Advances in Direct Metal Deposition

Size: px
Start display at page:

Download "Advances in Direct Metal Deposition"

Transcription

1 Advances in Direct Metal Deposition Jyoti Mazumder* and Lijun Song University of Michigan July 15th, 21 Presented By S H Lee *Robert H Lurie Professor of Engineering A Laser Workshop on Laser Based Manufacturing

2 Outline Background History of DMD Introduction DMD System Overview Advances in DMD System Modeling Geometry Control Temperature Control Composition Prediction Microstructure Prediction Summary A Laser Workshop on Laser Based Manufacturing

3 Rapid Prototype Customer Initial CAD Model Conceptual Design Assembly Layouts Reduction in Time and Step Detailed Design SFM Prototype Production Time A Laser Workshop on Laser Based Manufacturing

4 Additive Manufacturing Additive Process Originally for Rapid Prototyping Application 3-D CAD data -> 2-D Slicing Layer by Layer Build-up Low Volume Manufacturing A Laser Workshop on Laser Based Manufacturing

5 Major RP Techniques StereoLithography (by 3D System) Laminated Object Manufacturing (by Helisys) Selective Laser Sintering (by DTM - 3D System) Fused Deposition Modeling (by StrataSys) 3D Printing (by Z-Corp.) Etc. Solid Ground Curing, Solder, Light Sculpting, Droplet Based Manufacturing, Holographic Interference Solidification,... A Laser Workshop on Laser Based Manufacturing

6 New Concept in RP Rapid Prototyping Intermediate Step Design Support or Verification Plastic Mold Part, Cast Mold Pattern or Mock-up Part Rapid Manufacturing/Production Near Net Shaped Product or Prototype (accuracy and finish) Functional Part (mold and metallic part) Better Part (multi-materials, heterogeneous) A Laser Workshop on Laser Based Manufacturing

7 Metal Deposition - Metallic Additive Manufacturing Laser sintering (LS) based Selective Laser Sintering (U of Texas, DTM, 1996) - 3D Systems Direct Metal Laser Sintering (EOS, Germany) Laser cladding (LC) based Direct Metal Deposition (UIUC, 1993) - UM/POM Laser Engineered Net Shaping (Sandia NL, 1996) - Optomec Direct Light Fabrication (Los Alamos NL, 1996) Controlled Metal Buildup (Fraunhofer, Aachen, 1996) Droplet based Droplet Based Manufacturing (UCI, 1991; MIT, 1993) A Laser Workshop on Laser Based Manufacturing

8 The Vision Imagine a global society where: scientists in Ann Arbor and Aachen, in the security of their laboratories, are analyzing, sharing and using experimental data, a global design team is collaboratively creating a new product and submitting it for fabrication to the company facility in Shanghai. Global collaboration for innovation over the Internet will cross-pollinate ideas, cut travel and reduce costs. A multi-national company designing their product in Detroit and producing in Dalian, China If the part is big, take process to the part Product on order anywhere any time A Laser Workshop on Laser Based Manufacturing

9 Part on Order Anywhere A Laser Workshop on Laser Based Manufacturing

10 Running to Moon: Mold & Mirrors.5 mm wall thickness in steel A Laser Polished Workshop to 4 on Laser Based Manufacturing Angstroms!

11 Application In Tissue engineering Titanium scaffold for implantation study in a mice spinal column * Image Provided by Prof. Scott Hollister 5 mm X-Ray of the Ti-Scaffold After Subcutenous Bone Growth Ti~ Bright White Bone ~ Blue Grey A Laser Workshop on Laser Based Manufacturing

12 MR-DMD System Control Room Robotic Work Area Paradigm change Mobility Process goes for the Part to be serviced. Container: DMD Package, Robot, Laser, HVAC, Utilities, etc. Adaptable Integration Different robot size Different laser power (1.-5. kw fiber-coupled Diode Laser, etc.) Cost-effectiveness Robot vs. CNC based platform A Laser Workshop on Laser Based Manufacturing Work Stations

13 MR-DMD System Robot Fiber optic Conduit Rotary Table Work Table Base Plate A Laser Workshop on Laser Based Manufacturing

14 Challenges to achieve the vision Remote Manufacturing with hot editing Precision for Near Net shape 3-D components in order of microns Approach: Closed loop Process control to keep outcome to the desired level A Laser Workshop on Laser Based Manufacturing

15 DMD Process Overview Copyright 1999 POM Company Inc. All rights reserved A Laser Workshop on Laser Based Manufacturing

16 Overview DMD Process Overview 1. Direct Metal Deposition High power laser builds parts layer-by-layer out of gas atomized metal powder 2. DMD Characteristics.5 dimensional accuracy Fully dense metal Controllable microstructure Heterogeneous material fabrication capability Control over internal geometry A Laser Workshop on Laser Based Manufacturing

