Additive Element Effects on Electronic Conductivity of Zirconium Oxide Film

Size: px
Start display at page:

Download "Additive Element Effects on Electronic Conductivity of Zirconium Oxide Film"

Transcription

1 Journal of NUCLEAR SCIENCE and TECHNOLOGY, 31[6], pp. 546~551 (June 1994). Additive Element Effects on Electronic Conductivity of Zirconium Oxide Film Yusuke ISOBE, Motomasa FUSE and Kinya KOBAYASHI Energy Research Laboratory, Hitachi Ltd.* (Received April 23, 1993) A theoretical study on the electronic structure of zirconium oxide using a molecular orbital method was carried out to investigate the additive element effects on the electronic conductivity of oxide film formed on Zr-alloys. The atomic clusters used were (MZr12O8)36+ (M=Zr, 3d-transition metals and alkali metals). To simulate the electron conduction process in the oxide, calculations for a cluster with oxygen vacancy (V0) were also carried out. The energy gap Eg between electron-occupied and empty levels was evaluated, and the electronic conductivity was estimated qualitatively. Opposite effects on the electronic conductivity were found for additions of 3d-transition metals and alkali metals. The latter increased the electronic conductivity by forming impurity levels with small Eg. The former, however, induced compressive strain in the oxide, resulting in a lowering of electronic conductivity due to widening of the energy gap at the oxygen vacancy. KEYWORDS: zirconium oxides, electronic conductivity, energy gap, computer simulation, molecular orbital method, additives, impurities, zirconium alloys, corrosion I. INTRODUCTION Because of their good characteristics, Zralloys have been widely used as fuel cladding or fuel assembly materials in light water reactors. However, their corrosion resistance should be improved to satisfy future requirements of higher burnup reactor designs. Corrosion behavior of Zr-alloys is greatly influenced by several properties of the oxide film at the surface, including the electronic conductivity. In Zr-alloys, oxidation of metals occurs at the metal/oxide interface, and the oxide film grows thicker as oxidation proceeds. There are two flows of species through the oxide film in the corrosion process. One is the flow of oxygen ions from the surface to the metal/oxide interface. The oxygen ions which come to the interface form a new oxide layer. The other flow is the counter-flow of electrons which released from metal atoms through the oxidation reaction. The electrons are consumed in a cathodic reaction occurring at the surface. Therefore, the oxide film in which mobilities of such species are low, i.e. the oxide film with low electric conductivity, acts as an effective barrier against corrosion. (Here, electric conductivity means both ionic and electronic conductivities.) It has been found that the electric conductivity of oxide film was affected by additive elements in the oxide. Kubo & Uno(1)(2) reported that the oxide film of alloys with the higher corrosion resistance showed the lower electric conductivity, and that the conductivity changed with Fe content in the alloy (Fe content in the oxide was considered to follow that of Fe content in the alloys). The corrosion resistance of Zircaloy is improved by p-quenching(3)(4). This has been attributed to the dissolution of constituent atoms, such as Fe, Cr and Ni, into the oxide film, giving rise to the decreased conductivity. In spite of the importance of the electronic conductivity of oxide films and effects of additive elements on it, a detailed mechanism for their conductivity change has not been * Omika-cho, Hitachi-shi

2 Vol. 31, No. 6 (June 1994) 547 presented. The authors have investigated additive element effects on the electronic conductivity of oxide film. For this, we carried out a theoretical determination of the electronic structure of zirconium oxide (ZrO2) using a molecular orbital method. The changes in electronic energy levels caused by impurity levels or lattice strains were calculated. Then we considered the mechanism of the electronic conductivity change at an atomistic level. II. CALCULATION METHOD The molecular orbital method based on density functional theory(5) was employed here because of its suitability to calculations of a large atomic cluster including heavy atoms, such as Zr. The local spin density approximation (LSDA) was applied and molecular orbitals were expanded by Slater-type minimum atomic orbitals. The ZrO2 has three phases, i.e. monoclinic, tetragonal and cubic. The monoclinic phase is the stable one below about 1,273 K, but tetragonal and cubic phases have been observed in oxide film near the metal/oxide interface(6)(7) and they are thought to be a better corrosion barrier than the monoclinic phase. Therefore, we used atomic clusters modeled on tetragonal and cubic lattice structures as shown in Fig. 1. Lattice constants of the tetragonal cluster were those measured by Teufer(8). The lattice constant of the cubic cluster was assumed to be the same as one of the tetragonal constants (0.515 nm). Both types of clusters have the same number of nuclei and electrons [(Zr13O8)36+]. are constituents of Zircaloy (Fe, Cr and Ni) and the other was composed of alkali metals. Among the latter, Li is known to accelerate the corrosion rate of Zircaloy(9). All additive atoms were substituted for the Zr atom which was located at the center of the atomic cluster. In order to simulate an actual electron conduction process, calculations for clusters with an oxygen vacancy were also carried out. An oxygen vacancy was introduced by removing one oxygen atom from the cluster. Table 1 Additive elements used in this study and their atomic orbitals, together with the data of Zr and O Since the electron conduction mechanism of ZrO2 is expected to be a band mechanism such as that seen in semiconductors, electronic conductivity p is related to the energy gap E, between electron-occupied and empty levels where k is the Boltzmann constant and T the temperature. Using the above relation, we made qualitative analyses of electronic conductivity of various clusters by evaluating each cluster's Eg. (1) IL RESULTS AND DISCUSSION Fig. 1 Atomic clusters used in this study, (a) tetragonal and (b) cubic clusters Additive elements considered were divided into two groups as shown in Table 1. The first group included 3d-transition metals which 1. Electronic Structure of Pure Cluster Figure 2 shows calculated electron energy levels and density of states for (a) tetragonal and (b) cubic clusters with no additive elements or oxygen vacancy (pure clusters). Density of states n(s) was evaluated by overlapping of the Gaussian functions(10) 51

