1. IMPERFECTIONS OF THE WELDED CONNECTION

Size: px
Start display at page:

Download "1. IMPERFECTIONS OF THE WELDED CONNECTION"

Transcription

1 1. IMPERFECTIONS OF THE WELDED CONNECTION A. Classification of imperfections in the welds acc. to EN (ISO 6520) Crack (100) - imperfection produced by a local rupture in the solid state which can arise from the effect of cooling or stresses. Cracks can arise as a hot crack in temperature range C. Reasons: large level of carbon C and other impurity (S and P); large welding speed; high internal stress level caused a large stiffnes of the structure. Cold cracks arise in temperature under 300 C, caused mainly by cold shortness i. e. hydrogen shortness. Lameral cracks arise mainly on as a result of losing its shape metal sheets in the thickness direction, at low her ductilities in this direction. Group No.1 Cracks 1001 microcrack 101 Ea 102 Eb 103 E 104 Ec 105 E 106 E longitudinal crack transverse crack radiating cracks crater crack group of disconnected cracks branching crack crack visible only under the microscope crack essentially parallel to the axis of the weld It can be situated: in the weld metal, in the weld junction 1013 in the heat affected zone 1014 in the parent metal crack essentially transverse to the axis of the weld It can be situated: in the weld metal, 1023 in the heat affected zone 1024 in the parent metal cracks radiating from a common point It can be situated: in the weld metal, 1033 in the heat affected zone 1034 in the parent metal crack in the crater at the end of a weld group of disconnected cracks in any direction group of connected cracks originating from a common crack -1-

2 Cavities (200) free space in weld material formed by entrapped gas. They are created in the result of gas making of metallurgical reactions. The influence on the creation of cavities have: moisture of the coating in alkaline electrodes; polluting welded edges (rust, paint, fat); too high rate of speed of cooling of the joint (small amperage, too high rate of speed of the welding). Group No. 2 Cavities 201 Aa gas cavity cavity formed by entrapped gas gas pore gas cavity of essentially spherical form 2015 Ab elongated cavity large, non-spherical cavity with its major dimension approximately parallel to the axis of the weld 2016 Ab 2012 worm-hole uniformly distributed porosity tubular cavity in weld metal caused by release of gas. The shape and position of worm-holes are determined by the mode of solidification and the sources of the gas. number of gas pores distributed in a substantially uniform manner throughout the weld metal; not to be confused with linear porosity (2014) and clustered porosity (2013) 2013 Ad clustered (localized) porosity group of gas pores having a random geometric distribution 2014 linear porosity row of gas pores situated parallel to the axis of the weld 2017 surface pore 2025 K end crater pipe gas pore that breaks the surface of the weld open crater with a hole reducing the cross-section of the weld -2-

3 Solid inclusion solid foreign substances entrapped in the weld metal: slag, flux or foreign metal. Influence on the creation of the slag inclusion have: infusible and with difficulty removable slag; inaccurate cleaning individual layers of the weld; too low linear energy at welding. Group No. 3 Solid inclusions 301 Ba 302 G 303 J slag inclusion flux inclusion oxide inclusion 3034 puckering 304 H metallic inclusion solid inclusion in the form of slag Slag inclusions can be: linear isolated 3013 clustered. solid inclusion in the form of flux Flux inclusions can be: linear isolated 3023 clustered. solid inclusion in the form of metallic oxide Oxide inclusions can be: linear isolated 3033 clustered. in certain cases, especially in aluminium alloys, gross oxide film enfoldment can occur due to a combination of unsatisfactory protection from atmospheric contamination and turbulence in the weld pool solid inclusion in the form of foreign metal Metallic inclusions can be: 3041 tungsten, 3042 copper, 3043 other metal. -3-

4 Lack of fusion and penetration - lack of union between the weld metal and the parent material or between the successive layers of weld metal. Influence on the lack of fusion have: too low linear energy at welding; wrong technique of welding (e.g. one-way lowering the electrode); presence of difficult-fusible oxides at joined surfaces. Group No. 4 Lack of fusion and penetration 401 Ba lack of fusion lack of union between the weld metal and the parent material or between the successive layers of weld metal It can be one of the following: 4011 lack of side-wall fusion; 4012 lack of inter-run fusion (also referred to as cold laps ), lack of root fusion, 4014 micro-lack of fusion. 402 G incomplete penetration (lack of penetration) difference between the actual and the nominal penetration 4021 incomplete root penetration; (one or both fusion faces of the root are not melted) 403 spiking extremely non-uniform penetration occurring in electron-beam and laser welding giving a sawtooth appearance. This can include cavities, cracks, shrinkages, etc. -4-

5 Imperfect shape and dimensions imperfect shape of the external surfaces of the weld or defective joint geometry. Causes of the uprising of such defects are different, out of most frequent it is possible to exchange: Inability to weld; Welding in compulsory positions; Wrong parameters of the welding (amperage, speed of the welding). Group No. 5 Imperfect shape and dimensions 501 F 502 undercut excess weld metal irregular groove at a toe of a run in the parent material or in previously deposited weld metal 5011 continuous undercut; intermittent undercut, shrinkage grooves, 5014 inter-run undercut, local intermittent undercut. reinforcement of the butt weld on the face is too large excessive convexity excessive penetration incorrect weld toe 506 overlap 507 linear misalignment 510 burn-through 512 excessive asymmetry of fillet weld reinforcement of the fillet is too large reinforcement of the butt weld on the root side is too large 5041 local excessive penetration; continuous excessive penetration, excessive melt-through. too small an angle (α) between parent material and weld surface 5051 incorrect weld toe angle; incorrect weld toe radius. excessive weld metal covering the parent material surface but not fused to it 5061 toe overlap; root overlap. misalignment between two welded pieces such that they are not in the same required parallel plane, even though their surface planes are parallel collapse of the weld pool resulting in a hole in the weld Excessive unequal leg length explanation not necessary -5-

