SIRRIS ADD department. Additive Manufacturing

Size: px
Start display at page:

Download "SIRRIS ADD department. Additive Manufacturing"

Transcription

1 SIRRIS ADD department Additive Manufacturing

2 ADD capacities & competencies SIRRIS ADD ( ) 15 engineers and technicians Two locations: Liège (10 p.) and Charleroi (5 p.) In-house additive technologies Stereolithography (normal & hi-res) Paste polymerisation for ceramics and metals (2 Optoform) 3D Printing of plaster and metal powder (Z-Corp + 2 Prometal) Laser sintering of polymeric powder (PA, ): P360 P390 Objet Connex 500: bi-material Laser Melting (MTT) SLM 250 HL for metal parts and inserts EBM Arcam A2 (Titanium & CoCr) Laser Cladding (Irepa Laser EasyCLAD) 3D Printing of wax (Thermojet) 3D scanning & metrology (GOM, Metris, Wenzel) 2

3 Optoform process Photopolymerisation of resin filled with - technical ceramics (alumina, zyrconium, SiC) - bioceramics (HAP, TCP) High viscosity material. Debinding and sintering step 3

4 Optoform SiC parts Porous scaffolds in Hydroxyapatite & TCP Testing on various scaffold 3D structures for bone integration Spine and maxillofacial surgery Macro-porosity ~= 500 µm HA parts 4

5 Bi-material Prototype OBJET Connex 500 3D Printing of 2 materials simultaneously: 500 * 400 * 200 mm Resolution 600 dpi Visual prototypes for look and feel (hard, flexible, coating, ) Bi-material but also composite materials. Biocompatible materials. 5

6 Laser Sintering of polymer powder sirris /12/2007 6

7 3D Printing metal 3D Printing of metal powder Stainless steel with bronze infiltration Debinding / infiltration or debinding / sintering No support high geometrical complexity Functional Prototypes or parts (unique part, short series) Metal parts with internal complex geometry (Lattice structure, lightweight structure, ) Artistic parts Mould inserts for thermoplastic injection with conformal cooling channels for optimization (cycle time reduction, ) 7

8 3D Printing metal - Prometal 8

9 3D Printing (Prometal) Art works Pierre Pourveur Evelyne Gilmont Alice Salmon (Sirris) Gil Bruvel Batsheba Wim Delvoye 9

10 3D Printing Prometal Post-milling 10

11 Laser melting - Full melting - Full density - Titanium, alu, steels, Inconel, Pictures from ILT 11

12 Laser melting applications 12

13 Electron Beam Melting - Arcam - Near net shape solution requiring post milling (HSM) - An high energy beam of electrons is generated in the Electron Beam Gun - The control system allow for an extremely fast beam translation with no moving parts - Vacuum melt process eliminate impurities and yields high strength properties of the material - High build temperature provide good form stability and low residual stress in the part - Low operating costs 13

14 Electron Beam Melting Arcam Excellent properties for: Strength Elasticity Fatigue Chemical composition Microstructure Released Materials Ti6Al4V Ti6Al4V ELI CoCr, ASTM F75 100% Density Lattice & Cellular Structures - Lattice and cellular structures allow combination of the excellent properties of solid metal with the extraordinary properties of a cellular or lattice structure. Material: Ti6Al4V Size: 25 x 65 x 180 mm Build time: 6 hours - Applications include: * structures for bone in-growth in medical implants, * lightweight designs component * filters * other applications where a cellular structure is advantageous 14

15 Electron Beam Melting - Arcam Applications Medical: Implants Prosthesis - Instruments Material: Ti6Al4V Size: 180 x 130 x 5 mm Build time: 12 hours Material: CoCr ASTM F75 Build time: 8 knees in 20 hours Material: Ti6Al4V ELI Build time: 16 cups in 24 hours 15

16 Laser cladding Principle No powder bed Local deposition of fused metal Powder feeding in the laser beam 3 types of applications - Coatings: enhancement of hardness, wear resistance and anti-corrosion - Repair of damaged expensive parts - Full 3D building of parts Large range of materials available FGM Coaxial nozzle (2D) Multi-jet nozzle (3D) 16

17 The principle Laser + central gaz (coaxial) Shape Gas Carrier gas + powder Track Meltpool Motion direction Substrate Heat Affected Zone Sirris info@sirris.be 11/05/

18 IREPA Laser system IREPA LASER Duo-CLAD (EasyCLAD) - 2 fiber lasers: IPG 300 W et 2000 W. - MesoCLAD nozzle for mm Up to 15 cm 3 /h - MacroCLAD nozzle for 2 mm. Up to 250 cm 3 /h - Layer thickness: µm - Machining center 5 axes imes(isel) with rotating plate - PowerCLAD (Delcam) 5 axes based on PowerMill et PowerShape - Shielding gas - Double powder feeding: Medicoat DUO. - Monitoring & process control (added by Sirris & CSL) 20/12/