3 548 J. Nucl. Sci. Technol., are also very similar. From these results, we conclude that the calculated electronic structures of these clusters represent that of the actual ZrO2 crystal. In the following, the cubic cluster is mainly used and additive elements or an oxygen vacancy are inserted into this cluster. Fig. 2 Electron energy levels and density of states calculated for (a) tetragonal and (b) cubic clusters These clusters have no additive elements. where el is the energy of the l-th electron level. The width in the Gaussian function was chosen as s=0.5 ev. Electronic structures of tetragonal and cubic clusters are very similar. Because these atomic clusters are pure clusters Eg's, which are defined by the energy difference between the LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital) in this case, correspond to optical gaps of ZrO2. The estimated Eg's are 4.44 and 4.23 ev for tetragonal and cubic clusters, respectively, and these values coincide with the experimental value (4.5 ev)(11). Figure 3 shows the electronic structure of the cubic cluster together with experimental results observed by ESCA(12). The positions of each band are almost the same for calculated and experimental results. Electronic structures of the cubic and tetragonal clusters (2) Fig. 3 Experimental and calculated results of electronic structure of ZrO2 2. Effects of Impurity Levels In this section, impurity levels accompanied by additive elements or oxygen vacancy are estimated, and their effects on the electronic conductivity are discussed. At first, impurity (defect) levels due to an oxygen vacancy were examined. The ZrO2 crystal has a nonstoichiometry and the electron conduction types of ZrO2_. and ZrO2+x are n-type and p-type, respectively(13). The electron conduction type of oxide film on Zr-alloy after a corrosion test has been reported to be n-type(14), so the oxygen vacancy is considered to be the major defect and it plays a key role in the electron conduction of oxide film. Figure 4 shows an electronic structure for a cluster including the oxygen vacancy. Due to the appearance of defect levels, the HOMO is present in the conduction band, i.e. this electronic structure represents n-type electron conduction the same as the experimental results. The energy gap Ea for this cluster (Eg(V0)) is estimated at 0.65 ev. 52

4 Vol. 31, No. 6 (June 1994) 549 Fig. 4 Electron energy levels and density of states calculated for cluster with oxygen vacancy value is quite large compared with Eg(V0). On the other hand, the Eg for the cluster with Li is less than 0.01 ev. Figures 6 and 7 show electron energy levels for the clusters with other 3d-transition metals and alkali metals, respectively. In Fig. 6, energy levels for the pure cluster and the cluster with an oxygen vacancy are also shown. Solid and broken lines in these figures represent occupied and empty levels, respectively. The number of circles on the Electronic structures for clusters including Fe and Li are shown in Fig. 5(a) and (b), respectively. Both show p-type electron conduction (the HOMO is present in the valence band), which reflects the substitution of lower valence elements, Fe and Li, for Zr. However, Eg's for each cluster are very different. The E, for the cluster with Fe is 1.76 ev ; this Fig. 6 Electron energy levels calculated for clusters with 3d-transition metals, together with results for pure cluster and cluster with oxygen vacancy Fig. 5 Electron energy levels and density of states calculated for cluster with Fe and Li Fig. 7 Electron energy levels calculated for clusters with alkali metals 53

5 550 J. Nucl. Sci. Technol., HOMO represents the maximum number of electrons which can occupy this level, and filled circles denote actual electron occupancy in the ground state. When the HOMO is not fully occupied, Eg is defined as the energy gap between the partially and the highest fully occupied level. Energy gaps for each cluster depicted in Figs. 6 and 7 are summarized in Table 2. Table 2 Calculated Eg for clusters with oxygen vacancy or additive elements Figure 8(a), (b) shows calculated force vectors acting on ions in the cluster with (a) Fe and (b) Li. Force vectors are obtained as the differential of the cluster's total energy based on positions of nuclei. In this study, strong repulsive, Coulomb forces act between ions even in the pure cluster because the cluster size is rather small. So, the force vector F shown in Fig. 8 was determined by the following equation, F=F (Cluster with additive element) -F (Pure cluster).(3) Fig. 8 Calculated force vectors acting on ions in cluster with (a) Fe and (b) Li Figure 6 reveals that positions of impurity levels vary systematically with atomic number of additive element. Energy gaps for clusters with 3d-transition metals are all larger than Eg(V0) which governs the electronic conductivity of oxide film. Moreover, these Eg's are too large to cause additional electron conduction. These results suggest that impurity levels due to the introduction of 3d-transition metals in the oxide have little effect on the electronic conductivity of oxide. In contrast to 3d-transition metal, Eg's for clusters with alkali metals are all very small compared with Eg(V0) as shown in Fig. 7 and Table 2. This implies that the electronic conductivity is increased by impurity levels due to the presence of alkali metals in the oxide. 3. Effects of Lattice Strain In the oxide film, lattice strain is expected to be induced around additive elements and the electronic structure is altered by this. Therefore, we estimated the lattice strain caused by 3d-transition metals and alkali metals, and its effects on Eg(V0). In Fig. 8(a), all forces acting on Zr are toward the central Fe, but O experience almost no forces (actually, O experiences a small force directly opposite Fe). These directions of the force vectors are thought to be determined by the following mechanism. With substitution of lower valence Fe for Zr, Coulomb forces between the central Fe and other ions are weakened compared to the pure cluster. So Zr which receives repulsive forces from Fe has forces which are going to be toward Fe, and O which receives attractive forces from Fe has forces which are going to be aways from Fe. The result of Fig. 8(a) shows that the compressive strain is induced around Fe. In contrast to the Fe case, forces arising around Li are at random. This strain may be caused by the Jahn-Teller effect because electron energy levels near the HOMO are very close to each other for alkali metals (cf. Fig. 7). Lattice strains around other 3d-transition metals and alkali metals have almost the same tendency as those around Fe and Li, respectively. 54

