Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete

Size: px
Start display at page:

Download "Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete"

Transcription

1 Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete Abstract Aminath Ali and Prasert Suwanvitaya Department of Civil Engineering, Faculty of Engineering, Kasetsart University Plastic shrinkage cracking is an important factor in the ultimate life of a concrete structure. The cracks allow ingress of deleterious substances into the concrete, which in turn could lead to structural failure. In recent years, fiber reinforced concrete has become popular as a preventive measure for plastic shrinkage cracking. Low volume fiber reinforcement has been recommended as a crack control solution, but there are no standard specifications for the application of fiber reinforced concrete (FRC) as a crack control method. This research studied the effects of steel and polyvinyl alcohol (PVA) fibers on the shrinkage cracking of concrete and the effect of concrete strength on the performance of fibers. The investigations consisted of Ordinary Portland Cement concrete with two cement contents and three fiber volumes of 0.05%, 0.1% and 0.15%. Restrained shrinkage tests were conducted using uniaxially restrained specimens and unrestrained specimens were tested to determine the free shrinkage behavior with fibers. Results indicated that in low dosages both steel and PVA fibers reduced plastic shrinkage cracking. However, reduction in free shrinkage of concrete was not as significant. It was also observed that the steel fibers increased the tensile capacity of the concrete while the PVA fibers did not show any substantial improvement. Keywords Plastic shrinkage cracking, free shrinkage, fiber reinforced concrete, steel fiber, polyvinyl alcohol fiber. 1. Introduction Concrete is a brittle material by its nature with high compressive strength, limited by low tensile capacity. Normally to allow concrete to withstand tensile stresses, steel reinforcement is provided. Steel reinforcement does not prevent early age cracking that occurs primarily due to shrinkage. ฉบ บท 85 ป ท 26 กรกฎาคม - ก นยายน

2 46 ว ศวกรรมสาร มก. Cracking occurs when the tensile stress developed in the member exceeds the tensile capacity of the material. The mechanisms that occur during the maturing of fresh concrete causes change in volume of the concrete itself. If the concrete is allowed to expand and contract without any form of restraint, it will not crack. However, fresh concrete, even at its earliest age has some internal restraints due to aggregates and reinforcement, which usually cause minute cracking. These early age effects can be broadly divided into two stages. Firstly, cracking that occurs before the concrete has set (i.e. concrete is in a fluid or semi-fluid state), and secondly, cracking that occurs after the concrete has begun to set [1]. In the plastic stage (or the early age), plastic shrinkage cracking and plastic settlement cracking causes the most significant problems. Initial cracking age is delayed when low percentages of fibers are added to the concrete. Fibers prevent cracks from widening and propagating throughout the concrete. However, there is no significant reduction in free shrinkage observed with polymer fibers [2]. Zhang & Li [3] used steel fibers to show that long-term shrinkage was reduced in steel fiber reinforced concrete (SFRC). The total plastic shrinkage crack area reduced with increased steel fiber volume [4]. Banthia et al. [5] confirmed that, at constant temperature and humidity, steel fiber reinforced concrete produced less cracking than normal concrete. PVA fibers are very effective at reducing early age cracking and drying shrinkage [6]. 2. Experimental methodology 2.1 Overview The main objective of the research was to establish the effect of steel and PVA fiber reinforcement on the plastic shrinkage cracking behavior of concrete, with varying dosage of fibers. To study this, free shrinkage tests and restrained shrinkage tests were conducted under normal temperature and humidity with accelerated wind velocity. Splitting tensile tests were used to determine the tensile capacity of the mixes, and uniaxially restrained shrinkage tests were conducted to determine the cracking potential in relation to fiber type and fiber content. 2.2 Materials & Mix Proportion Normal strength concrete, using commercially available ASTM Type I Portland cement was produced. There were two series of mixtures identified as M20 & M30 according to cement content. Table 1 shows the mix proportions used in the study. Locally available graded river sand with a fineness modulus of 2.8 was used as fine aggregate, and 9.5mm graded coarse aggregate was used in the mixture. Commercially available 60mm long hooked end alloy-steel monofilament fibers with elastic modulus of 210 GPa and 12mm long PVA monofilament microfibers with elastic modulus of 40 GPa were used in this study. The mixtures were designed with high waterto-cement ratio and high cement content to induce visible cracking.

3 Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete 47 Table 1 Mix Proportions in kg/m 3 Series M20 M30 Cement Content Fine Aggregate Content Coarse Aggregate Content Water/Cement ratio Seven mixtures were evaluated for each series with fiber volumes of 0%, 0.05%, 0.1%, and 0.15%. Two free shrinkage specimens, one restrained shrinkage specimen and two splitting tensile test specimens were tested for each mixture. Plastic shrinkage cracking tests were conducted under normal laboratory conditions within a temperature range of 29ºC - 33ºC and 65% RH for 24 hours. Free shrinkage tests were conducted at 25ºC in a temperature controlled room. Splitting tensile tests were conducted after 28 days of water curing. 2.3 Mix Procedure Plain concrete was prepared according to ASTM C192/C 192M 02. Then, the fibers were gradually added to the fresh concrete, allowing the fibers to disperse thoroughly. When all the fibers were mixed in, the concrete was allowed to rest for two minutes and again mixed for three minutes. The concrete was then placed in the steel molds in two layers, smoothed with a steel towel. Final floating was done perpendicular to the length of the specimen. For each mix, workability of the mixture was determined using the slump test. Specimens were transferred to the drying environment within 30 min from when the water was added to the concrete. 2.4 Test Procedure In this study, a variation of the geometry used by Berke & Dalliare [7] with stress risers was used to realistically duplicate restraint conditions found in practice. The specimens used for restrained shrinkage test were 100 x 100 x 600mm in size. A 60mm high stress riser at the center of span and two 45mm high risers at the two ends were provided on the bottom surface of the mold to produce concentrated stress and reduce thickness at the center of the slab. The risers at the ends restrict the longitudinal movement and cracks were induced at the thin section above the middle riser. Figure 1 shows the geometry of the restrained mold. Figure 1 Geometry of restrained mold The specimens were measured to quantify the amount of cracked surface area using image analysis software. Results were compared with plain control specimens to calculate the cracking ratio of each mixture The procedure measures for the free shrinkage of concrete specimens described in ASTM C157 and ASTM C341 were used in this test. The size of the specimen had to be greater than 3 inches due to the fiber length, therefore specimens of size 100 x 100 x 300mm were cast and measured for change in length using a comparator. The specimens were conditioned in a lime bath at constant ฉบ บท 85 ป ท 26 กรกฎาคม - ก นยายน 2556

