Science Programme, National University of Singapore Kent Ridge, Singapore 119260 LiFePO was prepared

More information

Insights into the reversibility of the aluminum graphite battery

Insights into the reversibility of the aluminum graphite battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Insights into the reversibility of the aluminum graphite battery Giuseppe

More information

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal ACCELERATED CORROSION TESTING OF GALVANIC COUPLES James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal Luna Innovations 706 Forest St. Suite A Charlottesville, VA 22903 dantej@lunainnovations.com

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents JOUL, Volume 1 Supplemental Information A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,

More information

Kuang-Che Hsiao. Supervisor: Prof. Tony West

Kuang-Che Hsiao. Supervisor: Prof. Tony West New Potential Cathode Materials for Lithium-ion ion Battery - Synthesis and characterization of Li 1+x FePO 4-x N x cathode - Kuang-Che Hsiao Supervisor: Prof. Tony West 08/06/2010 E-mail: dtp09kh@sheffield.ac.uk

More information

Niobium Powder Production in Molten Salt by Electrochemical Pulverization

Niobium Powder Production in Molten Salt by Electrochemical Pulverization Niobium Powder Production in Molten Salt by Electrochemical Pulverization Boyan Yuan * and Toru H. Okabe ** *: Graduate Student, Department of Materials Engineering, University of Tokyo **: Associate Professor,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating Quan Pang, Laidong Zhou, Linda F. Nazar* Department of Chemistry and the Waterloo Institute for

More information

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes International Symposium on Electrical Fatigue in Functional Materials September 15, 2014 Sellin, Rügen, Germany Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

More information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Operando Electron Magnetic Measurements in Li-ion Batteries Gregory Gershinsky, Elad Bar, Laure Monconduit,

More information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

Electrochemistry at Haldor Topsøe SOEC and Battery Materials Electrochemistry at Haldor Topsøe SOEC and Battery Materials Søren Dahl, Electrochemisty R&D, Haldor Topsoe CINF Summer School 2016 - Reactivity of nanoparticles for more efficient and sustainable 1 energy

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral LiMO 2 (M = Ni, Co, Mn) with the space group R3m. b, The

More information

SUPPORTING INFORMATION. Lithium Metal Anodes with An Adaptive Solid-Liquid Interfacial Protective Layer

SUPPORTING INFORMATION. Lithium Metal Anodes with An Adaptive Solid-Liquid Interfacial Protective Layer SUPPORTING INFORMATION Lithium Metal Anodes with An Adaptive Solid-Liquid Interfacial Protective Layer Kai Liu 1, Allen Pei 1, Hye Ryoung Lee 2, Biao Kong 1, Nian Liu 1, Dingchang Lin 1, Yayuan Liu 1 Chong

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO 3 Yifan Dong, Tyler Slade, Matthew J. Stolt, Linsen Li, Steven N. Girard, Liqiang

More information

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem Thermodynamics and Electrode Potential ME 472-062 Copyright Dr. Zuhair M. Gasem Corrosion Science and Engineering 2 Corrosion Science Engineering: corrosion forms, and controlling methods Chpater2 Thermodynamics

More information

Application in High-Performance Lithium-

Application in High-Performance Lithium- Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium- Sulfur (Li-S) Batteries Jiepeng Rong,Mingyuan

More information

Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells

Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells Supporting Information Polymer-Rich Composite Electrolytes for All Solid-State Li-S Cells Xabier Judez,, Heng Zhang,*, Chunmei Li,*, Gebrekidan Gebresilassie Eshetu, Yan Zhang, José A. González-Marcos,

More information

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES Introduction Electrochemical Cells In this part of the experiment, four half cells are created by immersing metal strips of zinc, copper,

More information

FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE POROSITY EVOLUTION MODEL

FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE POROSITY EVOLUTION MODEL Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary data for : FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE

More information

Effects of Electrolyte Salts on the Performance of Li-O 2 Batteries

Effects of Electrolyte Salts on the Performance of Li-O 2 Batteries Supporting Information Effects of Electrolyte Salts on the Performance of Li-O 2 Batteries Eduard Nasybulin, a Wu Xu, a * Mark H. Engelhard, b Zimin Nie, a Sarah D. Burton, b Lelia Cosimbescu, a Mark E.

More information