19 Comparative study of metal additive manufacturing technologies DPrinting EBM Laser Cladding Laser Melting Productivity 3D Complexity Maximum size Precision Surface quality Internal struct (Lattices) Mech prop - density sirris

20 Comparative study of metal additive manufacturing technologies 3DPrinting EBM Laser Cladding Laser Melting Source Printhead Electron Beam Laser Laser Powder feeding Powder bed Powder bed Nozzle Powder bed Materials S Steel + Bronze Ti CoCr Ti steel Ti Alu Steels Inco Controlled porosity Yes No No No sirris

21 Controlled porosity with 3D Printing (Prometal) Investigation ways to manage the porosity: (not a macro porosity with lattice structures) Sintering parameters Composition of the powder mixture Addition of organic particules Only one solution: 3DP Prometal Applications: fluid control, filters, 21

22 Controlled Porosity: some details Materials: 316L Density: From 50 to 95% Open porosity: From 0 to 50% Pore diameters: From 5 to 35µm Permeability (Darcy law): From to m² Mechanical properties: Up to 100% of the prop. of 316L with a density around 95%. Ø 40mm Ø 300mm sirris 22

23 Hipermoulding project 4 injection moulds produced with & without conformal cooling channels 4 mm Drastic reduction of the cycle time (up to 35%) Enhancement of part quality Enhancement of tool lifetime Profitability up to euros/year (prod. 6 Mparts) 23

24 Topology optimization Stress verification Flying Cam example (Compolight project) Free space definition Efforts repartition STL file Smoothing or redesign based on the STL geometry Weight reduction with the same mechanical result

25 SIRRIS ADD Actual & Future developments LightWeight solutions 3D structures Controlled Porosity Medical applications Quality, Repeatability, Standards Sustainability Composites SiC+ alu, Connex digital materials Titanium, Inconel, aluminium Functionally Graded materials and porosity Nano particles incorporation 25

Additive manufacturing of CERAMICS technology overview. 3D Printing Materials Conference

Additive manufacturing of CERAMICS technology overview. 3D Printing Materials Conference Additive manufacturing of CERAMICS technology overview 3D Printing Materials Conference Maastricht, January 27, 2015 Increase the competitiveness of companies through technological innovations Sirris 25

More information

Additive Manufacturing Technology

Additive Manufacturing Technology Additive Manufacturing Technology ME 012193 Spring I 2018 By Associate Prof. Xiaoyong Tian Cell:13709114235 Email: leoxyt@mail.xjtu.edu.cn Lecture 02 Fundmental AM processes Interactions in AM processes

More information

SIRRIS. Bioprinting: markets and opportunities. Grégory Nolens. QED AM in Medical November 4th 2014

SIRRIS. Bioprinting: markets and opportunities. Grégory Nolens. QED AM in Medical November 4th 2014 SIRRIS Bioprinting: markets and opportunities Grégory Nolens QED AM in Medical November 4th 2014 Collective centre of the technology industry Non profit organization Industry owned 4,700 industrial interventions

More information

Additive manufacturing of metallic alloys and its medical applications

Additive manufacturing of metallic alloys and its medical applications Additive manufacturing of metallic alloys and its medical applications A. Di Schino 1, M. Richetta 2 1 Dipartimento di Ingegneria Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy

More information

Agenda. Introduction Drivers AM in mould technology 10/23/17. Additive Manufacturing voor matrijzenbouw. 23 oktober 2017, Sint-Niklaas

Agenda. Introduction Drivers AM in mould technology 10/23/17. Additive Manufacturing voor matrijzenbouw. 23 oktober 2017, Sint-Niklaas Additive Manufacturing voor matrijzenbouw 23 oktober 2017, Sint-Niklaas 1 Agenda Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning. - Albert Einstein

More information

Additive Manufacturing Technology November

Additive Manufacturing Technology November Additive Manufacturing Technology November 2012 www.3trpd.co.uk Phil Kilburn DMLS Sales Manager Agenda About 3T RPD Ltd Overview of Additive Manufacturing Manufacturing directly in metals Arcam - Electron

More information

An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture. Ivor Davies. RP&T Centre WMG, University of Warwick

An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture. Ivor Davies. RP&T Centre WMG, University of Warwick An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture Ivor Davies RP&T Centre WMG, University of Warwick 2 Contents Rapid Prototyping Basic Principle Data Requirements RP Processes

More information

Agenda. Introduction Drivers 10/26/16. Metal Additive Manufacturing. 25 oktober 2016, Gavere

Agenda. Introduction Drivers 10/26/16. Metal Additive Manufacturing. 25 oktober 2016, Gavere Metal Additive Manufacturing 25 oktober 2016, Gavere 1 Agenda Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning. - Albert Einstein - Introduction Drivers

More information

Manufacturing UNBOUND

Manufacturing UNBOUND Welcome to Manufacturing UNBOUND Arcam EBM Disrupting the status quo in production by providing leading-edge metal additive manufacturing solutions. 2 www.arcamebm.com Arcam EBM Your innovative partner

More information

Industrial Engineering Applications of Rapid Prototyping

Industrial Engineering Applications of Rapid Prototyping Industrial Engineering Applications of Rapid Prototyping Dr. Denis Cormier Rochester Institute of Technology Department of Industrial and Systems Engineering Introductions 1995-2009 North Carolina State

More information

Laser sintering.