6 Miscellaneous imperfections all imperfections which cannot be included in groups 1 to 5. Group No. 6 Miscellaneous imperfections 601 arc strike stray arc local damage to the surface of the parent material adjacent to the weld, resulting from arcing or striking the arc outside the joint preparation 602 spatter globules of weld metal or filler metal expelled during welding and adhering to the surface of parent material or solidified weld metal tungsten spatter. 603 torn surface surface damage due to the removal by fracture of temporary welded attachments 604 grinding mark local damage due to grinding 605 chipping mark local damage due to use of a chisel or other tools 606 underflushing reduction in the thickness of the tack weld imperfection misalignment of opposite runs temper colours (visible oxide film) 613 scaled surface 614 flux residue 615 slag residue 617 incorrect root gap for fillet welds 618 swelling workpiece due to excessive grinding imperfection resulting from defective tack welding, e.g broken run or no penetration, defective tack has been overwelded. difference between the centrelines of two runs made from opposite sides of the joint lightly oxidized surface in the weld zone, e.g. in stainless steels 6101 discolouration. visibly tinted surface layers in the weld metal and heataffected zone caused by the weld heat and/or by lack of protection, heavily oxidized surface in the weld zone flux residue that is not sufficiently removed from the surface adherent slag that is not sufficiently removed from the surface of the weld excessive or insufficient gap between the parts to be joined imperfection due to a burning on welded joints in light alloys resulting from a prolonged holding time in the solidification stage -6-

7 Metal structures Laboratory 2. NON-DESTRUCTIVE TESTING METHODS OF WELD JOINTS A. Visual inspection Visual inspection is probably the most underrated, and often misused, method of welding inspection. Because of its simplicity, and the absence of sophisticated equipment, the potential of this method of inspection is quite often underestimated. The control consists in the visual observation and measurements of joints. Visual inspection can be carried out as pre-weld inspection, inspection during welding or post-weld inspection. They enclose: Inspection, or all welds were carried out and correctly situated; Visual inspection weld surface and shape; Measurement of the thickness and lengths of the welds; Detecting surface defects (of e.g. undercuts, spatters or chips). With visual inspection of the weld surface is possible to detect: Surface and shape defects (e.g wrong dimensions of the welds, undercuts, toe defects, craters or swellings); Lack of fusion and excessive penetrations one side butt welds; Cracks in the weld material or in the heat affected zone detecting of such defects is possible to confirm by inspection of the effective segment through the magnifying glass or with penetrative surveys. For checking dimensions of fillet welds is applying weld gauge (special calipers). Weld gauge simplified measurement of thickness of the fillet welds or heights of the spure of butt welds. To visual inspection internal surfaces of the pipes or small tanks (eg. Penetration quality), the endoscope can be used. -7

8 B. Radiographic Testing (RT) Method of inspecting materials for hidden flaws by using the ability of short wavelength electromagnetic radiation (high energy photons) to penetrate various materials. Either an X-ray machine or a radioactive source, like Ir-192, Co-60, or in rarer cases Cs-137 are used in a X-ray computed tomography machine as a source of photons. Neutron radiographic testing (NR) is a variant of radiographic testing which uses neutrons instead of photons to penetrate materials. This can see very different things from X-rays, because neutrons can pass with ease through lead and steel but are stopped by plastics, water and oils. Since the amount of radiation emerging from the opposite side of the material can be detected and measured, variations in this amount (or intensity) of radiation are used to determine thickness or composition of material. Penetrating radiations are those restricted to that part of the electromagnetic spectrum of wavelength less than about 10 nanometres. Advantages of the radiographic method: To conduct the evaluation of the defectiveness of welds it is possible with the following methods: Through comparing the radiogram of the weld with model radiograms included in special catalogues; Through the direct evaluation of the size of defects (in mm) and of increasing them (number of defects or their summary length on the chosen stretch); With establishing the so-called general defectiveness expressed in % of loss of a cross section of the weld as a result of defects; Based on the description stipulated in the contract of defects; The method allows for the detection of internal defects; The film can be recorded and store to confirmation of weld quality. The defects detected with radiographic method. description cross-section radiogram description cross-section radiogram worm hole lack of inter run fusion linear slag inclusion longitudinal crack gas pore porosity (linear) lack of root fusion traverse crack radiating crack -8-

9 C. Ultrasonic testing (UT) Ultrasonic testing (UT) is a testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. In ultrasonic testing, an ultrasound transducer connected to a diagnostic machine is passed over the object being inspected. The transducer is typically separated from the test object by a couplant (such as oil) or by water, as in immersion testing. However, when ultrasonic testing is conducted with an Electromagnetic Acoustic Transducer (EMAT) the use of couplant is not required. There are two methods of receiving the ultrasound waveform: reflection and attenuation. In reflection (or pulse-echo) mode, the transducer performs both the sending and the receiving of the pulsed waves as the "sound" is reflected back to the device. Reflected ultrasound comes from an interface, such as the back wall of the object or from an imperfection within the object. The diagnostic machine displays these results in the form of a signal with an amplitude representing the intensity of the reflection and the distance, representing the arrival time of the reflection. In attenuation (or through-transmission) mode, a transmitter sends ultrasound through one surface, and a separate receiver detects the amount that has reached it on another surface after traveling through the medium. Imperfections or other conditions in the space between the transmitter and receiver reduce the amount of sound transmitted, thus revealing their presence. Using the couplant increases the efficiency of the process by reducing the losses in the ultrasonic wave energy due to separation between the surfaces. Advantages ultrasonic method: High penetrating power, which allows the detection of flaws deep in the part; High sensitivity, permitting the detection of extremely small flaws; Some capability of estimating the size, orientation, shape and nature of defects; Non hazardous to operations or to nearby personnel and has no effect on equipment and materials in the vicinity. Disadvantages ultrasonic method: Manual operation requires careful attention by experienced technicians. The transducers alert to both normal structure of some materials, tolerable anomalies of other specimens (both termed noise ) -9-