6 Vol. 31, No. 6 (June 1994) 551 Figure 9 shows the lattice constant dependency of Eg(V0). Each point in Fig. 9 was obtained by altering the lattice constant of cluster with an oxygen vacancy. The Eg(V0) becomes larger when the lattice constant is smaller, i.e. the electronic conductivity is suppressed when compressive strain acts around the oxygen vacancy. Results of Figs. 8 and 9 suggest that the compressive strain induced by the addition of 3d-transition metals in the oxide makes Eg(V0) of the strained region larger, and suppresses the electronic conductivity of the oxide. As the amount of the strain around the additive element cannot be evaluated quantitatively, the predicted suppression of the conductivity is only qualitative. The effect of random strain arising around alkali metals on Eg(V0) is not clear yet. But the release of degenerated levels and broadening of the band width, caused by the random strain may make Eg(V0) smaller. Fig. 9 Relation between Eg (V0) and lattice constant of cluster N. CONCLUSION Effects of additive elements on the electronic conductivity of zirconium oxide film were estimated by using a molecular orbital method. The energy gap between electronoccupied and empty levels was calculated and the mechanism of the electronic conductivity change by additive elements was discussed qualitatively. The conclusions are summarized here. (1) Impurity levels caused by the addition of 3d-transition metals had little effect on the electronic conductivity of oxide film. (2) The addition of alkali metals increased the electronic conductivity by forming impurity levels that have small Eg. (3) Compressive strain was induced around 3d-transition metals, and this strain decreased the electronic conductivity by making Eg(V0) larger. The mechanism of the electronic conductivity change discussed in this study could explain the favorable effects on the corrosion property of zirconium alloy from addition of Fe, Cr and Ni and undesirable effects by addition Li. REFERENCES (1) KUBO, T., UNO, M.: J. Nucl. Sci. Technol., 28[2], 122 (1991). (2) idem: ASTM STP 1132, 476 (1991). (3) URQUHART, A. W., VERMILYEA, D. A.: J. Nucl. Mater., 62, 111 (1976), (4) ANDERSSON, Th., VESTERLUND, G.: ASTM STP 754, 75 (1982). (5) KOHN, W., et al.: Phys. Rev., 104, A1133 (1965). (6) PLOC, R. A.: J. Nucl. Mater., 61, 79 (1976). (7) GODLEWSKI, J., CADALBERT, R.: A new method of residual stress distribution analysis for corroded zircaloy-4 cladding, Proc. Int. Symp. on Material Chemistry in Nuclear Environment, Tsukuba, Mar. 1992, p. 3. (8) TEUFER, G. : Acta. Cryst., 15, 1187 (1962). (9) PERKINS, R. A., et al.: ASTM STP 1132, 595 (1991). (10) SATOKO, C., TSUKADA, M., ADACHI, H.: J. Phys. Soc. Jpn., 45, 1333 (1978). (11) FRANDON, J., at al. : Phys. Stat. Sol., b98, 379 (1980). (12) TSUDA, N., et al.: J. Phys. Soc. Jpn., 36, 523 (1974). (13) KUMAR, A., RAJDEV, D., DOUGLASS, D.L.: J. Amer. Ceram. Soc., 55, 439 (1972). (14) INAGAKI, M., KANNO, M., MAKI, H.: ASTM STP 1132, 437 (1991). 55

ASTM Conference, May , Hilton Head Island, SC

ASTM Conference, May , Hilton Head Island, SC ASTM Conference, May 17 2016, Hilton Head Island, SC Understanding Irradiation Growth through Atomistic Simulations: Defect Diffusion and Clustering in Alpha-Zirconium and the Influence of Alloying Elements

More information

Oxidation of Chromium

Oxidation of Chromium Oxidation of Chromium Oxidation of chromium is very simple as it usually forms a single oxide Cr 2 O 3, It is a p-type of oxide with Cr 3+ ions diffusing outward. Since the defect concentration is so low

More information

Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study

Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study JOURNAL OF APPLIED PHYSICS 97, 073519 2005 Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study SungKwan Kim, a Yangsoo

More information

High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia

High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia Mat. Res. Soc. Symp. Proc. Vol. 654 2001 Materials Research Society High-resolution electron microscopy of grain boundary structures in yttria-stabilized cubic zirconia K. L. Merkle, L. J. Thompson, G.-R.

More information

Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain?

Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? PAPER www.rsc.org/materials Journal of Materials Chemistry Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? Akihiro Kushima and Bilge Yildiz* Received 8th January

More information

BUBBLE FORMATION IN ZR ALLOYS UNDER HEAVY ION IMPLANTATION

BUBBLE FORMATION IN ZR ALLOYS UNDER HEAVY ION IMPLANTATION BUBBLE FORMATION IN ZR ALLOYS UNDER HEAVY ION IMPLANTATION Luciano Pagano, Jr. 1, Arthur T.Motta 1 and Robert C. Birtcher 2 1. Dept. of Nuclear Engineering, Pennsylvania State University, University Park,

More information

Design of Conducting Metal-Organic Framework: Orbital- Level Matching in MIL-140A Derivatives

Design of Conducting Metal-Organic Framework: Orbital- Level Matching in MIL-140A Derivatives Supporting Information Design of Conducting Metal-Organic Framework: Orbital- Level Matching in MIL-140A Derivatives Tokutaro Komatsu,*, Jared M. Taylor,,, and Hiroshi Kitagawa,,,# Division of Chemistry,

More information

Physics of Transition Metal Oxides

Physics of Transition Metal Oxides Physics of Transition Metal Oxides Lecture 11 Defects in oxides Defects in oxides: We have looked at a variety of defects already. Today we discuss structural defects, giving rise to distinct phases impurity

More information

Development of Ceria-Zirconia Solid Solutions and Future Trends

Development of Ceria-Zirconia Solid Solutions and Future Trends Special Issue Oxygen Storage Materials for Automotive Catalysts Ceria-Zirconia Solid Solutions 1 Review Development of Ceria-Zirconia Solid Solutions and Future Trends Hideo Sobukawa This review summarizes