Laser sintering. Laser sintering carmelo.demaria@centropiaggio.unipi.it Sintering process Sintering process bonding of the metal, ceramic or plastic powders together when heated to temperatures in excess of approximately

More information

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS ADDITIVE MANUFACTURING OF TITANIUM ALLOYS F.H. (Sam) Froes Consultant to the Titanium Industry Based on a paper by B. Dutta and F.H. (Sam) Froes which appeared in AM&P Feb. 2014 pp. 18-23 OUTLINE Cost

More information

Producing Metal Parts

Producing Metal Parts Producing Metal Parts CNC vs. Additive Manufacturing www.3dhubs.com METAL KIT 2 Introduction This Kit discusses how to select the right manufacturing process for metal parts by comparing CNC and Additive

More information

Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN:

Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN: Andreas Gebhardt Understanding Additive Manufacturing Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN: 978-3-446-42552-1 For further information and order see http://www.hanser.de/978-3-446-42552-1

More information

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Introduction to Electron Beam Melting Arcam AB EBM process

More information

Metal powder reuse in additive manufacturing. Alessandro Consalvo AM Support Engineer, Renishaw spa

Metal powder reuse in additive manufacturing. Alessandro Consalvo AM Support Engineer, Renishaw spa Metal powder reuse in additive manufacturing Alessandro Consalvo AM Support Engineer, Renishaw spa Renishaw World leading metrology company founded in 1973. Skills in measurement, motion control, spectroscopy

More information

Additive Manufacturing Challenges Ahead

Additive Manufacturing Challenges Ahead Additive Manufacturing Challenges Ahead Dr. S. SELVI Associate Professor, Dept. of Mechanical Engineering Institute of Road and Transport Technology, Erode 638 316. selvimech@yahoo.com Received 25, November

More information

CHALLENGES AND OPPORTUNITIES FOR ADDITIVE MANUFACTURING IN THE AUTOMOTIVE INDUSTRY. Paul J. Wolcott Ph.D. Body SMT Innovation

CHALLENGES AND OPPORTUNITIES FOR ADDITIVE MANUFACTURING IN THE AUTOMOTIVE INDUSTRY. Paul J. Wolcott Ph.D. Body SMT Innovation CHALLENGES AND OPPORTUNITIES FOR ADDITIVE MANUFACTURING IN THE AUTOMOTIVE INDUSTRY Paul J. Wolcott Ph.D. Body SMT Innovation Agenda 1. Additive Manufacturing in Industry 2. Opportunities in Automotive

More information

Markforged: Taking a different approach to metal Additive Manufacturing

Markforged: Taking a different approach to metal Additive Manufacturing Loughborough University Institutional Repository Markforged: Taking a different approach to metal Additive Manufacturing This item was submitted to Loughborough University's Institutional Repository by

More information

Materials and Fastening Solutions Study

Materials and Fastening Solutions Study May, 2009 Conducted by: Introduction and Methodology Purpose and Objectives Methodology This research was conducted to provide Design News with current information on the growing importance of processes

More information

Additive Manufacturing or 3D prototyping. OO, November the 18 th

Additive Manufacturing or 3D prototyping. OO, November the 18 th Additive Manufacturing or 3D prototyping OO, November the 18 th Definition Additive Manufacturing is defined in ASTM F2792-12 as an assembly process of successive thin layer of materials by using numerical

More information

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN 3D Printing 2016. 05. 25 Park Hong-Seok Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN http://lpe.ulsan.ac.kr Why Do We Need 3d Printing? Complexity

More information

Additive Layer Manufacturing: Current & Future Trends

Additive Layer Manufacturing: Current & Future Trends Additive Layer Manufacturing: Current & Future Trends L.N. Carter, M. M. Attallah, Advanced Materials & Processing Group Interdisciplinary Research Centre, School of Metallurgy and Materials Additive Layer

More information

Laser assisted Cold Spray

Laser assisted Cold Spray 2009-02-16 Laser assisted Cold Spray Andrew Cockburn, Matthew Bray, Rocco Lupoi Bill O Neill Innovative Manufacturing Research Centre (IMRC) Institute for Manufacturing, Department of Engineering, University

More information

Material Quality or Quality Material? by Additive Manufacturing

Material Quality or Quality Material? by Additive Manufacturing Material Quality or Quality Material? by Additive Manufacturing J.J. Saurwalt (ECN) December 2015 ECN-L--16-002 Material Quality or Quality Material? by Additive Manufacturing Materials of the Future Conference

More information

CoatingImplants. ResearchEngineer OrchidOrthopedicSolutions

CoatingImplants. ResearchEngineer OrchidOrthopedicSolutions 2014 CoatingImplants ParimalBapat,Ph.D. ResearchEngineer OrchidOrthopedicSolutions OMTEC 2014 Technical Session: Coating Implants June 11 th 2014 1:30 PM 2:30 PM Presenter: Dr. Parimal V. Bapat Research