Welding Inspection Defects/Repairs Course Reference WIS 5

Welding Inspection Defects/Repairs Course Reference WIS 5 Copy from Welding Inspection Defects/Repairs Course Reference WIS 5 Weld Defects Defects which may be detected by visual inspection can be grouped under five headings Cracks Surface irregularities Contour

More information

Sub-surface inspection of welds No. 6.03

Sub-surface inspection of welds No. 6.03 Sub-surface inspection of welds Scope This Guidance Note applies to all welds in structural steelwork for bridges. It covers the sub-surface inspection of welds using ultrasonic inspection testing and

More information

Welding Defects, Causes and Prevention

Welding Defects, Causes and Prevention Welding Defects, and In welding the important objective is to obtain sound, defect free weld joint. But it is not always possible to get defect free joint. There will always be some kind of defects in

More information

ME E5 - Welding Metallurgy

ME E5 - Welding Metallurgy ME 328.3 E5 - Welding Metallurgy Purpose: To become more familiar with the welding process and its effects on the material To look at the changes in microstructure and the hardness in the Heat Affected

More information

Saggistica Aracne 266

Saggistica Aracne 266 Saggistica Aracne 266 Moreno Preto Welding Defects Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-5854-1

More information

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 14 Reaction in Weld Region & Welding Defects

More information

NAME 345 Welding Technology Lecture 03 (Welding Joint Design)

NAME 345 Welding Technology Lecture 03 (Welding Joint Design) NAME 345 Welding Technology Lecture 03 (Welding Joint Design) Md. Habibur Rahman Lecturer Department of Naval Architecture & Marine Engineering Bangladesh University of Engineering & Technology Dhaka-1000,

More information

Weld Imperfections and Preventive Measures

Weld Imperfections and Preventive Measures FOURTH EDITION Weld Imperfections and Preventive Measures Published by FOURTH EDITION Weld Imperfections and Preventive Measures Kita-Shinagawa, Shinagawa-Ku, Tokyo, 141-8688 Japan Published by KOBE STEEL,

More information

Porosity The good, the Bad and the Ugly of Radiographic Testing

Porosity The good, the Bad and the Ugly of Radiographic Testing 19 th World Conference on Non-Destructive Testing 2016 Porosity The good, the Bad and the Ugly of Radiographic Testing Hugo VAUGHAN 1 1 South African Institute of Welding, Johannesburg, South Africa Contact

More information

Introduction to Welding Technology

Introduction to Welding Technology Introduction to Welding Technology Welding is a fabrication process used to join materials, usually metals or thermoplastics, together. During welding, the pieces to be joined (the workpieces) are melted

More information

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at 41 CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES 3.0. INTRODUCTION Welding is the process of coalescing more than one material part at their surface of contact by the suitable

More information

Specification Weld requirements for fillet joint by fusion welding process. - Weld requirements

Specification Weld requirements for fillet joint by fusion welding process. - Weld requirements Class: Test Instruction and conditions of delivery Specification 2017-09 Weld requirements for fillet joint by fusion welding process Class No.:61 JED 879 Previous Edition Part name (for databases) - Weld

More information

Defects and Discontinuities. Tim Turner Elizabethtown Technical College

Defects and Discontinuities. Tim Turner Elizabethtown Technical College Defects and Discontinuities Tim Turner Elizabethtown Technical College Defect A flaw or flaws that by nature or accumulated effect render a part or product unable to meet minimum applicable acceptance

More information

Defect. Discontinuity. Defects and Discontinuities. Weld Joint Discontinuities

Defect. Discontinuity. Defects and Discontinuities. Weld Joint Discontinuities Defects and Discontinuities Defect A flaw or flaws that by nature or accumulated effect render a part or product unable to meet minimum applicable acceptance standards or specifications. The term designates

More information

Planning Advisory Notice

Planning Advisory Notice This Planning Advisory Notice (PAN) is a follow up to the PAN from the March/April issue. In that PAN we discussed some of the codes, standards, and specifications that apply to proper welding design,

More information

INSPECTION and TESTING of WELDS & Acceptance Standard

INSPECTION and TESTING of WELDS & Acceptance Standard INSPECTION and TESTING of WELDS & BY A.K.BOSE CONSULTANT Topics of Discussion Important Definitions related to Welding Weld Inspection- Before, During and After Weld Inspection Instruments and Gauges Common

More information

NAME 345 Welding Technology Lecture 12 Welding Defects & Discontinuities

NAME 345 Welding Technology Lecture 12 Welding Defects & Discontinuities NAME 345 Welding Technology Lecture 12 Welding Defects & Discontinuities Md. Habibur Rahman Lecturer Department of Naval Architecture & Marine Engineering Bangladesh University of Engineering & Technology

More information

Preparing and using manual metal arc welding equipment

Preparing and using manual metal arc welding equipment Unit 827 Preparing and using manual metal arc welding equipment UAN: J/600/5889 Level: Level 2 Credit value: 15 GLH: 68 Relationship to NOS: Endorsement by a sector or regulatory body: Aim: This unit has