More information

Defect in crystals. Primer in Materials Science Spring

Defect in crystals. Primer in Materials Science Spring Defect in crystals Primer in Materials Science Spring 2017 11.05.2017 1 Introduction The arrangement of the atoms in all materials contains imperfections which have profound effect on the behavior of the

More information

INFLUENCE OF THE HYDRIDE PRECIPITATION ON THE CORROSION KINETICS OF ZIRCALOY-4:

INFLUENCE OF THE HYDRIDE PRECIPITATION ON THE CORROSION KINETICS OF ZIRCALOY-4: INFLUENCE OF THE HYDRIDE PRECIPITATION ON THE CORROSION KINETICS OF ZIRCALOY-4: EFFECT OF THE NANOSTRUCTURE AND GRAIN BOUNDARY PROPERTIES OF ZIRCONIUM OXIDE LAYER ON THE OXYGEN DIFFUSION FLUX M. Jublot,

More information

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden 21 September

More information

From sand to silicon wafer

From sand to silicon wafer From sand to silicon wafer 25% of Earth surface is silicon Metallurgical grade silicon (MGS) Electronic grade silicon (EGS) Polycrystalline silicon (polysilicon) Single crystal Czochralski drawing Single

More information

Supporting Information for. Design of Dipole-Allowed Direct Band Gaps in Ge/Sn. Core-Shell Nanowires

Supporting Information for. Design of Dipole-Allowed Direct Band Gaps in Ge/Sn. Core-Shell Nanowires Supporting Information for Design of Dipole-Allowed Direct Band Gaps in Ge/Sn Core-Shell Nanowires Elisabeth Pratidhina, Sunghyun Kim, and K. J. Chang* Department of Physics, Korea Advanced Institute of

More information

Oxidation Mechanisms in Zircaloy-2 - The Effect of SPP Size Distribution

Oxidation Mechanisms in Zircaloy-2 - The Effect of SPP Size Distribution Oxidation Mechanisms in Zircaloy-2 - The Effect of SPP Size Distribution Pia Tejland 1,2, Hans-Olof Andrén 2, Gustav Sundell 2, Mattias Thuvander 2, Bertil Josefsson 3, Lars Hallstadius 4, Maria Ivermark

More information

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa 1.!Mechanical Properties (20 points) Refer to the following stress-strain plot derived from a standard uniaxial tensile test of a high performance titanium alloy to answer the following questions. Show

More information

Study of the Initial Stage and an Anisotropic Growth of Oxide Layers Formed on Zircaloy-4

Study of the Initial Stage and an Anisotropic Growth of Oxide Layers Formed on Zircaloy-4 16 th International Symposium on Zirconium in the Nuclear Industry, Chengdu, P. R. China, May 10-13, 2010 Study of the Initial Stage and an Anisotropic Growth of Oxide Layers Formed on Zircaloy-4 B. X.

More information

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral LiMO 2 (M = Ni, Co, Mn) with the space group R3m. b, The

More information

Study of Structure-Phase State of Oxide Films on E110 and E635 Alloys at Pre- and Post-Irradiation Stages

Study of Structure-Phase State of Oxide Films on E110 and E635 Alloys at Pre- and Post-Irradiation Stages A.A. BOCHVAR HIGH-TECHNOLOGY RESEARCH INSTITUTE OF INORGANIC MATERIALS (SC «VNIINM») 18TH INTERNATIONAL SYMPOSIUM ON ZIRCONIUM IN THE NUCLEAR INDUSTRY «ROSATOM» STATE ATOMIC ENERGY CORPORATION MAY 15-19,

More information

Deviations from the parabolic kinetics during oxidation

Deviations from the parabolic kinetics during oxidation Deviations from the parabolic kinetics during oxidation of zirconium alloys Martin Steinbrück, Mirco Große Karlsruhe Institute of Technology,, Germany 17th International ti lsymposium on Zirconium i in

More information

First principle calculation studies of half-metallic ferromagnetism in Au-doped MgO M. Durka 1, P. Sugumar 1, *

First principle calculation studies of half-metallic ferromagnetism in Au-doped MgO M. Durka 1, P. Sugumar 1, * First principle calculation studies of half-metallic ferromagnetism in Au-doped MgO M. Durka 1, P. Sugumar 1, * 1 Department of Physics, Bharath Institute of Higher Education and Research (BIHER), Bharath

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

Some structural aspects of ionic conductivity in zirconia stabilised by yttria and calcia

Some structural aspects of ionic conductivity in zirconia stabilised by yttria and calcia Materials Science-Poland, Vol. 24, No. 1, 2006 Some structural aspects of ionic conductivity in zirconia stabilised by yttria and calcia M. M. BUĆKO * AGH University of Science and Technology, Faculty

More information

ASTM Conference, Feb , Hyderabad, India

ASTM Conference, Feb , Hyderabad, India ASTM Conference, Feb 6 2013, Hyderabad, India Effect of Hydrogen on Dimensional Changes of Zirconium and the Influence of Alloying Elements: First-principles and Classical Simulations of Point Defects,

More information

much research (in physics, chemistry, material science, etc.) have been done to understand the difference in materials properties.

much research (in physics, chemistry, material science, etc.) have been done to understand the difference in materials properties. 1.1: Introduction Material science and engineering Classify common features of structure and properties of different materials in a well-known manner (chemical or biological): * bonding in solids are classified

More information

COMPARISON OF THE MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF ZIRLO AND OTHER ZIRCONIUM ALLOYS

COMPARISON OF THE MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF ZIRLO AND OTHER ZIRCONIUM ALLOYS 2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 COMPARISON OF THE

More information

Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials. Dae Yong JEONG Inha University

Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials. Dae Yong JEONG Inha University Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials Dae Yong JEONG Inha University Review & Introduction We learned about the electronic transfer in Metal and Semiconductor.