More information

The Arcam EBM process: A walkthrough

The Arcam EBM process: A walkthrough The Arcam EBM process: A walkthrough 2012-06-13 1 Overview Arcam & EBM Process Design for EBM EBM - Core Benefits Validating EBM 2012-06-13 2 Arcam Swedish innovation from the beginning of the 1990 s Arcam

More information

Mechanical behaviour of additively manufactured materials

Mechanical behaviour of additively manufactured materials Outline Mechanical behaviour of additively manufactured materials ION Congress 2018 Dr. Vera Popovich Delft University of Technology (TUDelft) Contact: v.popovich@tudelft.nl, +31 (0) 15 2789568 Outline

More information

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM Adrian P. POP 1, Petru UNGUR 1, Gheorghe BEJINARU MIHOC 2 1 University of Oradea, e-mail: adippop@yahoo.com; petru_ungur@yahoo.com; 2 Transilvania University

More information

Building Parts Directly

Building Parts Directly February 2008 Vol. 140 No. 2 Building Parts Directly Some users are discovering that combining direct digital manufacturing with existing manufacturing techniques is better than replacing them Bruce Morey,

More information

Additive Manufacturing

Additive Manufacturing www.dmgmori.com LASERTEC 65 3D Additive Manufacturing Laser Deposition Welding & Milling LASERTEC integration in DMG MORI machines ALL IN 1: Laser Deposition Welding & Milling Additive Manufacturing in

More information

PIM Technology. a powder technology for complex small engineering parts

PIM Technology. a powder technology for complex small engineering parts a powder technology for complex small engineering parts Powder Injection Moulding () metals (MIM) ceramics (CIM) cemented carbides (CCIM) is a new process for material shaping that combines the flexibility

More information

Powder spreading in additive manufacturing. Sina Haeri James Weir Fluid Lab Mechanical and Aerospace Engineering University of Strathclyde

Powder spreading in additive manufacturing. Sina Haeri James Weir Fluid Lab Mechanical and Aerospace Engineering University of Strathclyde Powder spreading in additive manufacturing Sina Haeri James Weir Fluid Lab Mechanical and Aerospace Engineering University of Strathclyde Outline Overview of Additive Manufacturing Technologies Powder

More information

High Quality Metal by Additive Manufacturing

High Quality Metal by Additive Manufacturing High Quality Metal by Additive Manufacturing B. van der Vorst (ECN) J.J. Saurwalt (ECN) November 2015 ECN-L--15-080 High Quality Metal by Additive Manufacturing Precision Fair 2015 Bart van de Vorst Jaco

More information

Introduction to Additive Manufacturing

Introduction to Additive Manufacturing Introduction to Additive Manufacturing Aberdeen, May 2017 www.voestalpine.com Don t try to use AM for parts which are dedicated to other manufacturing technologies! AM is only economically if you can add

More information

Design approaches for additive manufactured components

Design approaches for additive manufactured components VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Design approaches for additive manufactured components Erin Komi, Petteri Kokkonen VTT Technical Research Centre of Finland Ltd Structural Dynamics & Vibroacoustics

More information

MSC Solutions for Additive Manufacturing Simufact Additive

MSC Solutions for Additive Manufacturing Simufact Additive MSC Solutions for Additive Manufacturing Simufact Additive 15.01.2018 Simufact Product Portfolio Cold Forming Hot Forging Sheet Metal Forming Mechanical Joining Powder Bed Fusion Arc Welding Laser Beam

More information

Estudio implantación PYME para fabricación de piezas mediante tecnología de adición metálica por láser

Estudio implantación PYME para fabricación de piezas mediante tecnología de adición metálica por láser Estudio implantación PYME para fabricación de piezas mediante tecnología de adición metálica por laser Autores: Alberto Ruiz de Olano / Fernando Ohárriz Julio 2014 Estudio implantación PYME para fabricación

More information

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting T. Scharowsky, A. Bauereiß, R.F. Singer, C. Körner *Department of Materials

More information

New Considerations Regarding the Use of Selective Laser Sintering Technology for Biomedical Metalic Implants

New Considerations Regarding the Use of Selective Laser Sintering Technology for Biomedical Metalic Implants New Considerations Regarding the Use of Selective Laser Sintering Technology for Biomedical Metalic Implants Drd. Ing. Ciobota Nastase-Dan, Dr. Ing. Stanca Comsa National Institute of Research and for

More information

Whitepaper MATERIALS FOR DIRECT METAL LASER-SINTERING. Mike Shellabear 1, Olli Nyrhilä 2. 1 EOS GmbH, 2 EOS Finland