More information

Nondestructive Testing

Nondestructive Testing Nondestructive Testing Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Nondestructive inspections fundamentals Classification of nondestructive inspections Radiographic inspection Magnetic particle

More information

Discontinuities and Defects

Discontinuities and Defects Discontinuities and Defects 1 Discontinuity Is An interruption of the typical structure of a material, such as a lack of homogeneity in its mechanical, metallurgical, or physical characteristics. A discontinuity

More information

QC Inspection and Qualification Procedure- TX-EDU-VT-1-07, Revision # by Richard J DePue, Supersedes IW-VT-1 Visual Inspection Procedure

QC Inspection and Qualification Procedure- TX-EDU-VT-1-07, Revision # by Richard J DePue, Supersedes IW-VT-1 Visual Inspection Procedure 1.0 Scope: QC Inspection and Qualification Procedure- TX-EDU-VT-1-07, Revision #6 03-04-2016 by Richard J DePue, Supersedes IW-VT-1 Visual Inspection Procedure The purpose of this procedure is to define

More information

Weld Quality Standards

Weld Quality Standards Weld Quality Standards 9/14/2011 1 Index Visual Inspection Criteria Using a Fillet Weld Gage Measuring Weld Reinforcement for a Groove Weld Welding Technique Information Sheets 9/14/2011 2 Visual Inspection

More information

Procedure for Visual and Optical Inspection

Procedure for Visual and Optical Inspection Procedure for Visual and Optical Originator Benjamin Boudreaux, ASNT NDT Level III, cert. 148993, UT, MT, PT, VT Date Aug. 08, 2016 Approval Corey Navarro, President Date Aug. 08, 2016 Page 1 8 Revision

More information

ISO INTERNATIONAL STANDARD

ISO INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 10675-1 First edition 2008-03-01 Non-destructive testing of welds Acceptance levels for radiographic testing Part 1: Steel, nickel, titanium and their alloys Essais non destructifs

More information

welding equipment Prepare and use manual TIG or plasma-arc Performance evidence required You must be able to:

welding equipment Prepare and use manual TIG or plasma-arc Performance evidence required You must be able to: 006 UNIT 028 Preparing and using manual TIG or plasma-arc Learning outcomes 1 2 Know how to prepare and use manual TIG or plasma-arc Performance evidence must be the main form of evidence gathered. Candidates

More information

Welding. What is Welding?

Welding. What is Welding? Welding Welding What is Welding? Welding is a joining process in which metals are heated, melted and mixed to produce a joint with properties similar to those of the materials being joined. Parent Metal

More information

Preparing and using manual TIG or plasma-arc welding equipment

Preparing and using manual TIG or plasma-arc welding equipment Unit 028 Preparing and using manual TIG or plasma-arc welding equipment Level: 2 Credit value: 15 NDAQ number: 500/9514/6 Unit aim This unit covers the skills and knowledge needed to prove the competences

More information

Welding Efficiency & Learning Defects (W.E.L.D) Cards A

Welding Efficiency & Learning Defects (W.E.L.D) Cards A Welding Efficiency & Learning Defects (W.E.L.D) Cards 1033480-01A Ideal weld path and look for tee and butt joints Definition The proper weld filament, consistent path and fusion. Tee Joint V-Groove Joint

More information

1. Comparison of Inspection Methods

1. Comparison of Inspection Methods NDT.net - The e-journal of Nondestructive Testing (May 2008) For more papers of this publication click: www.ndt.net/search/docs.php3?mainsource=25 Weld Inspection with EMAT Using Guided Waves Borja LOPEZ

More information

WELDER S. Visual Inspection HANDBOOK. May 2013

WELDER S. Visual Inspection HANDBOOK. May 2013 WELDER S Visual Inspection HANDBOOK May 2013 -- NOTE -- This handbook is NOT intended to serve as a work procedure or to replace any existing procedures. It is solely intended to provide basic information

More information

PART 5 WELDING. 5.1 General 5.2 Preparation 5.3 Dimensions of welds 5.4 Materials 5.5 Aluminium alloys 5.6 Welding details 5.

PART 5 WELDING. 5.1 General 5.2 Preparation 5.3 Dimensions of welds 5.4 Materials 5.5 Aluminium alloys 5.6 Welding details 5. PART 5 WELDING PART 5 WELDING SECTION SUBJECT 5.1 General 5.2 Preparation 5.3 Dimensions of welds 5.4 Materials 5.5 Aluminium alloys 5.6 details 5.7 Symbols WELDING Section 5.1 General 5.1.1 of structures

More information

Common Oxy Fuel Industry Terms

Common Oxy Fuel Industry Terms Common Oxy Fuel Industry Terms A ACETYLENE Gas composed of two parts of carbon and two parts of hydrogen When burned in the atmosphere of oxygen, it produces one of the highest flame temperatures obtainable.