More information

Full-Potential KKR calculations for Lattice Distortion around Impurities in Al-based dilute alloys, based on the Generalized-Gradient Approximation

Full-Potential KKR calculations for Lattice Distortion around Impurities in Al-based dilute alloys, based on the Generalized-Gradient Approximation Trans. Mat. Res. Soc. Japan 40[2] 159-164 (2015) Full-Potential KKR calculations for Lattice Distortion around Impurities in Al-based dilute alloys, based on the Generalized-Gradient Approximation C. Liu

More information

ATOM-PROBE ANALYSIS OF ZIRCALOY

ATOM-PROBE ANALYSIS OF ZIRCALOY ATOM-PROBE ANALYSIS OF ZIRCALOY H. Andren, L. Mattsson, U. Rolander To cite this version: H. Andren, L. Mattsson, U. Rolander. ATOM-PROBE ANALYSIS OF ZIRCALOY. Journal de Physique Colloques, 1986, 47 (C2),

More information

Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20

Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20 Mat. Res. Soc. Symp. Proc. Vol. 754 2003 Materials Research Society CC6.12.1 Calculated Effect of Alloy Additions on the Saturation Magnetization of Fe 0.80 B 0.20 D. M. C. Nicholson 1,YangWang 2, and

More information

Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants

Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants Hitachi Review Vol. 47 (1998), No. 5 225 Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants Masateru Suwa Hideyo Kodama Takao Iwayanagi Abstract: Finding a best-mix

More information

Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials.

Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials. Tilley, Understanding solids : Traditionally materials have been divided into three major groups: Metals, Ceramics and Polymers. In addition Composites and biomaterials. Q: What characterize a material?

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

LiNO3 Effect on Corrosion Prevention of Aluminum with Complex Shapes

LiNO3 Effect on Corrosion Prevention of Aluminum with Complex Shapes Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 34, No. 8, p. 823-828 (August 1997) LiNO3 Effect on Corrosion Prevention of Aluminum with Complex Shapes Toshiaki MATSUO*,t, Tatsuo IZUMIDA**, Michihiko

More information

ECE440 Nanoelectronics. Lecture 08 Review of Solid State Physics

ECE440 Nanoelectronics. Lecture 08 Review of Solid State Physics ECE440 Nanoelectronics Lecture 08 Review of Solid State Physics A Brief review of Solid State Physics Crystal lattice, reciprocal lattice, symmetry Crystal directions and planes Energy bands, bandgap Direct

More information

ELECTRICAL PROPERTIES OF ZnSe CRYSTALS DOPED WITH TRANSITION METALS

ELECTRICAL PROPERTIES OF ZnSe CRYSTALS DOPED WITH TRANSITION METALS Journal of Optoelectronics and Advanced Materials Vol. 7, No. 2, April 2005, p. 733-737 ELECTRICAL PROPERTIES OF ZnSe CRYSTALS DOPED WITH TRANSITION METALS A. N. Avdonin, G. V. Kolibaba, D. D. Nedeoglo

More information

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as EXERCISES KJM5120 Chapter 5; Diffusion 1. Random (self) diffusion a) The self-diffusion coefficient of a metal with cubic structure can be expressed as 1 n D = s 6 t 2 where n/t represents the jump frequency

More information

3. Cubic zirconia single crystals

3. Cubic zirconia single crystals 3.1. Structure and phase relationship of cubic zirconium dioxide 3. Cubic zirconia single crystals 3.1. Structure and phase relationship of cubic zirconium dioxide Pure zirconia (ZrO 2 ) undergoes two

More information

Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach

Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden

More information

High Temperature Oxidation of Zr-2.5%wt Nb Alloys Doped with Yttrium

High Temperature Oxidation of Zr-2.5%wt Nb Alloys Doped with Yttrium Journal of Materials Science and Engineering A 5 (3-4) (215) 154-158 doi: 1.17265/2161-6213/215.3-4.7 D DAVID PUBLISHING High Temperature Oxidation of Zr-2.5%wt Nb Alloys Doped with Yttrium Djoko Hadi

More information

Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials

Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials Artem Abakumov Center for Electrochemical Energy Storage, Skoltech Li-ion batteries Li x C 6 graphite

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

Alloying Solid Solution Strengthening of Fe-Ga Alloys: A first-principles Study

Alloying Solid Solution Strengthening of Fe-Ga Alloys: A first-principles Study Alloying Solid Solution Strengthening of Fe-Ga Alloys: A first-principles Study Kuiying Chen a & Leon M Cheng b a Structure and Materials Performance Laboratory, Institute for Aerospace Research, National

More information

Verwey transition in Fe 3 O 4 thin films: Influence of oxygen stoichiometry and substrate-induced microstructure

Verwey transition in Fe 3 O 4 thin films: Influence of oxygen stoichiometry and substrate-induced microstructure Verwey transition in Fe 3 O 4 thin films: Influence of oxygen stoichiometry and substrate-induced microstructure Physical Review B 90, 125142 (2014) Xiaozhe Zhang 20150403 Verwey transition Charge ordering

More information

Iron Corrosion-Resistance in Lead-Bismuth Eutectic Coolant by Molecular Dynamics Method

Iron Corrosion-Resistance in Lead-Bismuth Eutectic Coolant by Molecular Dynamics Method Iron Corrosion-Resistance in Lead-Bismuth Eutectic Coolant by Molecular Dynamics Method Artoto Arkundato a,b, Zaki Suud a, Mikrajuddin Abdullah a, Widayani a, Massimo Celino c a Nuclear Physics and Biophysics

More information

Molecular Dynamics Simulation on the Single Particle Impacts in the Aerosol Deposition Process

Molecular Dynamics Simulation on the Single Particle Impacts in the Aerosol Deposition Process Materials Transactions, Vol. 46, No. 6 (2005) pp. 1235 to 1239 Special Issue on Computer Modeling of Materials and Processes #2005 The Japan Institute of Metals Molecular Dynamics Simulation on the Single

More information

CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS

CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS CHARACTERIZATION OF OXYGEN DISTRIBUTION IN LOCA SITUATIONS Duriez C. 1, Guilbert S. 1, Stern A. 2, Grandjean C. 1, Bělovský L. 3, Desquines J. 1 1 IRSN ² IRSN post-doctorate, now at CEA 3 ALIAS Cz Scope

More information

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids Why are defects important? Imperfections in Solids Defects have a profound impact on the various properties of materials: Production of advanced semiconductor devices require not only a rather perfect

More information

Why does pyrite have a low photovoltage?