Whitepaper MATERIALS FOR DIRECT METAL LASER-SINTERING. Mike Shellabear 1, Olli Nyrhilä 2. 1 EOS GmbH, 2 EOS Finland Whitepaper MATERIALS FOR DIRECT METAL Mike Shellabear 1, Olli Nyrhilä 2 1 EOS GmbH, 2 EOS Finland 1. e-manufacturing and Laser-Sintering e-manufacturing means fast, flexible, and cost effective production

More information

Progress of the Modelling of a Direct Energy Deposition Process in Additive Manufacturing

Progress of the Modelling of a Direct Energy Deposition Process in Additive Manufacturing Progress of the Modelling of a Direct Energy Deposition Process in Additive Manufacturing Quanren ZENG a, Zhenhai XU a, b, Yankang TIAN a and Yi QIN a, 1 a Centre for Precision Manufacturing, Department

More information

3 Major 3d printing process and technology introduction

3 Major 3d printing process and technology introduction 3 Major 3d printing process and technology introduction Summary After several decades of development, Now there are a variety of 3D printing technology process, from the categories divided into extrusion

More information

Challenges for Metallic 3D-Printed Parts. Do we want to print a plane?

Challenges for Metallic 3D-Printed Parts. Do we want to print a plane? Challenges for Metallic 3D-Printed Parts Do we want to print a plane? by Emiel Amsterdam, Gerrit Kool Aerospace Vehicles Division, Department Gas turbines & Structural Integrity Forum on Tracking Detector

More information

voestalpine Additive Manufacturing Center Singapore Pte Ltd

voestalpine Additive Manufacturing Center Singapore Pte Ltd voestalpine Additive Manufacturing Center Singapore Direct Metal Deposition, DMD. 30 th November 2017 www.voestalpine.com voestalpine Additive Manufacturing Center. Singapore Direct Metal Deposition» Company

More information

in this issue MIM developments in Asia AP&C: Titanium powder production 3DEO: Prototyping for MIM

in this issue MIM developments in Asia AP&C: Titanium powder production 3DEO: Prototyping for MIM Vol. 11 No. 2 JUNE 2017 in this issue MIM developments in Asia AP&C: Titanium powder production 3DEO: Prototyping for MIM Published by Inovar Communications Ltd www.pim-international.com contents page

More information

Additive Manufacturing in the Nuclear Industry

Additive Manufacturing in the Nuclear Industry Additive Manufacturing in the Nuclear Industry Greg Hersak Mechanical Equipment Development May 4, 2018-1- Additive Manufacturing (AM) in the Nuclear Industry Agenda Overview of AM technologies Challenges

More information

VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD. Powder Piloting Service Service for Powder Injection Molding

VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD. Powder Piloting Service Service for Powder Injection Molding VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Powder Piloting Service Service for Powder Injection Molding STEP 6. STEP 5. STEP 4. STEP 3. STEP 2. STEP 1. Powder Injection Molding 1. Raw material selection

More information

Discover the variety of Metal Powders

Discover the variety of Metal Powders Discover the variety of Metal Powders The range of our standard metal powder Non Ferrous, Tool Steel, Stainless Steel and Light Alloys SLM The Industrial Manufacturing Revolution PIONEERS in metal-based

More information

Medical Device Design & Manufacturing

Medical Device Design & Manufacturing Medical Device Design & Manufacturing Comprehensive product development and additive manufacturing solutions to support implant and instrument performance Precision Healthcare Solutions Empowering the

More information

Current technologies and advances in additive manufacturing. Dr. Ehab Saleh 28/09/2017

Current technologies and advances in additive manufacturing. Dr. Ehab Saleh 28/09/2017 Current technologies and advances in additive manufacturing Dr. Ehab Saleh 28/09/2017 Content Centre for Additive Manufacturing (CfAM) Hype cycle of technologies and 3D printing Current additive manufacturing

More information

Farsoon Introduction. Farsoon. Dr Xu s expertise: Farsoon Positioning: 9/19/2017 2

Farsoon Introduction. Farsoon. Dr Xu s expertise: Farsoon Positioning: 9/19/2017 2 Farsoon Introduction Farsoon Founded 2009 by Dr. Xu Two share holder, Dr. Xu and Mr. Hou SLS and SLM machine manufacturer SLS nylon powder producer Dr Xu s expertise: 20 years of expertise acquired in

More information

Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering

Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering M. Erdal 1, S. Dag 2, Y. A. C. Jande 3 and C. M. Tekin 4 Department of Mechanical Engineering,

More information

Chancen und Grenzen von 3D-Druckern in der industriellen Produktion

Chancen und Grenzen von 3D-Druckern in der industriellen Produktion 26 th of November 2013 Chancen und Grenzen von 3D-Druckern in der industriellen Produktion Prof. Dr. Reinhart Poprawe, M.A. Lehrstuhl für Lasertechnik RWTH Aachen University Fraunhofer Institut für Lasertechnik,

More information

Boeing s Vision for Rapid Progress between Dream and Reality

Boeing s Vision for Rapid Progress between Dream and Reality Boeing s Vision for Rapid Progress between Dream and Reality Jeffrey DeGrange Senior Manager Advanced Manufacturing Research & Development St. Louis, Missouri USA Euro-uRapid 2006 Frankfurt, Germany November