More information

DISCONTINUITIES AND DEFECTS. Training Workbook

DISCONTINUITIES AND DEFECTS. Training Workbook DISCONTINUITIES AND DEFECTS Training Workbook EW-512-4 Written by the Staff of Hobart Institute of Welding Technology Additional copies can be obtained from: Hobart Institute of Welding Technology 400

More information

Fundamentals of Joining

Fundamentals of Joining Fundamentals of Joining Chapter 30 30.1 Introduction to Consolidation Processes Consolidation Processes consist of Welding Brazing Soldering Fasteners Adhesives Shrink Fits Slots and Tabs Each Process

More information

ISO 5817 INTERNATIONAL STANDARD

ISO 5817 INTERNATIONAL STANDARD INTERNATIONAL STANDARD ISO 5817 Second edition 2003-10-01 Welding Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) Quality levels for imperfections Soudage Assemblages

More information

INSPECTION OF FIELD WELDING

INSPECTION OF FIELD WELDING INSPECTION OF FIELD WELDING Objective Types of Projects Involving Welding Common Welding Terms & Symbols Welder Qualifications Common Welding Requirements Welding Inspection Types of Projects Involving

More information

Application of Acoustic Emission Method for Control of Manual Arc Welding, Submerged Arc Welding

Application of Acoustic Emission Method for Control of Manual Arc Welding, Submerged Arc Welding 31 st Conference of the European Working Group on Acoustic Emission (EWGAE) We.4.A.2 More Info at Open Access Database www.ndt.net/?id=17586 Application of Acoustic Emission Method for Control of Manual

More information

Module 4 Design for Assembly

Module 4 Design for Assembly Module 4 Design for Assembly Lecture 2 Design for Welding-I Instructional Objective By the end of this lecture, the student will learn: (a) how a weld joint should be designed to improve the joint performance,

More information

ISO INTERNATIONAL STANDARD. Non-destructive testing of welds Visual testing of fusion-welded joints

ISO INTERNATIONAL STANDARD. Non-destructive testing of welds Visual testing of fusion-welded joints INTERNATIONAL STANDARD ISO 17637 First edition 2003-07-15 Non-destructive testing of welds Visual testing of fusion-welded joints Contrôle non destructif des assemblages soudés Contrôle visuel des assemblages

More information

b) provide evidence of his qualifications and practical experience in welding.

b) provide evidence of his qualifications and practical experience in welding. NEPALESE CIVIL AIRWORTHINESS REQUIREMENTS SECTION D APPROVAL PROCEDURES CHAPTER D.6 ISSUE 1 NOVEMBER 1994 1. GENERAL WELDERS 1.1 This chapter is applicable to persons who weld parts which are essential

More information

Extended stickout guides are used to maintain a consistent CTWD (see Contact Tip to Work Distance section for more details).

Extended stickout guides are used to maintain a consistent CTWD (see Contact Tip to Work Distance section for more details). WELDING TECHNIQUES Extended Stickout Welding (Cont d) Extended stickout welding is best suited to large diameter, high deposition Innershield electrodes, such as 3/32 in. (2.4 mm) and 0.120 in. (3.0 mm)

More information

Part 1: General terms

Part 1: General terms Provläsningsexemplar / Preview TECHNICAL REPORT ISO/TR 25901-1 First edition 2016-03-15 Welding and allied processes Vocabulary Part 1: General terms Soudage et techniques connexes Vocabulaire Partie 1:

More information

MODERN ULTRASONIC TECHNIQUES FOR DEFECT DETECTION IN CAST MATERIALS

MODERN ULTRASONIC TECHNIQUES FOR DEFECT DETECTION IN CAST MATERIALS MODERN ULTRASONIC TECHNIQUES FOR DEFECT DETECTION IN CAST MATERIALS INTRODUCTION S. Palit Sagar National Metallurgical Laboratory, Jamshedpur 831007 e-mail : sarmi@nmlindia.org In casting flaw detection

More information

WELDING PROCEDURE SPECIFICATION. Shielded Metal Arc Welding-SMAW

WELDING PROCEDURE SPECIFICATION. Shielded Metal Arc Welding-SMAW WELDING PROCEDURE SPECIFICATION Shielded Metal Arc Welding-SMAW WPS Number: WPS-SMAW-CS Revision: 0 Company Name & Address ABC WELDING & FABRICATING 123 WeldProc Boulevard Toronto, ON A1B 2C3 CWB Approval

More information

AWS B1.10:1999 An American National Standard. Guide for the Nondestructive Examination of Welds

AWS B1.10:1999 An American National Standard. Guide for the Nondestructive Examination of Welds AWS B1.10:1999 An American National Standard Guide for the Nondestructive Examination of Welds Key Words Guide, eddy current examination, magnetic particle examination, nondestructive examination, penetrant

More information

DOWNLOAD PDF SMAW : BEADS AND FILLET WELDS

DOWNLOAD PDF SMAW : BEADS AND FILLET WELDS Chapter 1 : SMAW Fillet Welds?!!! - Miller Welding Discussion Forums View Notes - SMAW -beads and fillet weldsterm: Definition: wire brush or grinder used to remove heavy mill scale or corrosion from coupons

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

FCAW vertical welding of "V" butt plate in AC UHV transmission line construction

FCAW vertical welding of V butt plate in AC UHV transmission line construction FCAW vertical of "V" butt plate in AC UHV transmission line construction HanYang, ChenKerui, LiYang, QuBao State Grid of China Technology, Ji nan, Shandong 250000, China Abstract: In twenty-first Century,

More information

ISO Non-destructive testing of welds Ultrasonic testing Use of automated phased array technology

ISO Non-destructive testing of welds Ultrasonic testing Use of automated phased array technology INTERNATIONAL STANDARD ISO 13588 First edition 2012-10-01 Non-destructive testing of welds Ultrasonic testing Use of automated phased array technology Contrôle non destructif des assemblages soudés Contrôle

More information

TESTING OF MANUAL ARC WELDERS Issue No 5 Date Issued 1/9/69

TESTING OF MANUAL ARC WELDERS Issue No 5 Date Issued 1/9/69 NEW ZEALAND PRACTICAL TRAINING AND TESTING OF MANUAL ARC WELDERS Issue No 5 Date Issued 1/9/69 GOVERNMENT RAILWAYS Page No. 1 of 6 1. GENERAL: This Code is to be brought to the attention of all staff trained