17 Overview DMD Process Overview Water Cooling Laser Beam Channel Power Delivery Channel Blending of 5 common methodologies: Laser CAD CAM Sensors Power Metallurgy Omni directional concentric laser-powder-gas nozzle Shaping Gas Changeable Tip A Laser Workshop on Laser Based Manufacturing

18 Closed-Loop Process DMD Process Overview CO 2 Laser Closed-loop process Improves dimensional accuracy CAD/CAM Work Table Control Panel NC Chiller Feed-back Controller Power Supply Unit No need for intermediary machining of parts when deposit builds irregularly Near net shape within fraction of millimeter is possible Resulting in significantly reduced post DMD finishing and reduced cost Better thermal control and thus better microstructure control Better microstructure leading to better mechanical properties Significantly reduced distortion and thus post process complication and cost Left: DMD with feedback control Right: DMD without feedback control Example of direct metal fabrication with POM s closed loop height controller. Left: A Laser Workshop on Laser Based Manufacturing w/height controller; Right: no height controller.

19 Moving Optics DMD Process Overview Why moving optics? Part mass does not affect the usable work envelop (Velocity, acceleration etc) Part handling concerns reduced Angular deposition without moving part 1 Tons Note Complex angles of deposition A Laser Workshop on Laser Based Manufacturing

20 Energy, Environment, Economy DMD Process Overview Will save energy Will provide designed functionality Will reduce lead time & Economy friendly Environmentally Benign A Laser Workshop on Laser Based Manufacturing

21 How does DMD Machine Looks Like? DMD Process Overview Why moving optics? Part mass does not the usable work envelop (Velocity, acceleration etc) Part handling concerns reduced Angular deposition without moving part 1 Tons Note Complex angles of deposition A Laser Workshop on Laser Based Manufacturing

22 DMD System CO 2 Laser Work Table Control Panel NC Chiller Power Supply Unit CAD/CAM Feed-back Controller A Laser Workshop on Laser Based Manufacturing

23 Comparison of Material Properties: DMD vs. Wrought/Casting Material Fe and steel Material condition Tensile Strength Yield Strength Elongation Elastic Modulus Charpy Impact Hardness (Mpa) (ksi) (Mpa) (ksi) (%) (Gpa) (Mpsi) (J) (ft-lb) (HRC) H 13 H 13, DMD Wrought H 13 H 13 Wrought (Matweb) L SS 316SS, DMD L SS wrought Ni-Alloys Wasp Alloy Wrought Wasp alloy Co-Alloys Stellite 21 Cast Stellite SS, wrought Wasp Alloy, DMD Wasp alloy, wrought aged Stellite 21, DMD Stellite 21, cast Ti-Alloys Ti6Al4V (Grade V) Wrought Ti6Al4V (V) Al-alloys 447 Al 413 Al (cast) Cu-Alloys Ti6Al4V DMD, Inert atm Ti-6Al4V (V), wrought annealed parallel to deposition HV Cu-3 Ni HV Cu-3 Ni HV A Laser Workshop on Laser Based Manufacturing

24 Z (mm) DMD System Overview Conceptualization CAM tool path CAD Data Z Y X Product Y (mm) COMP: m/s X (mm) DMD with Advanced Modeling, Sensing and Control

25 Direct Metal Deposition DMD with closed loop control DMD Machine

26 Mathematical Modeling Process modeling of DMD to develop quantitative relationships between parameters for improved process control

27 Modeling: Governing Equation Continuity equation: Momentum equation: t u t u uu u l K u l p x Energy equation: C pt t ( c) t Convection term Diffusion term Darcy term u C T k T pl Convection term Conduction term f L f C pt Solute equation: uc D c D c c f c c t l s s t Phase change term at S/L interface s l s u Phase diffusion term Phase motion term

28 Multiple Track Deposition Model Beam size Transition Finish Overlap Scanning width Start Z The computation domain is not symmetric along laser moving direction Y

29 Evolution of Temperature Field Laser power: 19 W, beam diameter: 1.8 mm, scanning speed: 6 mm/min, and powder flow rate: 8 g/min.

30 Z (mm) Z (mm) Composition and Liquid Velocity Distribution Computed chromium concentration profile: Y X COMP: y-z surface -.1 COMP: Y (mm).5 1 m/s 1 2 X (mm) x-z surface and x-y surface 1 m/s Y (mm).5 1 X (mm)

31 Thermal Cycle

32 Geometry Control Camera Image acquisition cards DMD Processing Center (Logic OR) Over limit Laser beam gating signal Height Controller Figure 8 Cladding

33 Laser power (Kw) Melt pool temperature ( C) Temperature Control: Dynamics Experimental Setup Input and Output GPC Temperature Controller Laser powder Pyrometer Collecting lens Substrate bead Time (s) H13 powder flow rate: 1g/min; Scanning speed: 65mm/min; Standoff: 2mm (beam size 2mm)