More information

Additive Manufacturing of Hard Biomaterials

Additive Manufacturing of Hard Biomaterials Additive Manufacturing of Hard Biomaterials Amit Bandyopadhyay and Susmita Bose W. M. Keck Biomedical Materials Research Lab School of Mechanical and Materials Engineering Washington State University,

More information

High Speed Sintering for 3D printing applications

High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications Neil Hopkinson, Adam Ellis, Adam Strevens, Manolis Papastavrou and Torben Lange, Xaar plc Introduction

More information

Metal and ceramic matrices: new composite materials

Metal and ceramic matrices: new composite materials Metal and ceramic matrices: new composite materials Introduction In the case of materials subjected to mechanical loads, the use of composite materials has improved the properties by using substances that

More information

Plastics for Additive Manufacturing

Plastics for Additive Manufacturing Sources: voxeljet, Materialise NV, Iris van Herpen Plastics for Additive Manufacturing Dr. Thomas Büsgen Bayer MaterialScience AG 20 th November 2013, 3D Printing & Additive Manufacturing Industrial Applications

More information

Fabrication additive par procédé CLAD : principes, performance et exemples d applications

Fabrication additive par procédé CLAD : principes, performance et exemples d applications Fabrication additive par procédé CLAD : principes, performance et exemples d applications Additive Manufacturing with CLAD process: principles, performances and application examples. Didier BOISSELIER

More information

Perspectives of development of additive technologies on the enterprise of Rosatom state atomic energy corporation

Perspectives of development of additive technologies on the enterprise of Rosatom state atomic energy corporation ROSATOM STATE ATOMIC ENERGY CORPORATION ROSATOM Perspectives of development of additive technologies on the enterprise of Rosatom state atomic energy corporation Alexey Dub «Rusatom Additive Technologies»

More information

Webinar - Adding to Additive Manufacturing with Particle Size and Shape Analysis

Webinar - Adding to Additive Manufacturing with Particle Size and Shape Analysis Webinar - Adding to Additive Manufacturing with Particle Size and Shape Analysis Many Additive Manufacturing (3D printing) techniques such as selective laser sintering (SLS) and selective laser melting

More information

Ceramics, Glasses, and Glass-Ceramics

Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics Ceramics, Glasses, and Glass-Ceramics include a broad range of inorganic/nonmetallic compositions. Eyeglasses Diagnostic instruments Thermometers Tissue culture flasks

More information

3D METALS Discover the variety of Metal Powders The range of our standard metal powders

3D METALS Discover the variety of Metal Powders The range of our standard metal powders 3D METALS Discover the variety of Metal Powders The range of our standard metal powders Non Ferrous, Tool Steel, Stainless Steel and Light Alloys SLM The Industrial Manufacturing Revolution PIONEERS in

More information

MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING

MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING Edson Santos*, F. Abe, Y. Kitamura*, K. Osakada* and M. Shiomi* *Division of Mechanical Science, Graduate School of Mechanical

More information

Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference

Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference Increase of Productivity by Using Adaptive LPBF Process Strategy 3D Valley Conference Anders Such, Tobias Pichler Fraunhofer ILT Christoph Korbmacher MAN Energy Solutions Aachen 26.09.2018 AGENDA 1 2 Short

More information

Manufacturing Using Light and Dust

Manufacturing Using Light and Dust Manufacturing Using Light and Dust Dr Mark Stanford Reader in Engineering Department of Engineering University of Wolverhampton Manufacturing Using Light and Dust Contents: Introduction to the University

More information

3DMP. Fast I Simple I Economic. GEFERTEC GmbH Berlin Germany. 3DMP - 3D Metal Print fast simple economic

3DMP. Fast I Simple I Economic. GEFERTEC GmbH Berlin Germany.   3DMP - 3D Metal Print fast simple economic 3DMP Fast I Simple I Economic GEFERTEC GmbH Schwarze-Pumpe-Weg 16 12681 Berlin Germany info@gefertec.de Phone: +49 (0) 30 912074 360 www.gefertec.de 3DMP - 3D Metal Print fast simple economic 2 GEFERTEC

More information

Design for Additive Manufacturing Julien Magnien

Design for Additive Manufacturing Julien Magnien Design for Additive Manufacturing Julien Magnien Sirris Driving industry by technology INCREASE THE COMPETITIVENESS OF COMPANIES THROUGH TECHNOLOGICAL INNOVATIONS Expertises Who are we? Collective centre

More information

THINK. Filter Technology SIKA-B

THINK. Filter Technology SIKA-B THINK Filter Technology SIKA-B ENGINEERING THAT MOVES THE WORLD Since 1759 250 years of exceptional engineering GKN Sinter Metals Filters, the leading manufacturer of porous sinter metal products, offers

More information

Since All sintered materials of GKN offer a self-supporting structure with high mechanical strength.