More information

Welding Job Knowledge

Welding Job Knowledge Defects - lamellar tearing BP Forties platform lamellar tears were produced when attempting the repair of lack of root penetration in a brace weld Lamellar tearing can occur beneath the weld especially

More information

QUALIFICATION OF THE ULTRASONIC INSPECTIONS OF VACUUM VESSEL WELDS OF THE ITER REACTOR

QUALIFICATION OF THE ULTRASONIC INSPECTIONS OF VACUUM VESSEL WELDS OF THE ITER REACTOR More Info at Open Access Database www.ndt.net/?id=18508 QUALIFICATION OF THE ULTRASONIC INSPECTIONS OF VACUUM VESSEL WELDS OF THE ITER REACTOR ABSTRACT F. Fernández, A. García, M.C. Pérez, R. Martinez-Oña

More information

Development and Validation of an Automated Ultrasonic System for the Non- Destructive Evaluation of Welded Joints in Thermoplastic Storage Tanks

Development and Validation of an Automated Ultrasonic System for the Non- Destructive Evaluation of Welded Joints in Thermoplastic Storage Tanks More Info at Open Access Database www.ndt.net/?id=16619 Development and Validation of an Automated Ultrasonic System for the Non- Destructive Evaluation of Welded Joints in Thermoplastic Storage Tanks

More information

Development and validation of an automated ultrasonic system for the non-destructive evaluation of welded joints in thermoplastic storage tanks

Development and validation of an automated ultrasonic system for the non-destructive evaluation of welded joints in thermoplastic storage tanks Development and validation of an automated ultrasonic system for the non-destructive evaluation of welded joints in thermoplastic storage tanks Abstract Malcolm Spicer, Fredrik Hagglund and Mike Troughton,

More information

Structure of Metals 1

Structure of Metals 1 1 Structure of Metals Metals Basic Structure (Review) Property High stiffness, better toughness, good electrical conductivity, good thermal conductivity Why metals have these nice properties - structures

More information

FABRICATION/WELDING STANDARD MANUAL

FABRICATION/WELDING STANDARD MANUAL This manual was produced for internal use at Geringhoff Manufacturing LLC. We strongly recommend our suppliers to read and adhere to it. It is of great help to understand our drawings and our expectations.

More information

3 TIG welding. 3.1 A description of the method. 3.2 Equipment

3 TIG welding. 3.1 A description of the method. 3.2 Equipment 3 TIG welding 3.1 A description of the method TIG welding (also called Gas Tungsten Arc Welding, GTAW) involves striking an arc between a non-consumable tungsten electrode and the workpiece. The weld pool

More information

A STUDY OF WELD DEFECTS OF GAS METAL ARC WELDING WITH DIFFERENT SHIELDING GASSES

A STUDY OF WELD DEFECTS OF GAS METAL ARC WELDING WITH DIFFERENT SHIELDING GASSES A STUDY OF WELD DEFECTS OF GAS METAL ARC WELDING WITH DIFFERENT SHIELDING GASSES Norfadhlina Khalid, Puteri Zirwatul Nadila M. Zamanhuri and Faisal Ahmad Shaiful Baharin Section of Marine Construction

More information

PROCESS CONTROL OF GMAW BY DETECTION OF DISCONTINUITIES IN THE MOLTEN. Nancy M. Carlson, Dennis C. Kunerth, and John A. Johnson

PROCESS CONTROL OF GMAW BY DETECTION OF DISCONTINUITIES IN THE MOLTEN. Nancy M. Carlson, Dennis C. Kunerth, and John A. Johnson PROCESS CONTROL OF GMAW BY DETECTION OF DISCONTINUITIES IN THE MOLTEN WELD POOL Nancy M. Carlson, Dennis C. Kunerth, and John A. Johnson Idaho National Engineering Laboratory EG&G Idaho, Inc., P. 0. Box

More information

DIPLOMA IN ENGINEERING FABRICATION AND WELDING TECHNOLOGY PRE-ATTENDANCE REVISION WORKBOOK FOR UNIT 213

DIPLOMA IN ENGINEERING FABRICATION AND WELDING TECHNOLOGY PRE-ATTENDANCE REVISION WORKBOOK FOR UNIT 213 2850 DIPLOMA IN ENGINEERING FABRICATION AND WELDING TECHNOLOGY PRE-ATTENDANCE REVISION WORKBOOK FOR UNIT 213 V1 Welcome This booklet is designed to outline the areas that you will study when you complete

More information

Lecture No. # 37 Welding Defects and NDT

Lecture No. # 37 Welding Defects and NDT Marine Construction and Welding Prof. Dr. N. R. Mandal Department of Ocean Engineering and Naval Architecture Indian Institute of Technology, Kharagpur Lecture No. # 37 Welding Defects and NDT So, continuing

More information

AN OVERVIEW ON SHIELDED METAL ARC WELDING (SMAW) OF STAINLESS STEEL (SS)

AN OVERVIEW ON SHIELDED METAL ARC WELDING (SMAW) OF STAINLESS STEEL (SS) Suggested Spec. for SMAW-SS - 1 - AN OVERVIEW ON SHIELDED METAL ARC WELDING (SMAW) OF STAINLESS STEEL (SS) Scope This document provides information on welding and related operations of stainless steel

More information

NAME 345 Welding Technology Lecture 09 SAW, ESW & Resistance Welding

NAME 345 Welding Technology Lecture 09 SAW, ESW & Resistance Welding NAME 345 Welding Technology Lecture 09 Md. Habibur Rahman Lecturer Department of Naval Architecture & Marine Engineering Bangladesh University of Engineering & Technology Dhaka-1000, Bangladesh Submerged

More information

PROCESS TO REDUCE REJECTION RATES OF FORGING DEFECTS

PROCESS TO REDUCE REJECTION RATES OF FORGING DEFECTS PROCESS TO REDUCE REJECTION RATES OF FORGING DEFECTS ABSTRACT- this paper deals with the various forging defects that occur in a forging industry that causes high rejection rates in the components and

More information

Table of Contents Page No.