Why does pyrite have a low photovoltage? Why does pyrite have a low photovoltage? August 25, 2011 Hypothesis I: metallic phase impurities Pyrite always contains metallic FeS-type phase impurities, which somehow reduce the photovoltage Evidence

More information

The synthesis and characterization of alkaline-earth metal doped Pr 2 Mo 2 O 9 pigments: Applications in coloring of plastics

The synthesis and characterization of alkaline-earth metal doped Pr 2 Mo 2 O 9 pigments: Applications in coloring of plastics Chapter 4 The synthesis and characterization of alkaline-earth metal doped Pr 2 Mo 2 O 9 pigments: Applications in coloring of plastics Summary A new class of inorganic pigments based on praseodymium molybdate

More information

Chapter 16 Corrosion and Degradation of Materials

Chapter 16 Corrosion and Degradation of Materials Chapter 16 Corrosion and Degradation of Materials Concept Check 16.1 Question: Would you expect iron to corrode in water of high purity? Why or why not? Answer: Iron would not corrode in water of high

More information

Characterization and control of defect states of polycrystalline silicon thin film transistor fabricated by laser crystallization

Characterization and control of defect states of polycrystalline silicon thin film transistor fabricated by laser crystallization Journal of Non-Crystalline Solids 299 302 (2002) 1321 1325 www.elsevier.com/locate/jnoncrysol Characterization and control of defect states of polycrystalline silicon thin film transistor fabricated by

More information

Effects of Electric Field Treatment on Corrosion Behavior of a Ni-Cr-W-Mo Superalloy

Effects of Electric Field Treatment on Corrosion Behavior of a Ni-Cr-W-Mo Superalloy Materials Transactions, Vol. 50, No. 7 (2009) pp. 1644 to 1648 Special Issue on New Functions and Properties of Engineering Materials Created by Designing and Processing #2009 The Japan Institute of Metals

More information

SCC and Irradiation Properties of Metals under Supercritical-water Cooled Power Reactor Conditions

SCC and Irradiation Properties of Metals under Supercritical-water Cooled Power Reactor Conditions SCC and Irradiation Properties of Metals under Supercritical-water Cooled Power Reactor Conditions Y. Tsuchiya*, F. Kano 1, N. Saito 1, A. Shioiri 2, S. Kasahara 3, K. Moriya 3, H. Takahashi 4 1 Power

More information

RightCopyright 2006 American Vacuum Soci

RightCopyright 2006 American Vacuum Soci Title Gallium nitride thin films deposite magnetron sputtering Author(s) Maruyama, T; Miyake, H Citation JOURNAL OF VACUUM SCIENCE & (2006), 24(4): 1096-1099 TECHNOL Issue Date 2006 URL http://hdl.handle.net/2433/43541

More information

Roles of Alloying Elements on the Corrosion Behavior of Amorphous W Zr (15 33)Cr Alloys in 1 M NaOH Solution

Roles of Alloying Elements on the Corrosion Behavior of Amorphous W Zr (15 33)Cr Alloys in 1 M NaOH Solution Roles of Alloying Elements on the Corrosion Behavior of Amorphous W Zr (15 33)Cr Alloys in 1 M NaOH Solution Raju Ram Kumal and Jagadeesh Bhattarai * Central Department of Chemistry, Tribhuvan University,

More information

Accumulation (%) Amount (%) Particle Size 0.1

Accumulation (%) Amount (%) Particle Size 0.1 100 10 Amount (%) 5 50 Accumulation (%) 0 0.1 1 Particle Size (µm) 10 0 Supplementary Figure 1. The particle size distribution of W-15 at% Cr after 20 hours milling. Supplementary Figure 2. a,b, X-ray

More information

Introduction to Engineering Materials ENGR2000 Chapter 4: Imperfections in Solids. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 4: Imperfections in Solids. Dr. Coates Introduction to Engineering Materials ENGR000 Chapter 4: Imperfections in Solids Dr. Coates Learning Objectives 1. Describe both vacancy and self interstitial defects. Calculate the equilibrium number

More information

SOLID SOLUTION METAL ALLOYS

SOLID SOLUTION METAL ALLOYS SOLID SOLUTION METAL ALLOYS Synergy Effects vs. Segregation Phenomena D. Manova, J. Lutz, S. Mändl, H. Neumann 1 Table of Content Motivation Alloys vs. Pure Elements or Intermetallic Compounds Introduction

More information

Development and Application of BwrCrud to Long Term Evaluation of Activity Transport in BWRs

Development and Application of BwrCrud to Long Term Evaluation of Activity Transport in BWRs Development and Application of BwrCrud to Long Term Evaluation of Activity Transport in BWRs K. Kobayashi, K. Lundgren 2, C. Bergström 2, K. Iida, Y. Iwasaki, K. Chikamoto 3, M. Nishi 3 Tokyo Electric

More information

Module-13. Corrosion and Degradation of materials

Module-13. Corrosion and Degradation of materials Module-13 Corrosion and Degradation of materials Contents 1) Corrosion of metals 2) Corrosion of ceramics 3) Degradation of polymers Deterioration of materials Conventional engineering materials are not

More information

Hartree-Fock-SlaterMethod for Materials Science

Hartree-Fock-SlaterMethod for Materials Science H. Adachi T. Mukoyama J. Kawai (Eds.) Hartree-Fock-SlaterMethod for Materials Science The DV-Xa Method for Design and Characterization of Materials With 132 Figures and 33 Tables 4u Sprin ger Contents

More information

Defects in solids http://www.bath.ac.uk/podcast/powerpoint/inaugural_lecture_250407.pdf http://www.materials.ac.uk/elearning/matter/crystallography/indexingdirectionsandplanes/indexing-of-hexagonal-systems.html

More information

Electrical conductivity

Electrical conductivity Electrical conductivity Ohm's Law: voltage drop (volts = J/C) C = Coulomb A (cross sect. area) ΔV = I R Resistivity, ρ and Conductivity, σ: -- geometry-independent forms of Ohm's Law resistance (Ohms)

More information

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) 1 Structural Imperfections A perfect crystal has the lowest internal energy E Above absolute zero

More information

Lecture 7 Metal Oxide Semiconductors

Lecture 7 Metal Oxide Semiconductors Lecture 7 Metal Oxide Semiconductors 1/73 Announcements Homework 1/4: I will return it next Tuesday (October 16 th ). Homework 2/4: Will be online on later today. Due Thursday October 18 th at the start

More information

A great many properties of crystals are determined by imperfections.