4 48 ว ศวกรรมสาร มก. temperature and moved to storage. Readings were taken on day 1, 2, 3, 7, and 14. In addition, standard 6-inch dia. cylinders were 3. Results and discussion Table 2 Test results of the experimental program loaded up to cracking point to find out the 28- day splitting tensile strength of each mixture. Series Fiber Crack Area (mm. 2 ) Tensile Strength (N/ Free shrinkage at 14 mm. (%Vol.) ) days (µm.) M20 M30 M20 M30 M20 M30 Control PVA Steel Plastic shrinkage cracking When the crack reduction behavior of PVA fiber was considered for both series, a very significant reduction in total cracked area was observed. M30 series showed the highest improvement, with 91% reduction for 0.15% fiber volume, 66% with 0.1% and 64% with 0.05% fiber volume. With 0.15% fiber volume in M20, 66% of the cracks were controlled and with 0.1% fiber volume 61% of the cracks were controlled. However, for 0.05% fiber volume only 24% cracks reduction was achieved. Figure 2 Influence of fiber volume on plastic shrinkage cracks in M20 & M30 series

5 Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete 49 For steel FRC specimens the highest reduction was 40% and 30% with 0.1% fiber volume for M20 and M30, respectively. For concrete with 0.05% fiber volume, the crack reduction percentage was 24% and 25% and up to 0.05%, fiber volume the low strength M20 series had higher crack area. Between 0.05% and 0.1% fiber volume, this effect reversed and M30 series showed higher total crack area. At 0.15%, the crack reduction percentage was lower that of 0.1% for both concrete mixes. Plastic shrinkage cracking in SFRC reduced as fiber volume increased confirming the conclusions by Eren & Marar [4] and Jozsa & Fenveysi [8]. both series of mixes are plotted together in Figure 2. High coefficient values indicate a strong relationship between the two variables. The results agree with the general conclusions made by Passuello et al. [9] that increasing fiber volume leads to a reduction in plastic shrinkage cracking. 3.2 Tensile Properties The tensile splitting tests were carried out in accordance to ASTM 341. The 14 specimens were tested at the age of 28 days (see Figure 3). The loading rate was between 135 to 180 kn/min (0.032 to MPa/s). Table 2 Regression analysis results between total plastic shrinkage area and fiber volume percentage Mix Type a b R 2 M20 PVA M20 Steel M30 PVA M30 Steel Regression analysis showed a linear relationship between total plastic shrinkage area (A) and fiber volume (V). The results of the analysis are given in Table 2 and the relationship obtained follows the equation: A = a (V) + b (1) Where a and b are regression coefficients, R2 is the correlation coefficient, A is total plastic shrinkage crack area in mm2 and V is fiber volume (%). Results show an inverse linear relationship between fiber volume and cracked area. The regression lines and experimental results for Figure 3 Influence of fiber on tensile strength The characteristic tensile splitting strength comparison for PVA and steel fiber used in the M20 series does not show an increased tensile strength with increased fiber volume. The steel fiber specimens were able to carry additional load even after cracking, making it difficult to determine the critical load. Slight increase in tensile capacity was measured for M30 series compared to M20 series, but there is no improvement compared with plain concrete. 3.3 Free shrinkage The free shrinkage curves in Figure 4 show the shrinkage for each series of specimens. The control specimen had the ฉบ บท 85 ป ท 26 กรกฎาคม - ก นยายน 2556

6 50 ว ศวกรรมสาร มก. highest shrinkage as expected. PVA and steel FRC with the lowest fiber content (PVA1 and SF1) did not show any significant shrinkage compared to plain concrete. The PVA3 mix with 0.15% fiber had the least shrinkage. In all the mixes, it was observed that with increase in fiber volume, shrinkage increased rapidly for the first 2-3 days and declined within two weeks. This rapid rate of shrinkage during the first 2 days can be attributed to the combined effect of drying, chemical (autogenous shrinkage) and plastic shrinkage. The behavior tallies with the results obtained by Altoubat & Lange [10]. a) b) Figure 4 Free shrinkage for 14-day duration with varying fiber volumes on a) M20 and b) M30 series. 3.4 Relationship between tensile strength and plastic shrinkage cracking. Correlation analysis showed that there is a strong inverse relationship between total plastic shrinkage cracking area and split tensile capacity of concrete. Both M20 and M30 series with PVA fiber has correlation coefficients of and respectively. Steel fiber specimens for M20 and M30 series had values of and Figure 5

7 Plastic Shrinkage Cracking in Steel and Polypropylene Fiber Reinforced Concrete 51 Figure 5 Correlation between total cracked area and split tensile strength shows that specimens with high tensile strength had lower cracked area. Although there is a correlation between the strength and total cracked area for different fiber volumes, this does not imply for all fiber types. Further studies using different fiber types need to done before any definitive conclusion is made. 4. Conclusion Experimental results indicate that FRC is more effective in crack reduction than plain concrete. It was found that plastic shrinkage cracks were significantly reduced with addition of short PVA fibers, compared to steel FRC and plain concrete. There was no significant difference between the behaviors of steel fibers in both series of concrete. At low volumes, PVA microfibers showed the most improvement. Change in length tests showed that at very low fiber volumes the reduction in shrinkage seen for both fiber types (less than 10%) was not significant enough to make a conclusion. Further research with slightly higher volumes of fibers need to be done to isolate the influence of fiber volume. 5. Acknowledgments The authors appreciate the financial support given by Thailand International Development Cooperation Agency (TICA) and material support given by Kasetsart University for this study. 6. References [1] Bentur A., Report 25: Early Age Cracking in Cementitious Systems - Report of RILEM Technical committee TC 181-EAS: Early Age Cracking, Shrinkage Induced Stresses and Cracking in Cementitious Systems, Vol. 25 of RILEM report, Bentur. RILEM Publications, 2003, 337 pages. ฉบ บท 85 ป ท 26 กรกฎาคม - ก นยายน 2556

8 52 ว ศวกรรมสาร มก. [2] Weiss W. J., Yang W., and Shah S. P., Restrained Shrinkage Cracking in Concrete, Sixth International Purdue Conference On Concrete Pavement: Design and Materials for High Performance. Purdue University, 197, pp [3] Zhang J., and Li V., Influences of Fibers on Drying Shrinkage of Fiber-Reinforced Cementitious Composite, Journal of Engineering Mechanics, Vol. 127, No.1, 2001, pp [4] Eren Ö., and Marar K., Effect of Steel Fibers on Plastic Shrinkage Cracking of Normal and High Strength Concretes, Materials Research, Vol. 13, No.2, 2010, pp [5] Banthia, N., Yan, C., and Mindess S., Restrained Shrinkage Cracking In Fiber Reinforced Concrete: A Novel Test Technique, Cement And Concrete Research, Vol. 26, No.1, 1996, pp [6] Corinaldesi, V., and Moriconi G., Characterization of Self-Compacting Concretes Prepared with Different Fibers and Mineral Additions, Cement and Concrete Composites, Vol. 33, No. 5, 2011, pp [7] Berke N.S. and Dallaire M.P., The Effect of Low Addition Rates of Polypropylene Fibers on Plastic Shrinkage Cracking and Mechanical Properties of Concrete, (pp ). In J.I. Daniel & S.P. Shah. (Eds.), Fiber Reinforced Concrete Developments an Innovations. American Concrete Institute. Farmington Hills, MI, [8] Jozsa Z., and Fenveysi O., Early Age Shrinkage Cracking of Fiber Reinforced Concrete, Concrete Structure, Vol. 11, 2010, pp [9] Passuello A., Moriconi G., and Shah S. P., Cracking Behavior of Concrete with Shrinkage Reducing Admixtures and PVA Fibers, Cement and Concrete Composites, Vol. 31, No.10, 2009, pp [10] Altoubat S. A., and Lange D. A., Creep, Shrinkage and Cracking of Restrained Concrete at Early Age. ACI Materials Journal, Vol. 98, No. 4, 2001, pp