Since All sintered materials of GKN offer a self-supporting structure with high mechanical strength. Since 1759 250 years of exceptional engineering GKN Sinter Metals Filters, the leading manufacturer of porous sinter metal products, offers a variety of solutions to fulfil customer requirements. We are

More information

ADDITIVE MANUFACTURING CERTIFICATE PROGRAM BODY OF KNOWLEDGE

ADDITIVE MANUFACTURING CERTIFICATE PROGRAM BODY OF KNOWLEDGE ADDITIVE MANUFACTURING CERTIFICATE PROGRAM BODY OF KNOWLEDGE RUBRIC 1.0 OVERVIEW of AM 1.1 Definition of AM 1.1.1 Evolution of AM definitions 1.1.2 Current ASTM 1.2 Key Elements of AM 1.2.1 Sources of

More information

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL Jack G. Zhou and Zongyan He ABSTRACT Department of Mechanical Engineering and Mechanics Drexel University 3141 Chestnut Street

More information

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM COST STSM REPORT Investigation of anisotropic properties of Rapid Prototyped metallic implants COST STSM Reference Number: COST-STSM-MP1301-26743 Period: 2015-10-19 00:00:00 to 2015-11-30 00:00:00 COST

More information

3D Selective Laser Melting (SLM) -from the Drawing to the Part-

3D Selective Laser Melting (SLM) -from the Drawing to the Part- 3D Selective Laser Melting (SLM) -from the Drawing to the Part- Denis Klemm*, Robert Taranczewski, Romy Petters, Lukas Löber, Volker Hoffmann Leibniz Institute for Solid State and Materials Research Dresden

More information

Additive Manufacturing for Defense & Government MAY14, NYSE:DDD

Additive Manufacturing for Defense & Government MAY14, NYSE:DDD Additive Manufacturing for Defense & Government MAY14, 2015 WWW.3DSYSTEMS.COM NYSE:DDD 30 YEARS OF INNOVATION First 3D printed part 1983 Chuck Hull accepts National Inventors Hall of Fame Award -- 2014

More information

Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push

Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push Laser Additive Manufacturing as a Key Enabler for the Manufacture of Next Generation Jet Engine Components - Technology Push EU Project Merlin New Challenges and Perspectives for LAM Processes Carl Hauser,

More information

ADDITIVE MANUFACTURING Presentation

ADDITIVE MANUFACTURING Presentation ADDITIVE MANUFACTURING Presentation Index LMD WAAM 2 1.Laser Cladding (LMD) Laser Cladding o Laser Material Deposition (LMD) Both, the substrate and filler material are melted with a laser. Generally,

More information

HYBRID MOULDS - THERMAL ASPECTS

HYBRID MOULDS - THERMAL ASPECTS DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING HYBRID MOULDS - THERMAL ASPECTS Prof. Ludwig Cardon 2017 October DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING POLYMER, FIBER AND

More information

Manifattura Additiva di Ceramici Caratteristiche e Prospettive

Manifattura Additiva di Ceramici Caratteristiche e Prospettive Manifattura Additiva di Ceramici Caratteristiche e Prospettive Prof. ing. Paolo Colombo Departimento di Ingegneria Industriale Università di Padova e Adjunct Professor, Dept. of Materials Science and Engineering,

More information

COATING TECHNOLOGIES REVIEW:

COATING TECHNOLOGIES REVIEW: COATING TECHNOLOGIES REVIEW: How Orthopedic Implants Get Coated April, 2018 By: Tony Crivella Senior Global Commercial Manager, Coatings Parimal Bapat, Ph. D Research Engineer Shilesh Jani Engineering

More information

Metal Powder the Raw Material of Future Production

Metal Powder the Raw Material of Future Production Metal Powder the Raw Material of Future Production Introduction and Overview Applications for Powder Metallurgy Methods &Systems for Powder Production Physical and Chemical Properties of Metal Powder Economic

More information

Production of Metallic and Ceramic Parts with the Optoform Process

Production of Metallic and Ceramic Parts with the Optoform Process Anne-Marie Clarinval CRIF Avenue Georges Lemaître, 22 6041 Gosselies - Belgium anne-marie.clarinval@crif.be ABSTRACT Optoform LLC developed a technology to process paste compositions based upon photo-curable

More information

Metallic Additive Manufacturing Process and Materials Development at the University of Sheffield

Metallic Additive Manufacturing Process and Materials Development at the University of Sheffield Metallic Additive Manufacturing Process and Materials Development at the University of Sheffield 3 rd June 2015 2 nd Mexican Workshop on Additive Manufacturing 3D Printing Queretaro Mexico Dr Kamran Mumtaz

More information

3D Laser Metal Sintering System

3D Laser Metal Sintering System \ 3D Laser Metal Sintering System FONON TECHNOLOGIES F O N O N 3 D M E T A L P R I N T I N G S Y S T E M S 3D FUSION - NANO Powder Direct Metal Sintering System Fonon Additive Manufacturing Technologies