Table of Contents Page No. Table of Contents Page No. Personnel... iii Foreword...v List of Tables...xii List of Figures... xiii 1. General Requirements...1 1.1 Scope...1 1.2 Approval...1 1.3 Definitions...1 1.4 Welding Symbols...1

More information

NAME 345 Welding Technology Lecture 07 Shielded Metal Arc Welding (SMAW)

NAME 345 Welding Technology Lecture 07 Shielded Metal Arc Welding (SMAW) NAME 345 Welding Technology Lecture 07 Shielded Metal Arc Welding (SMAW) Md. Habibur Rahman Lecturer Department of Naval Architecture & Marine Engineering Bangladesh University of Engineering & Technology

More information

Guidelines To Gas Metal Arc Welding (GMAW)

Guidelines To Gas Metal Arc Welding (GMAW) Guidelines To Gas Metal Arc Welding (GMAW) WARNING ARC WELDING can be hazardous. This document contains general information about the topics discussed herein. This document is not an application manual

More information

ASTM Volume 03.03, October 2017 Nondestructive Testing (E94 E2373)

ASTM Volume 03.03, October 2017 Nondestructive Testing (E94 E2373) Table of Contents 1 E94-04(2010) Standard Guide for Radiographic Examination 2 E114-15 Standard Practice for Ultrasonic Pulse-Echo Straight-Beam Contact Testing 3 E125-63(2013) Standard Reference Photographs

More information

METROPOLITAN. O & M Procedure No: E UTILITIES DISTRICT I. GENERAL

METROPOLITAN. O & M Procedure No: E UTILITIES DISTRICT I. GENERAL Page: 1 of 10 I. GENERAL * Before any welder may weld on the Metropolitan Utilities District gas distribution and transmission system piping and facilities, the welder shall be qualified to perform the

More information

RULES. PUBLICATION No. 74/P PRINCIPLES FOR WELDING PROCEDURE QUALIFICATION TESTS March

RULES. PUBLICATION No. 74/P PRINCIPLES FOR WELDING PROCEDURE QUALIFICATION TESTS March RULES PUBLICATION No. 74/P PRINCIPLES FOR WELDING PROCEDURE QUALIFICATION TESTS 2018 March Publications P (Additional Rule Requirements) issued by Polski Rejestr Statków complete or extend the Rules and

More information

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 8 Submerged Arc Welding Welcome students. This

More information

50948-RHN Putney. Friday, 15 December This document includes: Code Section Revision Dated

50948-RHN Putney. Friday, 15 December This document includes: Code Section Revision Dated 50948-RHN Putney Friday, 15 December 2017 This document includes: Code Section Revision Dated Z11 Purpose made metalwork 1 Table of Contents Title Z11 Purpose made metalwork Page 3 Z11 Purpose made metalwork

More information

Tack Welder Level 3 Question Bank

Tack Welder Level 3 Question Bank Tack Welder Level 3 Question Bank I Fill in the blanks 1. Principle of GAS cutting is 2. Argon cylinder colour is 3. rays will emit from welding arc. 4. Tongs are used to hold 5. Full form of GMAW 6. Diameter

More information

Investigation and Research Proposal on welding technique for longitudinal crack defect welding

Investigation and Research Proposal on welding technique for longitudinal crack defect welding Investigation and Research Proposal on welding technique for longitudinal crack defect welding MALOTH MOHAN KUMAR Assistant Professor, Department of Mechanical Engineering, Nalla Malla Reddy Engineering

More information

RULES FOR THE CLASSIFICATION OF SHIPS

RULES FOR THE CLASSIFICATION OF SHIPS RULES FOR THE CLASSIFICATION OF SHIPS 2009 Part 26 - WELDING Amendments No.1 CROATIAN REGISTER OF SHIPPING Hrvatska (Croatia) 21000 Split Marasovićeva 67 P.O.B. 187 Tel.: (...) 385 (0)21 40 81 11 Fax.:

More information

Modeling Welded. ANSYS e-learning. June CAE Associates

Modeling Welded. ANSYS e-learning. June CAE Associates Modeling Welded Connections ANSYS e-learning Peter Barrett June 2013 2013 CAE Associates Outline The importance of weld stress prediction. Weld geometry and terminology. Failure due to fatigue. Methods

More information

AWS B1.10M/B1.10:2009 An American National Standard. Guide for the Nondestructive Examination of Welds

AWS B1.10M/B1.10:2009 An American National Standard. Guide for the Nondestructive Examination of Welds An American National Standard Guide for the Nondestructive Examination of Welds An American National Standard Approved by the American National Standards Institute July 1, 2009 Guide for the Nondestructive

More information

Timber and Steel Design. Lecture 13. Welded Connections I

Timber and Steel Design. Lecture 13. Welded Connections I Timber and Steel Design Lecture 13 Welded Connections I Advantages of Welding Types of Welding Welding Symbols Groove & Fillet Welds Allowable Strength of Welds Slot and Back Welds S U R A N A R E E UNIVERSITY

More information

INSPECTION AND TEST. PROCEDURE Total Page 13

INSPECTION AND TEST. PROCEDURE Total Page 13 PROCEDURE Total Page 13 Client : Project Name: P/O No. : Item No. : 3 2 1 0 FOR APPROVAL Rev Description Date Prepared By Checked By Approved By PROCEDURE Page 1 of 8 1. General 1.1 Scope This specification