Effect of Steel Fibers on Plastic Shrinkage Cracking of Normal and High Strength Concretes

Effect of Steel Fibers on Plastic Shrinkage Cracking of Normal and High Strength Concretes Materials Research. 2010; 13(2): 135-141 2010 Effect of Steel Fibers on Plastic Shrinkage Cracking of Normal and High Strength Concretes Özgür Eren a, Khaled Marar b, * a Department of Civil Engineering,

More information

Experimental Research on the Mechanical Properties of PVA Fiber Reinforced Concrete

Experimental Research on the Mechanical Properties of PVA Fiber Reinforced Concrete Research Journal of Applied Sciences, Engineering and Technology 5(18): 4563-4567, 213 ISSN: 24-7459; e-issn: 24-7467 Maxwell Scientific Organization, 213 Submitted: November 8, 212 Accepted: January 1,

More information

Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin

Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin Civil Engineering Infrastructures Journal, 47(2): 229 238, December 2014 ISSN: 2322 2093 Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin Rashid Dadash, P. 1* and Ramezanianpour, A. A.

More information

Laboratory Assessment of Drying Shrinkage of Concretes Containing Shrinkage Reducing Agents Compared with a New Low shrinkage Concrete

Laboratory Assessment of Drying Shrinkage of Concretes Containing Shrinkage Reducing Agents Compared with a New Low shrinkage Concrete Laboratory Assessment of Drying Shrinkage of Concretes Containing Shrinkage Reducing Agents Compared with a New Low shrinkage Concrete Bob Bornstein, Tony Song 2, and Valentin Mukhin 3 Manager Technical

More information

Evaluation of Performance of Hybrid Fibre Reinforced Concrete (HFRC) for M25 Grade

Evaluation of Performance of Hybrid Fibre Reinforced Concrete (HFRC) for M25 Grade Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Evaluation

More information

STRENGTH PROPERTIES OF SLURRY INFILTRATED FIBROUS CONCRETE (SIFCON) PRODUCED WITH DISCRETE BAMBOO AND STEEL FIBRES

STRENGTH PROPERTIES OF SLURRY INFILTRATED FIBROUS CONCRETE (SIFCON) PRODUCED WITH DISCRETE BAMBOO AND STEEL FIBRES STRENGTH PROPERTIES OF SLURRY INFILTRATED FIBROUS CONCRETE (SIFCON) PRODUCED WITH DISCRETE BAMBOO AND STEEL FIBRES Olutoge F. A. 1 Ofuyatan O. M. 2, 3, Olowofoyeku O. A. 2, 3, Bamigboye G. 3 and Busari

More information

Strength and durability of high performance engineered cementitious composites

Strength and durability of high performance engineered cementitious composites Strength and durability of high performance engineered cementitious composites A. Arun Kumar, Omansh Sharma, Sarthak Bansal and Vaibhav Singhai This experimental investigation is focused on strength and

More information

Mechanical Properties Of Hybrid Fibre Reinforced Composite Concrete. (HyFRCC)

Mechanical Properties Of Hybrid Fibre Reinforced Composite Concrete. (HyFRCC) Mechanical Properties Of Hybrid Fibre Reinforced Composite Concrete. (HyFRCC) 1, 2, a *Wan Amizah Bt Wan Jusoh 1, b, Izni Syahrizal Bin Ibrahim 1 Faculty of Civil Eng, Universiti Teknologi Malaysia (UTM),

More information

Study On Properties Of High Strength Silica Fume Concrete Withpolypropylene Fibre

Study On Properties Of High Strength Silica Fume Concrete Withpolypropylene Fibre Study On Properties Of High Strength Silica Fume Concrete Withpolypropylene Fibre R.Karthi 1, Dr. P. Chandrasekaran 2 M.E., Ph.D., PG Student, Department of Civil Engineering, Kongu Engineering College,

More information

Strength and Fracture Toughness of Fiber Reinforced Concrete

Strength and Fracture Toughness of Fiber Reinforced Concrete Strength and Fracture Toughness of Fiber Reinforced Concrete T.A. Söylev, T. Özturan 2, Assoc. Prof., Yeditepe University, İstanbul, Turkey 2 Prof., Boğaziçi University, İstanbul, Turkey ABSTRACT: In this

More information

Durability Studies on Steel Fiber Reinforced Concrete

Durability Studies on Steel Fiber Reinforced Concrete Durability Studies on Steel Reinforced Concrete P. Vamsi Krishna 1, N. Srinivasa Rao 2 1P.G Student, Department of Civil Engineering, 2Assistant Professor, Department of Civil Engineering, Annamacharya

More information

International Journal of Engineering Science Invention Research & Development; Vol. I Issue XI May e-issn:

International Journal of Engineering Science Invention Research & Development; Vol. I Issue XI May e-issn: International Journal of Engineering Science Invention Research & Development; Vol. I Issue XI May 215 Experimental Study on the Behaviour Of Glass Fibre Reinforced Concrete A.Reynold thomas * S.Raguraman

More information

Mechanical Properties of Hybrid Fiber Reinforced Concrete

Mechanical Properties of Hybrid Fiber Reinforced Concrete International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Mechanical Properties of Hybrid Fiber Reinforced Concrete Anithu Dev 1, Dr. Sabeena M.V 2 1 P.G. Student, Department

More information

Effects of Steel and Polypropylene Fiber Addition on Interface Bond Strength between Normal Concrete Substrate and Self-Compacting Concrete Topping Slamet Widodo Doctoral Student at Department of Civil

More information

STRENGTH AND WORKABILITY OF HYBRID FIBER REINFORCED SELF COMPACTING CONCRETE

STRENGTH AND WORKABILITY OF HYBRID FIBER REINFORCED SELF COMPACTING CONCRETE STRENGTH AND WORKABILITY OF HYBRID FIBER REINFORCED SELF COMPACTING CONCRETE Hawraa A.Al-Shibani Email: hawraa09537@cceoman.net Abstract. In this project, an experimental investigation is carried out on

More information

Use of Waste Polypropylene Fibres for Strengthening of Structural Members

Use of Waste Polypropylene Fibres for Strengthening of Structural Members Use of Waste Polypropylene Fibres for Strengthening of Structural Members Khot Anirudh Shivaji Kore Rohan Ramesh Koli Amit Laxmanrao Gore Mitesh Mahesh ABSTRACT The purpose of this study is to comparatively

More information

ABSTRACT Keywords: 1. INTRODUCTION 1.1 Previous work on polypropylene and alkali resistance glass fibers reinforced composites