A great many properties of crystals are determined by imperfections. Defect in ceramics A great many properties of crystals are determined by imperfections. Electrical conductivity Diffusion transport imperfection Optical properties Rate of kinetic process Precipitation

More information

Bulk Diffusion in Alumina: Solving the Corundum Conundrum

Bulk Diffusion in Alumina: Solving the Corundum Conundrum Bulk Diffusion in Alumina: Solving the Corundum Conundrum Nicholas D.M. Hine 1,2,3 K. Frensch 3, W.M.C Foulkes 1,2, M.W. Finnis 2,3, A. H. Heuer 3,4 1 Theory of Condensed Matter Group, Cavendish Laboratory,

More information

Electrical conductivity

Electrical conductivity Electrical conductivity Ohm's Law: voltage drop (volts = J/C) C = Coulomb A (cross sect. area) ΔV = I R Resistivity, ρ and Conductivity, σ: -- geometry-independent forms of Ohm's Law resistance (Ohms)

More information

EVOLUTION OF HYDROGEN PICKUP FRACTION WITH OXIDATION RATE ON ZIRCONIUM ALLOYS ABSTRACT

EVOLUTION OF HYDROGEN PICKUP FRACTION WITH OXIDATION RATE ON ZIRCONIUM ALLOYS ABSTRACT Westinghouse Non-Proprietary Class 3 EVOLUTION OF HYDROGEN PICKUP FRACTION WITH OXIDATION RATE ON ZIRCONIUM ALLOYS J. ROMERO 1, J. PARTEZANA 2, R. J. COMSTOCK 2, L. HALLSTADIUS 3, A. MOTTA 4, A. COUET

More information

CHAPTER 4 NANOINDENTATION OF ZR BY MOLECULAR DYNAMICS SIMULATION. Introduction to Nanoindentation

CHAPTER 4 NANOINDENTATION OF ZR BY MOLECULAR DYNAMICS SIMULATION. Introduction to Nanoindentation CHAPTER 4 NANOINDENTATION OF ZR BY MOLECULAR DYNAMICS SIMULATION Introduction to Nanoindentation In Chapter 3, simulations under tension are carried out on polycrystalline Zr. In this chapter, nanoindentation

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/science.1200448/dc1 Supporting Online Material for Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals This PDF file

More information

Valence Change of Cations in Ceria-Zirconia Solid Solution Associated with Redox Reactions Studied with Electron Energy-Loss Spectroscopy

Valence Change of Cations in Ceria-Zirconia Solid Solution Associated with Redox Reactions Studied with Electron Energy-Loss Spectroscopy Materials Transactions, Vol. 45, No. 10 (2004) pp. 2951 to 2955 #2004 The Japan Institute of Metals Valence Change of Cations in Ceria-Zirconia Solid Solution Associated with Redox Reactions Studied with

More information

Chapter 18: Electrical Properties

Chapter 18: Electrical Properties Chapter 18: Electrical Properties What are the physical phenomena that distinguish conductors, semiconductors, and insulators? For metals, how is conductivity affected by imperfections, T, and deformation?

More information

Simulation of Dislocation Dynamics in FCC Metals

Simulation of Dislocation Dynamics in FCC Metals Simulation of Dislocation Dynamics in FCC Metals Y. Kogure, T. Kosugi To cite this version: Y. Kogure, T. Kosugi. Simulation of Dislocation Dynamics in FCC Metals. Journal de Physique IV Colloque, 1996,

More information

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with

Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with Supplementary Figure 1 TEM of external salt byproducts. TEM image of some salt byproducts precipitated out separately from the Si network, with non-uniform particle size distribution. The scale bar is

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014274 TITLE: Molecular Dynamics Simulations on Nanocomposites Formed by Intermetallic Dispersoids of L1 [2] Type and Aluminum

More information

Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250 C

Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon Films by Heat Treatment at 250 C Japanese Journal of Applied Physics Vol. 44, No. 3, 2005, pp. 1186 1191 #2005 The Japan Society of Applied Physics Activation Behavior of Boron and Phosphorus Atoms Implanted in Polycrystalline Silicon

More information

Analysis of Oxidation Behavior in Nanocrystal -FeSi2/Si Composites by Rutherford Backscattering Spectrometry and Computation of Diffusion Flux

Analysis of Oxidation Behavior in Nanocrystal -FeSi2/Si Composites by Rutherford Backscattering Spectrometry and Computation of Diffusion Flux Proc. Asia-Pacific Conf. on Semiconducting Silicides and Related Materials 2016 JJAP Conf. Proc. 5, https://doi.org/10.7567/jjapcp.5.011105 Analysis of Oxidation Behavior in Nanocrystal -FeSi2/Si Composites

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

The influence of Frenkel defects on the deformation and fracture of α-fe single crystals

The influence of Frenkel defects on the deformation and fracture of α-fe single crystals Modelling Simul. Mater. Sci. Eng. 7 (1999) 1013 1023. Printed in the UK PII: S0965-0393(99)05989-6 The influence of Frenkel defects on the deformation and fracture of α-fe single crystals D Saraev, P Kizler

More information

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials Grain Boundaries 1 Point Defects 2 Point Defects A Point Defect is a crystalline defect associated with one or, at most, several atomic sites. These are defects at a single atom position. Vacancies Self-interstitials

More information

Magnetism and phase stability of fcc Fe Co alloys precipitated in a Cu matrix

Magnetism and phase stability of fcc Fe Co alloys precipitated in a Cu matrix INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 13 (2001) 6359 6369 PII: S0953-8984(01)25089-9 Magnetism and phase stability of fcc Fe Co alloys precipitated

More information

(a) Would you expect the element P to be a donor or an acceptor defect in Si?