More information

Page 17

Page 17 CHARACTERIZATION OF BRAZING DEFECTS IN OXYGEN FREE HIGH THERMAL CONDUCTIVITY COPPER USING NON DESTRUCTIVE TESTING TECHNIQUES Satish kumar.d M.Victor Nagesha Dept of Mechanical Scientist Asst Professor

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

Module - 4 Advanced Welding Processes Lecture - 1 Submerged Arc Welding (SAW)

Module - 4 Advanced Welding Processes Lecture - 1 Submerged Arc Welding (SAW) Advanced Manufacturing Processes Prof. Dr. Apurbba Kumar Sharma Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 4 Advanced Welding Processes Lecture

More information

Improving the Fatigue Resistance of Thermite Railroad Rail Weldments. F. V. Lawrence Y-R. Chen J. P. Cyre

Improving the Fatigue Resistance of Thermite Railroad Rail Weldments. F. V. Lawrence Y-R. Chen J. P. Cyre Improving the Fatigue Resistance of Thermite Railroad Rail Weldments F. V. Lawrence Y-R. Chen J. P. Cyre 1 Outline! Fatigue problems with thermite welds! Improving the rail head! Improving the rail web

More information

WELD TESTING DESTRUCTIVE AND NON-DESTRUCTIVE

WELD TESTING DESTRUCTIVE AND NON-DESTRUCTIVE WELD TESTING DESTRUCTIVE AND NON-DESTRUCTIVE DESTRUCTIVE TESTING These can be divided into two parts, Tests capable of being performed in the workshop. Laboratory tests. microscopicmacroscopic, chemical

More information

Course: Quality Assurance Module 5 Welders/Welding personnel

Course: Quality Assurance Module 5 Welders/Welding personnel Version 1.0 2010.11.02 1 of 7 Course: Quality Assurance Module 5 Welders/Welding personnel Version 1.0 2010.11.02 2 of 7 Table of Contents MODULE 5...3 Surface inspection on cracks and other surface imperfections

More information

Nondestructive Examination

Nondestructive Examination Nondestructive Examination by Roger Cantrell Learning Objectives This course introduces the student to the basic concepts of six Nondestructive Examination (NDE) methods used in construction and periodic

More information

9. Welding Defects 109

9. Welding Defects 109 9. Welding Defects 9. Welding Defects 109 Figures 9.1 to 9.4 give a rough survey about the classification of welding defects to DIN 8524. This standard does not classify existing welding defects according

More information

Non-destructive testing of welds Ultrasonic testing Techniques, testing levels, and assessment

Non-destructive testing of welds Ultrasonic testing Techniques, testing levels, and assessment Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 17640 Third edition 2017-10 Non-destructive testing of welds Ultrasonic testing Techniques, testing levels, and assessment Essais non destructifs

More information

SECOND SEMESTER DIPLOMA EXAMINATION IN MECHANICAL ENGINEERING- MARCH, 2015 MANUFACTURING PROCESS PART-A

SECOND SEMESTER DIPLOMA EXAMINATION IN MECHANICAL ENGINEERING- MARCH, 2015 MANUFACTURING PROCESS PART-A SECOND SEMESTER DIPLOMA EXAMINATION IN MECHANICAL ENGINEERING- MARCH, 2015 MANUFACTURING PROCESS PART-A 1. Define hardness. It is the ability of a material to resist indentation or surface abrasion 2.

More information

Comparison of BS and BS EN for steel materials

Comparison of BS and BS EN for steel materials Comparison of BS and BS EN for steel materials Appendix This table only highlights the comparison of BS and BS EN on steel materials, which are relevant to plan approval. Title of BS BS BS EN Title of

More information

4/19/2018. The heat generated for welding comes from an arc

4/19/2018. The heat generated for welding comes from an arc Foundations of Agriculture The heat generated for welding comes from an arc Develops when electricity jumps across an air gap between the end of an electrode and the base metal. A. Alternating Current

More information

Fundamentals of Design for Welding. Kelly Bramble 32.1

Fundamentals of Design for Welding. Kelly Bramble 32.1 Fundamentals of Design for Welding Kelly Bramble 32.1 Fundamentals of Design for Welding Copyright, Engineers Edge, LLC www.engineersedge.com All rights reserved. No part of this training program may be

More information

WELDING TECHNOLOGY AND WELDING INSPECTION

WELDING TECHNOLOGY AND WELDING INSPECTION WELDING TECHNOLOGY AND WELDING INSPECTION PRESENTED BY: GOPAL KUMAR CHOUDHARY SVL ENGINEERING SERVICES CHENNAI CONTENTS: DEFINATION TYPES OF WELDING ELECTRODE GEOMETRY EQUIPMENT QUALITY PROCESS SAFETY

More information

1. Poor attitude toward any of the other students, instructors, or judges. 2. Failure to use personal protective equipment (PPE).

1. Poor attitude toward any of the other students, instructors, or judges. 2. Failure to use personal protective equipment (PPE). Welding Contest Rules and Score Sheet 2016 4G Rules: 1. Be Safe & Have Fun 2. Can tack in any position but groove welding must be in accordance with your WPS. 3. Can use wire brush, chipping hammer, and

More information

BONDING, POTTING, WELDING

BONDING, POTTING, WELDING 40-60 Delaware St. BONDING, POTTING, WELDING Part No. PR303 - INDEX- : 5/17/05 This Quality Standard applies unless otherwise specified by drawing or specification. PAGE 1 : INDEX PAGE 2 : DEFINITIONS

More information