ABSTRACT Keywords: 1. INTRODUCTION 1.1 Previous work on polypropylene and alkali resistance glass fibers reinforced composites INVESTIGATION OF THE STRENGTH PROPERTIES OF HYBRID FIBRE REINFORCED CONCRETE (HFRC) MADE WITH POLYPROPYLENE FIBRE (PPF) AND ALKALI RESISTANCE GLASS FIBRE (ARGF) Amaziah Walter Otunyo 1 and Odebiyi Jacob

More information

Comparative Study of Steel and Glass Fiber Reinforced Concrete Composites

Comparative Study of Steel and Glass Fiber Reinforced Concrete Composites Comparative Study of Steel and Glass Fiber Reinforced Concrete Composites Tejas R Patil 1, Ajay N. Burile 2 Department of Civil Engineering, Priyadarshini Bhagwati College of Engineering, Nagpur-24, Maharashtra,

More information

FIBER ADDITION AND ITS EFFECT ON CONCRETE STRENGTH

FIBER ADDITION AND ITS EFFECT ON CONCRETE STRENGTH FIBER ADDITION AND ITS EFFECT ON CONCRETE STRENGTH Aiswarya Sukumar M.Tech CE, MACE MG university, Kerala Elson John Asso. Professor, MACE MG University, Kerala Abstract Fibers are generally used as resistance

More information

Properties of Expansive-Ultra ete

Properties of Expansive-Ultra ete SP-228 74 Properties of Expansive-Ultra High-Str Stren ength Conc oncret ete by M. Suzuki, I. Maruyama, and R. Sato Synopsis: In order to decrease cross sectional area of structural members, ultra high

More information

BEHAVIOUR OF HIGH STRENGTH CONCRETE REINFORCED WITH DIFFERENT TYPES OF STEEL FIBRE

BEHAVIOUR OF HIGH STRENGTH CONCRETE REINFORCED WITH DIFFERENT TYPES OF STEEL FIBRE BEHAVIOUR OF HIGH STRENGTH CONCRETE REINFORCED WITH DIFFERENT TYPES OF STEEL FIBRE Emdad K.Z. Balanji, M. Neaz Sheikh, Muhammad N.S. Hadi School of Civil, Mining and Environmental Engineering, University

More information

EFFECT OF SYNTHETIC FIBERS ON ENERGY ABSORPTION CAPACITY OF NORMAL AND HIGH PERFORMANCE CONCRETE

EFFECT OF SYNTHETIC FIBERS ON ENERGY ABSORPTION CAPACITY OF NORMAL AND HIGH PERFORMANCE CONCRETE Emin ENGÜN 1 University of Yıldırım Beyazıt Faculty of Engineering and Natural Science Burhan ALAM 2 University of Middle East Technical Faculty of Engineering. Özgür YAMAN 3 University of Middle East

More information

Fiber Reinforced Concrete (FRC)

Fiber Reinforced Concrete (FRC) Progress in Fiber Reinforced Concrete (FRC) Concrete is relatively brittle, and its tensile strength is typically only about one tenths of its compressive strength. Regular concrete is therefore normally

More information

Effect of Mixing Fibers on Flexural Strength of Concrete Mix

Effect of Mixing Fibers on Flexural Strength of Concrete Mix IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 15, Issue 2 Ver. III (Mar. - Apr. 2018), PP 68-73 www.iosrjournals.org Nikunj Patel 1, C. B. Mishra

More information

BORAL MICRON 3 WORKABILITY, SHRINKAGE CRACK RESISTANCE, AND HIGH STRENGTH CONCRETE

BORAL MICRON 3 WORKABILITY, SHRINKAGE CRACK RESISTANCE, AND HIGH STRENGTH CONCRETE Workability reduces water and high range water reducing (HRWR) admixture demand and improves concrete workability. This is in contrast to most highly reactive pozzolans. Figure 1 is a summary of the water

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 July 11(9): pages 291-296 Open Access Journal Performance Evaluation

More information

RESTRAINED SHRINKAGE BEHAVIOR DUE TO COMBINED AUTOGENOUS AND THERMAL EFFECTS IN MORTARS CONTAINING SUPER ABSORBENT POLYMER (SAP)

RESTRAINED SHRINKAGE BEHAVIOR DUE TO COMBINED AUTOGENOUS AND THERMAL EFFECTS IN MORTARS CONTAINING SUPER ABSORBENT POLYMER (SAP) RESTRAINED SHRINKAGE BEHAVIOR DUE TO COMBINED AUTOGENOUS AND THERMAL EFFECTS IN MORTARS CONTAINING SUPER ABSORBENT POLYMER (SAP) John L. Schlitter (1), T. Barrett (1) and W. Jason Weiss (1) (1) School

More information

Characterization and performance of high performance concrete for pavements

Characterization and performance of high performance concrete for pavements Characterization and performance of high performance concrete for pavements D. G. Goulias Department of Civil and Environmental Engineering, University of Maryland, USA Abstract Several states in the U.S.

More information

Behavior of ECC/Concrete Layer Repair System Under Drying Shrinkage Conditions

Behavior of ECC/Concrete Layer Repair System Under Drying Shrinkage Conditions Behavior of ECC/Concrete Layer Repair System Under Drying Shrinkage Conditions Mo Li and Victor C. Li Advanced Civil Engineering Materials Research Laboratory, Department of Civil and Environmental Engineering,

More information

Studying of Floating Concrete Report Fall

Studying of Floating Concrete Report Fall Studying of Floating Concrete Report 2017 Fall Instructor: Dr. Tzuyang Yu Submitted by Jie Hu Haoyu Lin George Xanthopoulos Haoxiang Yu Marven S Pigeot 1 Table of Contents 1. Introduction... 3 2. Approach...

More information

Effect of Copper Slag on Steel Fiber Reinforced Concrete and Conventional Concrete

Effect of Copper Slag on Steel Fiber Reinforced Concrete and Conventional Concrete Effect of Copper Slag on Steel Fiber Reinforced Concrete and Conventional Concrete Angadala Sowjanya 1 and P. Krishna Prasanna 2 1 (PG Student (Structural Engineering) Velagapudi Ramakrishna Siddardtha

More information

Comparative Study Of Compressive And Tensile Behaviour Of Polypropylene Fibre Reinforced Concrete (PPFRC) With And Without Fly Ash

Comparative Study Of Compressive And Tensile Behaviour Of Polypropylene Fibre Reinforced Concrete (PPFRC) With And Without Fly Ash Journal of Multidisciplinary Engineering Science and Technology (JMEST) Comparative Study Of Compressive And Tensile Behaviour Of Polypropylene Fibre Reinforced Concrete (PPFRC) With And Without Fly Ash

More information

To Study the Properties of Polypropylene Fibers on Fresh & Hardened Stage of Concrete