More information

LASER CLADDING OF ALUMINIUM USING TiB 2

LASER CLADDING OF ALUMINIUM USING TiB 2 LASER CLADDING OF ALUMINIUM USING TiB 2 (Paper Number 1202) Sanjay Kumar and Sisa Pityana CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa Abstract Modification of Aluminium surface

More information

YOUR QUALITY THROUGH US

YOUR QUALITY THROUGH US safsinter.it SILENCERS FILTERS FITTINGS VALVES AIR-RESERVOIRS ACCESSORIES YOUR QUALITY THROUGH US SAF S.r.l. was established in year 2007, following the acquisition of an important company manufacturing

More information

High-Speed Direct Laser Deposition: Technology, Equipment and Materials

High-Speed Direct Laser Deposition: Technology, Equipment and Materials IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS High-Speed Direct Laser Deposition: Technology, Equipment and Materials To cite this article: G A Turichin et al 2016 IOP Conf.

More information

Grinding & Dispersing. Dedusting of metal powders for additive manufacturing. 3-D Printing InPrint Christian Höfels

Grinding & Dispersing. Dedusting of metal powders for additive manufacturing. 3-D Printing InPrint Christian Höfels Grinding & Dispersing Dedusting of metal powders for additive manufacturing 3-D Printing InPrint 2017 15.11.2017 Christian Höfels Agenda 1. Introduction 2. Basics of Classification 3. NETZSCH Classifier

More information

Metal Powder - the Raw Material of Future Production

Metal Powder - the Raw Material of Future Production Metal Powder - the Raw Material of Future Production BY GÜNTER BUSCH* SYNOPSIS Alongside Mobile Internet, Cloud Computing, Robotics, Energy Storage and Autonomous Vehicles, Additive Manufacturing is one

More information

THINK. Filter Technology SIKA-R... IS/AS

THINK. Filter Technology SIKA-R... IS/AS THINK Filter Technology SIKA-R... IS/AS ENGINEERING THAT MOVES THE WORLD Since 1759 250 years of exceptional engineering GKN Sinter Metals Filters, the leading manufacturer of porous sinter metal products,

More information

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi Investigation on the scan strategy and property of 316L stainless steel-inconel 718 functionally graded materials fabricated by selective laser melting Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi State

More information

LASER METAL FUSION (LMF)

LASER METAL FUSION (LMF) TRUMPF Laser- und Systemtechnik GmbH LASER METAL FUSION (LMF) Additive Manufacturing at TRUMPF 05/07/2018 LASER METAL FUSION (LMF), Additive Manufacturing at TRUMPF 05/07/2018 1 LMF Machines The TruPrint

More information

RAPID PROTOTYPING STUDY NO.1 INTRODUCTION TO RPT

RAPID PROTOTYPING STUDY NO.1 INTRODUCTION TO RPT INTRODUCTION TO RPT STUDY NO.1 RAPID PROTOTYPING Rapid prototyping (RP) is a technology wherein the physical modeling of a design is done using a specialized machining technology. The systems used in rapid

More information

Every Industry - Every Day DIRECT METAL LASER MELTING. The Experts in Metal Additive Manufacturing.

Every Industry - Every Day DIRECT METAL LASER MELTING. The Experts in Metal Additive Manufacturing. DIRECT METAL LASER MELTING The Experts in Metal Additive Manufacturing Every Industry - Every Day www.gpiprototype.com 847-615-8900 Sales@GPIprototype.com GPI Prototype and Manufacturing Services has been

More information

ADDITIVE MANUFACTURING: Moving Beyond Rapid Prototyping

ADDITIVE MANUFACTURING: Moving Beyond Rapid Prototyping ADDITIVE MANUFACTURING: Moving Beyond Rapid Prototyping he evolution of additive manufacturing For the past few decades, additive manufacturing (AM) has developed from rapid prototyping using simple 3D

More information

β-tcp porous scaffold: part 1. Casting method and structure characterization

β-tcp porous scaffold: part 1. Casting method and structure characterization β-tcp porous scaffold: part 1. Casting method and structure characterization D. Hautcoeur, L. Boilet, M. Lasgorceix, V. Lardot, F. Cambier Belgian Ceramic Research Centre S. Chamary, A. Leriche Laboratoire

More information

Industrial Additive Manufacturing

Industrial Additive Manufacturing Industrial Additive Manufacturing Importance of Standardization Unrestricted GPDIS_2017.ppt 1 Oh how far we have come GPDIS_2017.ppt 2 Design for Additive Manufacturing Traditional and new design workflows

More information

Printing Metals and Light Absorbing Ceramics, using the DLP method

Printing Metals and Light Absorbing Ceramics, using the DLP method Printing Metals and Light Absorbing Ceramics, using the DLP method J. Opschoor (ECN) March 2016 ECN-L--16-015 Printing Metals and Light Absorbing Ceramics, using the DLP method Additive World 'Industrial

More information

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85 Trends in Automotive Applications of Thermal Spray Technology in Japan p. 1 Production Plasma in the Automotive Industry: A European Viewpoint p. 7 The Effect of Microstructure on the Wear Behavior of

More information