(a) Would you expect the element P to be a donor or an acceptor defect in Si? MSE 200A Survey of Materials Science Fall, 2008 Problem Set No. 2 Problem 1: At high temperature Fe has the fcc structure (called austenite or γ-iron). Would you expect to find C atoms in the octahedral

More information

High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016

High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016 High Conductivity Oxides for Solid Oxide Fuel Cells ABEL FERNANDEZ MATERIALS 286G JUNE 2016 How do Solid Oxide Fuel Cells Work? O 2 O 2 O 2 O 2 Cathode Electrolyte O 2- O 2- O 2- Porous cathode reduces

More information

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition Hyperfine Interact (2006) 168:1065 1071 DOI 10.1007/s10751-006-9406-2 CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition K. Nomura & K. Inaba & S. Iio & T. Hitosugi

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (1): 247-254 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Molecular dynamics study of the diffusion behaviour of Li in Li 10 GeP 2 S 12

More information

Nuclear Magnetic Resonance of Amorphous Alloys

Nuclear Magnetic Resonance of Amorphous Alloys Nuclear Magnetic Resonance of Amorphous Alloys CuxZr,oo-*(40 ^x^ 60)* J. Abart, W. Socher, and J. Voitländer Institut für Physikalische Chemie, Universität München Z. Naturforsch. 37 a, 1030-1034 (1982);

More information

Behavior of high burnup fuel during LOCA - Key observations and test plan at JAEA -

Behavior of high burnup fuel during LOCA - Key observations and test plan at JAEA - Behavior of high burnup fuel during LOCA - Key observations and test plan at JAEA - Fumihisa Nagase Japan Atomic Energy Agency IAEA Technical Meeting on Fuel Behaviour and Modelling under Severe Transient

More information

TRIP-Matrix-Composite Guest-edited by Horst Biermann

TRIP-Matrix-Composite Guest-edited by Horst Biermann The cover features Bending, a photograph by Detlev Müller, and depicts a square-shell honeycomb with 64 pores per inch from the work of Dr.-Ing. Christian Weigelt. Special Issue: TRIP-Matrix-Composite

More information

X-ray Spectroscopic Analysis of Solid State Reaction during Mechanical Alloying of Molybdenum and Graphite Powder Mixture

X-ray Spectroscopic Analysis of Solid State Reaction during Mechanical Alloying of Molybdenum and Graphite Powder Mixture Materials Transactions, Vol. 43, No. 9 (2002) pp. 2292 to 2296 c 2002 The Japan Institute of Metals X-ray Spectroscopic Analysis of Solid State Reaction during Mechanical Alloying of lybdenum and Powder

More information

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections In the Name of God Materials Science CHAPTER 5: IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects

More information

Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings

Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings Jiri Houska Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Czech Republic Acknowledgment

More information

Trapping of Hydrogen at Irradiation Induced Defects

Trapping of Hydrogen at Irradiation Induced Defects Trapping of Hydrogen at Irradiation Induced Defects B.F. Kammenzind, W.J. Duffin (Retired) Bechtel Marine Propulsion Corporation Bettis Laboratory Knolls Laboratory 18 th International Symposium on Zirconium

More information

Passivityof metalsand metallic alloys. Jacek Banaś

Passivityof metalsand metallic alloys. Jacek Banaś Passivityof metalsand metallic alloys Jacek Banaś Wagner definition of passivation etal is passive when its corrosion in course of chemical or electrochemical reaction is lower at higher affinity of reaction

More information

Effect of Mg contents on Trapping Efficiency in Al-Mg Alloy Using Positron Annihilation Spectroscopy

Effect of Mg contents on Trapping Efficiency in Al-Mg Alloy Using Positron Annihilation Spectroscopy Egypt. J. Solids, Vol. (30), No. (2), (7) 289 Effect of Mg contents on Trapping Efficiency in Al-Mg Alloy Using Positron Annihilation Spectroscopy N. A. Kamel Faculty of Science, Physics Dept., El-Minia

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

Electro-active ternary copolymer design using genetic algorithm

Electro-active ternary copolymer design using genetic algorithm Indian Journal of Chemistry Vol. 50A, January 2011, pp. 9-14 Electro-active ternary copolymer design using genetic algorithm Avneet Kaur & A K Bakhshi* Department of Chemistry, University of Delhi, Delhi

More information

DENSITY STRATIFICATION AND FISSION PRODUCT PARTITIONING IN MOLTEN CORIUM PHASES. D.A. Powers Sandia National Laboratories Albuquerque, NM USA

DENSITY STRATIFICATION AND FISSION PRODUCT PARTITIONING IN MOLTEN CORIUM PHASES. D.A. Powers Sandia National Laboratories Albuquerque, NM USA DENSITY STRATIFICATION AND FISSION PRODUCT PARTITIONING IN MOLTEN CORIUM PHASES D.A. Powers Sandia National Laboratories Albuquerque, NM USA A. Behbahani U.S. Nuclear Regulatory Commission Washington,

More information

Crystal structure of lead tungstate at 1.4 and 300 K

Crystal structure of lead tungstate at 1.4 and 300 K Crystal structure of lead tungstate at 1.4 and 3 K R. Chipaux 1, G. André 2, A. Cousson 2 1 CEA/DSM/DAPNIA/SED, CE-Saclay, 91191 Gif sur Yvette cedex, France 2 CEA/DSM/DRECAM/LLB, CE-Saclay, 91191 Gif

More information