To Study the Properties of Polypropylene Fibers on Fresh & Hardened Stage of Concrete To Study the Properties of Polypropylene Fibers on Fresh & Hardened Stage of Mr. Amol R.Rode 1, Ms. Swati R.Shewale 2 Asst Prof Civil Deptt, JCOET, Yavatmal1, Asst prof, civil deptt, VNIET, Nagpur 2 Email:is4562@gmail.com

More information

Experimental Study on Normal to High Strength of Hybrid Fibre Reinforced Concrete

Experimental Study on Normal to High Strength of Hybrid Fibre Reinforced Concrete Experimental Study on Normal to High Strength of Hybrid Fibre Reinforced Concrete Kalyana Chakravarthy P.R Assistant Professor Department of Civil Engineering Vels Institute of Science,Technology and Advance

More information

CRACK-FREE CONCRETE FLOORS WITHOUT METALLIC WIRE-MESH AND WET-CURING

CRACK-FREE CONCRETE FLOORS WITHOUT METALLIC WIRE-MESH AND WET-CURING CRACK-FREE CONCRETE FLOORS WITHOUT METALLIC WIRE-MESH AND WET-CURING M. COLLEPARDI, S. COLLEPARDI, J. J. OGOUMAH OLAGOT, R. TROLI Abstract A research work, based on laboratory and field tests, was made

More information

STUDY ON PERFORMANCES OF STEEL FIBER REINFORCED C55 GRADE SELF-COMPACTING CONCRETE

STUDY ON PERFORMANCES OF STEEL FIBER REINFORCED C55 GRADE SELF-COMPACTING CONCRETE STUDY ON PERFORMANCES OF STEEL FIBER REINFORCED C55 GRADE SELF-COMPACTING CONCRETE Beixing Li (1), He Gao (1), Gong Cui (1) and Jin Zha (1) (1)Key Laboratory of Silicate Materials Science and Engineering

More information

EARLY AGE SHRINKAGE AND MOISTURE LOSS OF CONCRETE

EARLY AGE SHRINKAGE AND MOISTURE LOSS OF CONCRETE EARLY AGE SHRINKAGE AND MOISTURE LOSS OF CONCRETE Neal S. Berke and Lianfang Li Grace Construction Products, W. R. Grace & Co., USA Abstract Major concerns with concrete slabs on grade are cracking, curling,

More information

Strength of Normal Concrete Using Metallic and Synthetic Fibers Vikrant S. Vairagade* a and Kavita S. Kene b

Strength of Normal Concrete Using Metallic and Synthetic Fibers Vikrant S. Vairagade* a and Kavita S. Kene b Available online at www.sciencedirect.com Procedia Engineering 51 ( 2013 ) 132 140 Chemical, Civil and Mechanical Engineering Tracks of 3 rd Nirma University International Conference Strength of Normal

More information

Experimental Study on Mechanical Properties of Basalt Fibre Reinforced Concrete

Experimental Study on Mechanical Properties of Basalt Fibre Reinforced Concrete Experimental Study on Mechanical Properties of Basalt Fibre Reinforced Concrete Md. Tabsheer Ahmed 1, Md. Abid Alam 2, Manohar Singh Chufal 3 1, 2 Assistant Professor, Department of Civil Engineering,

More information

CHAPTER 6 POLYPROPYLENE FIBRE REINFORCED GEOPOLYMER CONCRETE COMPOSITES

CHAPTER 6 POLYPROPYLENE FIBRE REINFORCED GEOPOLYMER CONCRETE COMPOSITES 113 CHAPTER 6 POLYPROPYLENE FIBRE REINFORCED GEOPOLYMER CONCRETE COMPOSITES 6.1 GENERAL This chapter describes the effect of addition of polypropylene fibres on the strength characteristics of geopolymer

More information

Title. Author(s)NOUSHINI, A.; SAMALI, B.; VESSALAS, K. Issue Date Doc URL. Type. Note. File Information CONCRET

Title. Author(s)NOUSHINI, A.; SAMALI, B.; VESSALAS, K. Issue Date Doc URL. Type. Note. File Information CONCRET Title INFLUENCE OF POLYVINYL ALCOHOL FIBRE ADDITION ON FRE CONCRET Author(s)NOUSHINI, A.; SAMALI, B.; VESSALAS, K. Issue Date 213-9-11 Doc URL http://hdl.handle.net/2115/54259 Type proceedings Note The

More information

Experimental Study to Check Effectiveness of Stirrups and Steel Fibers as Shear Eeinforcement

Experimental Study to Check Effectiveness of Stirrups and Steel Fibers as Shear Eeinforcement Experimental Study to Check Effectiveness of Stirrups and Steel Fibers as Shear Eeinforcement Vatsal Patel 1, Dr. Yogesh Patil 2 Civil Engineering Department 1, Applied Mechanics Department 2,Gujarat Technological

More information

Performance of High Strength High Performance Steel Fiber Reinforced Concrete for use in Seismic Resistant Structures

Performance of High Strength High Performance Steel Fiber Reinforced Concrete for use in Seismic Resistant Structures Performance of High Strength High Performance Steel Fiber Reinforced Concrete for use in Seismic Resistant Structures B. Pandu Ranga Rao 1, Dr. K. Ram Mohan Rao 2 1 General Manager (Civil Engineering),

More information

Akhter B. Hossain,P. Abstract

Akhter B. Hossain,P. Abstract Paper accepted for presentation and publication in the Proceedings of Conference on Fiber Composites, High-Performance Concretes, and Smart Materials organized by International Center for Fiber Reinforced

More information

An Experimental Investigation on Mechanical Behavior of Macro Synthetic Fiber Reinforced Concrete

An Experimental Investigation on Mechanical Behavior of Macro Synthetic Fiber Reinforced Concrete International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 03 18 An Experimental Investigation on Mechanical Behavior of Macro Reinforced Concrete M. J. Hasan 1*, M. Afroz 2 and

More information

Durability Studies on Polyvinyl Alcohol Fiber Reinforced Concrete

Durability Studies on Polyvinyl Alcohol Fiber Reinforced Concrete Durability Studies on Polyvinyl Alcohol Fiber Reinforced Concrete Dr. M. Devi Principal Paavai College of Engineering Mr.L.Kannan Assistant Professor, Department of Civil Engineering Paavai Colllege of

More information

Analysis of Jointed Plain Concrete Pavement Containing RAP

Analysis of Jointed Plain Concrete Pavement Containing RAP Analysis of Jointed Plain Concrete Pavement Containing RAP Kukjoo Kim 1, Mang Tia 1,and James Greene 2 1 (Department of Civil and Coastal Engineering, University of Florida, United States) 2 (State Materials

More information

Durability Properties of High Performance Fiber Reinforced Cementitious Composites Incorporating High Volumes of Fly Ash

Durability Properties of High Performance Fiber Reinforced Cementitious Composites Incorporating High Volumes of Fly Ash Proceedings of the EUROCOALASH 2012 Conference, Thessaloniki Greece, September 25-27 2012 http:// www.evipar.org/ Durability Properties of High Performance Fiber Reinforced Cementitious Composites Incorporating

More information

A comparision between plastic shrinkage of concrete containing silica fume and the normal concrete

A comparision between plastic shrinkage of concrete containing silica fume and the normal concrete A comparision between plastic shrinkage of concrete containing silica fume and the normal concrete P. Ghoddousi 1, A.M. Raiss ghasemi 2, T. Parhizkar 3 1 Assistant Professor, Science and Technology University

More information

STRENGTH AND FLEXURAL TOUGHNESS OF CONCRETE REINFORCED WITH STEEL POLYPROPYLENE HYBRID FIBRES

STRENGTH AND FLEXURAL TOUGHNESS OF CONCRETE REINFORCED WITH STEEL POLYPROPYLENE HYBRID FIBRES ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 11, NO. 4 (2010) PAGES 495-507 STRENGTH AND FLEXURAL TOUGHNESS OF CONCRETE REINFORCED WITH STEEL POLYPROPYLENE HYBRID FIBRES S.P. Singh *,

More information

PENETRATION RESISTANCE OF HYBRID FIBRE REINFORCED CONCRETE UNDER LOW VELOCITY IMPACT LOADING

PENETRATION RESISTANCE OF HYBRID FIBRE REINFORCED CONCRETE UNDER LOW VELOCITY IMPACT LOADING Congrès annuel de la Société canadienne de génie civil Annual Conference of the Canadian Society for Civil Engineering Montréal, Québec, Canada 5-8 juin 2002 / June 5-8, 2002 PENETRATION RESISTANCE OF

More information

Strength Properties of Polypropylene Fibre Reinforced Concrete

Strength Properties of Polypropylene Fibre Reinforced Concrete International Journal of Engineering Research and Advanced Technology (IJERAT) DOI: http://dx.doi.org/1.7324/ijerat.218.3199 E-ISSN : 2454-6135 Volume.4, Issue 3 March-218 Strength Properties of Polypropylene

More information

The Mechanical Properties of Steel-Polypropylene Fibre Composites Concrete (HyFRCC)

The Mechanical Properties of Steel-Polypropylene Fibre Composites Concrete (HyFRCC) The Mechanical Properties of Steel-Polypropylene Fibre Composites Concrete (HyFRCC) Izni Syahrizal Ibrahim 2,a, Wan Amizah Wan Jusoh 1,2,b, *, Abdul Rahman Mohd Sam 2,c, Nur Ain Mustapa 2,d, Sk Muiz Sk

More information

EFFECTS OF POLYPROPYLENE FIBERS ON PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETES

EFFECTS OF POLYPROPYLENE FIBERS ON PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETES CD7-9 EFFECTS OF POLYPROPYLENE FIBERS ON PHYSICAL AND MECHANICAL PROPERTIES OF CONCRETES M. Najimi, F.M. Farahani and A.R. Pourkhorshidi Concrete Department, Building and Housing Research Centre, Tehran,

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 1, October-216 162 Evaluation of the Properties of Bentonite Concrete with and without Steel Fiber Amritha E.K and Neethu Paul

More information

APPLICATION OF HYBRID FIBER REINFORCEMENT AND HIGH VOLUME COARSE FLY ASH IN SELF COMPACTING CONCRETE

APPLICATION OF HYBRID FIBER REINFORCEMENT AND HIGH VOLUME COARSE FLY ASH IN SELF COMPACTING CONCRETE CD07-008 APPLICATION OF HYBRID FIBER REINFORCEMENT AND HIGH VOLUME COARSE FLY ASH IN SELF COMPACTING CONCRETE A.A. Mounesan 1, K. Siamardi 2, M.M. Khodavirdi Zanjani 2 1 Civil Engineer, Sharif University

More information

2010 Concrete Sustainability Conference 1 National Ready Mixed Concrete Association

2010 Concrete Sustainability Conference 1 National Ready Mixed Concrete Association Ultra-High Strength Concrete Mixtures Using Local Materials Srinivas Allena Ph.D. Candidate Dr. Craig M. Newtson Associate Professor Civil Engineering Department New Mexico State University 2010 Concrete

More information

Experimental Study of Light Weight Concrete Using PP Fiber

Experimental Study of Light Weight Concrete Using PP Fiber Experimental Study of Light Weight Concrete Using PP Fiber Singh Manindra Kumar 1, Chandraul Kirti 2, Saxena Anil Kumar 3, Arora T. R. 4 1 M.Tech. Student, 2 M.Tech. Student, 3 Associate Professor, 4 Head

More information

Suitability of Synthetic Fiber for the Construction of Concrete Pavements

Suitability of Synthetic Fiber for the Construction of Concrete Pavements Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 448-452 Suitability of Synthetic Fiber for the Construction of Concrete Pavements Rakesh Kumar 1*, Pankaj Goel 1, Renu Mathur 1 and B

More information

INVESTIGATION ON MECHANICAL BEHAVIOR OF CONCRETE WITH FIBERS MADE OF RECYCLED MATERIALS

INVESTIGATION ON MECHANICAL BEHAVIOR OF CONCRETE WITH FIBERS MADE OF RECYCLED MATERIALS INVESTIGATION ON MECHANICAL BEHAVIOR OF CONCRETE WITH FIBERS MADE OF RECYCLED MATERIALS Sandaruwini A.H.W.E, Bandara K.A.J.M Research Student, Department of Civil and Environmental Engineering, Faculty

More information

Effect of Mix Design on Restrained Shrinkage of Concrete

Effect of Mix Design on Restrained Shrinkage of Concrete Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol (8) July : - Academy for Environment and Life Sciences, India Online ISSN 77-88 Journal s URL:http://www.bepls.com

More information

Influence of Restraint Conditions and Reinforcing Bar on Plastic Shrinkage of Self-consolidating Concrete

Influence of Restraint Conditions and Reinforcing Bar on Plastic Shrinkage of Self-consolidating Concrete Influence of Restraint Conditions and Reinforcing Bar on Plastic Shrinkage of Self-consolidating Concrete Parviz Ghoddousi 1, and Ali Akbar Shirzadi Javid 2 1 Assistant Professor of Civil Engineering at

More information

Fracture behavior of concrete reinforced with basalt fibers

Fracture behavior of concrete reinforced with basalt fibers Fracture behavior of concrete reinforced with basalt fibers Mohammed Ishtiyaque #1, M.G. Shaikh *2 #*Applied Mechanics Department, Govt. College of Engineering, Aurangabad -Maharashtra 1 ishtiyaque2011@rediffmail.com,

More information

APPLICATION OF TENSION SOFTENING CURVES TO INVESTIGATE THE SHEAR CARRIED BY FIBERS IN VARIOUS FIBER REINFORCED CONCRETE BEAMS

APPLICATION OF TENSION SOFTENING CURVES TO INVESTIGATE THE SHEAR CARRIED BY FIBERS IN VARIOUS FIBER REINFORCED CONCRETE BEAMS III International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. an Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) APPLICATION OF TENSION SOFTENING CURES

More information

Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement

Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement American Journal of Applied Sciences 6 (2): 219-223, 2009 ISSN 1546-9239 2009 Science Publications Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement A. Ravichandran, K. Suguna

More information

APPLICATION OF SELF-CONSOLIDATING CONCRETE FOR BRIDGE REPAIR

APPLICATION OF SELF-CONSOLIDATING CONCRETE FOR BRIDGE REPAIR APPLICATION OF SELF-CONSOLIDATING CONCRETE FOR BRIDGE REPAIR Xian-feng Wang The Sixth Construction Group of Shanxi Province, 030024, Shanxi, P. R. China Abstract: A highway bridge in province Shanxi was

More information

FRACTURE STUDIES ON CONCRETES WITH HYBRID STEEL FIBERS

FRACTURE STUDIES ON CONCRETES WITH HYBRID STEEL FIBERS BEFIB212 Fibre reinforced concrete Joaquim Barros et al. (Eds) UM, Guimarães, 212 FRACTURE STUDIES ON CONCRETES WITH HYBRID STEEL FIBERS Murat Aral *, Ozkan Sengul *, Canan Tasdemir * and Mehmet A. Tasdemir

More information

Behaviour of Hybrid Ferro Fiber Reinforced Concrete under Tension

Behaviour of Hybrid Ferro Fiber Reinforced Concrete under Tension Behaviour of Hybrid Ferro Fiber Reinforced Concrete under Tension Sayyed Shoaib 1 Swayambhu Bhalsing 2, Pankaj Autade 3 PG Student, Department of Civil Engineering, Dr. PDVVP COE, Ahmednagar, Maharashtra,

More information

STRENGTH PROPERTIES OF STEEL FIBER CONCRETE BY PARTIAL REPLACEMENT OF SILICA FUME

STRENGTH PROPERTIES OF STEEL FIBER CONCRETE BY PARTIAL REPLACEMENT OF SILICA FUME STRENGTH PROPERTIES OF STEEL FIBER CONCRETE BY PARTIAL REPLACEMENT OF SILICA FUME 1 NAMANI SAIKRISHNA, 2 SYED MOIZUDDIN 1 M. Tech(Structural Engineering), Department of Civil Engineering, SVS Group of

More information

The Mechanical Properties of Steel-Polypropylene Fibre Composites Concrete (HyFRCC)

The Mechanical Properties of Steel-Polypropylene Fibre Composites Concrete (HyFRCC) Applied Mechanics and Materials Vols 773-774 (2015) pp 949-953 Submitted: 2014-08-10 (2015) Trans Tech Publications, Switzerland Revised: 2014-11-17 doi:10.4028/www.scientific.net/amm.773-774.949 Accepted:

More information

A. HIGH-STRENGTH CONCRETE (HSC)

A. HIGH-STRENGTH CONCRETE (HSC) EFFECTS OF SILICA FUME ON PROPERTIES OF HIGH-STRENGTH CONCRETE Nasratullah Amarkhail Graduate School of Science and Technology, Department of Architecture and Building Engineering Kumamoto University Kumamoto

More information

An Investigation On Strength Properties Of Glass Fiber Reinforced Concrete

An Investigation On Strength Properties Of Glass Fiber Reinforced Concrete An Investigation On Strength Properties Of Glass Fiber Reinforced Concrete Liaqat A. Qureshi University of Engineering & Technology, Taxila, Pakistan Adeel Ahmed University of Engineering & Technology,

More information

Fundamentals of Concrete

Fundamentals of Concrete Components Cement Water Fine Aggregate Coarse Aggregate Fundamentals of Range in Proportions Advantages of Reducing Water Content: Increased strength Lower permeability Fundamentals of Increased resistance

More information

Effect of mix design on restrained shrinkage of concrete

Effect of mix design on restrained shrinkage of concrete Effect of mix design on restrained shrinkage of concrete Assist.Prof.,Dr. Yousef.Zandi Civil Engineering Department Islamic Azad University Tabriz Branch -Iran. Email:Zandi_Engineer@yahoo.com Prof.,Dr.

More information

STUDY ON THE PERFORMANCE OF ADMIXTURE AND SYNTHETIC POLYMER FIBER IN CONCRETE Rubaiyet Hafiza, Research Fellow, Building Material Division Ahsan

STUDY ON THE PERFORMANCE OF ADMIXTURE AND SYNTHETIC POLYMER FIBER IN CONCRETE Rubaiyet Hafiza, Research Fellow, Building Material Division Ahsan STUDY ON THE PERFORMANCE OF ADMIXTURE AND SYNTHETIC POLYMER FIBER IN CONCRETE Rubaiyet Hafiza, Research Fellow, Building Material Division Ahsan Habib, Research Officer, Building Material Division Housing

More information

Research Article The Effect of Accelerators and Mix Constituents on the High Early Strength Concrete Properties

Research Article The Effect of Accelerators and Mix Constituents on the High Early Strength Concrete Properties International Scholarly Research Network ISRN Civil Engineering Volume 2012, Article ID 1034, 7 pages doi:10.52/2012/1034 Research Article The Effect of Accelerators and Mix Constituents on the High Early

More information

Investigation of the Properties of Concrete Modified with Various Fibres

Investigation of the Properties of Concrete Modified with Various Fibres Investigation of the Properties of Concrete Modified with Various Fibres Ronald Nsubuga Mukalazi 1 Chun Qing Li 2 ABSTRACT The use of concrete modified with fibres requires understanding of its mechanical

More information

Mechanical Properties of Self Compacting Concrete Containing Crushed Sand and Sisal Fiber

Mechanical Properties of Self Compacting Concrete Containing Crushed Sand and Sisal Fiber International Journal of Applied Environmental Sciences ISSN 0973-6077 Volume 13, Number 1 (2018), pp. 71-81 Research India Publications http://www.ripublication.com Mechanical Properties of Self Compacting

More information

CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS

CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS 45 CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS 3.1 GENERAL In the present investigation, it was planned to cast M40 & M50 grade concrete with and without supplementary cementitious material such

More information

Workability Analysis of Glass Fiber Reinforced Self-Compacting Concrete Using J-Ring Test

Workability Analysis of Glass Fiber Reinforced Self-Compacting Concrete Using J-Ring Test Workability Analysis of Glass Fiber Reinforced Self-Compacting Concrete Using J-Ring Test Praveen.N.R 1 PG Student, Department of civil engineering, Kongu engineering college, Perundurai, Tamil nadu, Dr.

More information

PULLOUT BEHAVIOUR OF POLYVINYL ALCOHOL FIBER FROM CEMENTITIOUS MATRIX DURING PLASTIC STATE

PULLOUT BEHAVIOUR OF POLYVINYL ALCOHOL FIBER FROM CEMENTITIOUS MATRIX DURING PLASTIC STATE BEFIB212 Fibre reinforced concrete Joaquim Barros et al. (Eds) UM, Guimarães, 212 PULLOUT BEHAVIOUR OF POLYVINYL ALCOHOL FIBER FROM CEMENTITIOUS MATRIX DURING PLASTIC STATE Jianzhong Liu *, Changfeng Li

More information

PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC

PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC H.W. Reinhardt, M. Krueger Constructions Materials Institute, University of Stuttgart, Germany Abstract Tests on fine grain concrete plates with textile

More information

An Investigation of Steel Fiber Reinforced Concrete with Fly Ash

An Investigation of Steel Fiber Reinforced Concrete with Fly Ash IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 4, Issue 5 (Nov-Dec. 2012), PP 01-05 An Investigation of Steel Fiber Reinforced Concrete with Fly Ash Khadake S.N. 1,

More information

Tensile Properties of ECC in Full-Scale Production T. Kanda, M. Hiraishi, & N. Sakata Kajima Technical Research Institute, Tokyo, Japan

Tensile Properties of ECC in Full-Scale Production T. Kanda, M. Hiraishi, & N. Sakata Kajima Technical Research Institute, Tokyo, Japan Properties of ECC in Full-Scale Production T. Kanda, M. Hiraishi, & N. Sakata Kajima Technical Research Institute, Tokyo, Japan ABSTRACT: ECC is a strain-hardening, highly ductile cementitious composite.

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 01: Introduction, Prestressing Systems and Material Properties Lecture

More information

Properties of Fresh and Hardened High Strength Steel Fibers Reinforced Self-Compacted Concrete

Properties of Fresh and Hardened High Strength Steel Fibers Reinforced Self-Compacted Concrete Fourth International Conference on Sustainable Construction Materials and Technologies http://www.claisse.info/proceedings.htm SCMT4 Las Vegas, USA, August 7-11, 2016 Properties of Fresh and Hardened High

More information

Restrained Shrinkage Ring Beam Testing for Concrete

Restrained Shrinkage Ring Beam Testing for Concrete Restrained Shrinkage Ring Beam Testing for Concrete E. S. Bernard TSE P/L, Sydney Shrinkage testing Conventional AS101 unrestrained shrinkage: A poor representation of restrained structures Tensile creep

More information

Total 30. Chapter 7 HARDENED CONCRETE

Total 30. Chapter 7 HARDENED CONCRETE Total 30 Chapter 7 HARDENED CONCRETE 1 Shrinkage Shrinkage of concrete is caused by the settlement of solids and the loss of free water from the plastic concrete (plastic shrinkage), by the chemical combination

More information

Characterization of Physical Properties of Roadware Clear Repair Product

Characterization of Physical Properties of Roadware Clear Repair Product Characterization of Physical Properties of Roadware Clear Repair Product November 5, 2009 Prof. David A. Lange University of Illinois at Urbana-Champaign Introduction Roadware MatchCrete Clear (MCC) is

More information

Empirical Relationship between the Impact Energy and Compressive Strength for Fiber Reinforced Concrete

Empirical Relationship between the Impact Energy and Compressive Strength for Fiber Reinforced Concrete Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 469-473 Empirical Relationship between the Impact Energy and Compressive Strength for Fiber Reinforced Concrete G Murali, A S Santhi

More information

EXPERIMENTAL INVESTIGATION OF HOLLOW CORE SLAB USING DIFFERENT FIBRE

EXPERIMENTAL INVESTIGATION OF HOLLOW CORE SLAB USING DIFFERENT FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 11, November 2018, pp. 1199 1206, Article ID: IJCIET_09_11_116 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=11

More information

Mechanical Properties of Lightweight Concrete Incorporating Recycled Synthetic Wastes

Mechanical Properties of Lightweight Concrete Incorporating Recycled Synthetic Wastes 8 TRANSPORTATION RESEARCH RECORD 1458 Mechanical Properties of Lightweight Concrete Incorporating Recycled Synthetic Wastes PARVIZ SOROUSHIAN, ABDULRAHMAN ALHOZAIMY, AND ALY I. ELDARWISH An experimental

More information

To Study the Flexural, Tensile and Compressive Strength of Reinforced Concrete by Adding Glass & Steel Fibers in Different Proportions

To Study the Flexural, Tensile and Compressive Strength of Reinforced Concrete by Adding Glass & Steel Fibers in Different Proportions IJISET - International Journal Innovative Science, Engineering & Technology, Vol. 3 Issue 8, August 216 ISSN (Online) 2348 7968 Impact Factor (215) - 4.332 To Study the Flexural, Tensile and Compressive

More information

COMPARATIVE STUDY ON COMPRESSIVE STRENGTH OF NORMAL CONCRETE AND COCONUT SHELL CONCRETE USING STEEL FIBRE

COMPARATIVE STUDY ON COMPRESSIVE STRENGTH OF NORMAL CONCRETE AND COCONUT SHELL CONCRETE USING STEEL FIBRE COMPARATIVE STUDY ON COMPRESSIVE STRENGTH OF NORMAL CONCRETE AND COCONUT SHELL CONCRETE USING STEEL FIBRE P. R. Kalyana Chakravarthy, R. Janani and R. RathanRaj Department of Civil Engineering, Vels University,

More information

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete CIVL 1112 Contrete Introduction from CIVL 1101 1/10 Concrete is an artificial conglomerate stone made essentially of Portland cement, water, and aggregates. While cement in one form or another has been

More information

Fracture Study on Steel Fibre Reinforced Concrete

Fracture Study on Steel Fibre Reinforced Concrete Fracture Study on Steel Fibre Reinforced Concrete Arjun T S 1, Divya K K 2 1 (Department of Civil Engineering, SNGCE, India) 2 (Department of Civil Engineering, SNGCE, India) Abstract: Concrete is a composite

More information

V. Naga Kalyani 1 1 PG Student, K. Hari Krishna 2 2. A. Naga Sai 3 3.

V. Naga Kalyani 1 1 PG Student, K. Hari Krishna 2 2. A. Naga Sai 3 3. http:// A Comparitative Study of Compressive Strength and Split Tensile Strength on Effect of Size of Coarse Aggregate in Hybrid Fiber Reinforced Concrete with Different Grades V. Naga Kalyani 1 1 PG Student,

More information

Splitting tensile strength of self-consolidating concrete and its size effect. *Yi Che 1), Nan Zhang, Feng Yang and Mala Prafulla 2)

Splitting tensile strength of self-consolidating concrete and its size effect. *Yi Che 1), Nan Zhang, Feng Yang and Mala Prafulla 2) Splitting tensile strength of self-consolidating concrete and its size effect *Yi Che 1), Nan Zhang, Feng Yang and Mala Prafulla 2) 1), 2) State Key Laboratory of Coastal and Offshore Engineering, Dalian

More information

EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING NYLON FIBERS

EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING NYLON FIBERS EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING NYLON FIBERS Nitin 1, Dr. S.K. Verma 2 1 PG student, Dept. of Civil Engineering (Structures), PEC University of technology, Chandigarh, India. 2 Associate

More information

MECHANICAL PROPERTIES OF HIGH- DENSITY POLYETHYLENE FIBER CONCRETE

MECHANICAL PROPERTIES OF HIGH- DENSITY POLYETHYLENE FIBER CONCRETE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 10, October 2018, pp. 334 339, Article ID: IJCIET_09_10_034 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=10

More information