34 Molten pool temperature ( C) (mean of temperature has been removed) Amplitude Temperature (1a) Control: Dynamics State Space Model Step Response: k 1 k k e k X AX Bu K k k k e k y CX Du Dynamic Model Output Step Response From: u1 To: y1 System: Goe I/O: u1 to y1 System: Goe Settling Time (sec):.323 I/O: u1 to y1 Rise Time (sec): Time (sec) Rise time : 165ms Time (s)

35 GPC Controller with constraints Simulink Model 1. GPC Controller 2. A/D D/A interface to DMD process 3. State Estimation

36 Laser driven voltage (V) Temperature ( Molten pool temperature ( C) Noise and disturbance ( Laser power (W) Simulation: Weight on control: 1 Prediction horizon: 3 Control horizon: 5 Tfilter = [1 -.8] Melt Pool Temperature Control Experimental: Weight on control: Prediction horizon: 16 Control horizon: 5 Tfilter = [1 -.8] 4 C) C) Time (s) time (s) Red: reference temperature Black: experimental

37 Cladding height (mm) One Inch Cube Cladding with Temperature Control Molten Pool Temperature Control Cladding (a) (b) a 3mm step Substrate b A z y x (c) (d) With control, a With control, b No control, a No control, b 4 2 Pictures of the deposition at (a) 1 th layer, (b) 2 th layer, (c) 3 th layer and (d) 4 th layer Cladding layer number Cladding height at different layers

38 Composition Prediction Alloys without Phase Transformation Cr-Fe Ni-Fe Alloys With Phase Transformation Ti-Fe Ni-Al Ni-Ti Hopper1 Hopper2 bead Laser beam Substrate Signal processing unit spectrometer Collecting lens Experimental Setup

39 Cr-I nm/Fe-I nm Cr-I nm/Fe-I nm plasam temperature (K) Cr-I nm/Fe-I nm Cr-I nm/Fe-I nm Composition Prediction: Cr-Fe Alloy Calibration Curve Cr weight percentage Cr weight percentage Cr weight percentage Line Intensity Plasma Temperature

40 composition variation (%) Prediction of Cr% in the Alloy Composition Variation < 5% from single line ratio from temperature from electron density from four averaged line ratio from seven averaged line ratio from seven averaged line ratio and electron density Cr weight ratio percentage

41 Cr composition (%) Cr composition (%) Composition Sensor for Time Domain Prediction Cr % for 19.8% Cr % for 22.36% Measurement point Measurement point Resolution = 2 δ = 4.1%

42 Ni 349nm / Fe 363nm Ni 349nm / Fe 364nm Ni 346nm / Fe 363nm Ni 346nm / Fe 364nm Calibration Curve for Fe-Ni Alloy Ni/Fe weight ratio Ni/Fe weight ratio Ni/Fe weight ratio Ni/Fe weight ratio

43 Fe-I 44.6nm/Ti-II 417.4nm Fe-I 47.2nm/Ti-II 417.4nm Fe-I 44.6nm/Ti-II 416.4nm Fe-I 47.2nm/Ti-II 416.4nm Microstructure Sensor: Ti-Fe Alloy (Patent Pending) Calibration Curve um Weight percent Ti Weight percent Ti Hypereutectic Ti 56 Fe Weight percent Ti Weight percent Ti Hypoeutectic Ti 7 Fe 3 Hypereutectic Ti 62 Fe 38 Eutectic Ti 67.5 Fe 25.5 Hypoeutectic Ti 73 Fe 27

44 plasma temperature (K) plasma electron density (/cm 3 ) Ti-Fe Alloy Calibration Curve for Ti-Fe Alloy Plasma Temperature Electron Density 62 3 x Weight percent Ti Cr/Fe weight ratio

45 Al-I nm/Ni-I nm Al-I nm/Ni-I nm Al-I 394.4nm/Ni-I nm Al-I 394.4nm/Ni-I nm Ni-Al Alloy Phase Transformation and Line Intensity Ratio um Atomic percent Ni Atomic percent Ni B2 Ni 65 Al Gamma Prime Ni 8 Al Atomic percent Ni Atomic percent Ni B2 Ni 65 Al 35 Gamma Prime Ni 65 Al 35? Ti 67.5 Fe 25.5

46 Intensity(Counts) XRD Pattern of Ni8Al2 Sample as Deposited [Z2639.raw] NI8AL2 (111) > AlNi 3 - Aluminum Nickel 75 5 (2) 25 (1) (11) (21) (211) (3) (22) (311) (222) (4) (32) (321) Two-Theta (deg)

47 Tl-I nm/Ni-I nm Tl-I nm/Ni-I nm Tl-I nm/Ni-I nm Tl-I nm/Ni-I nm Ni-Ti Alloy Phase Transformation and Line Intensity Ratio Ni-Ti Alloy Ni 79 TI Atomic percent Ni Atomic percent Ni Ni 87 Tl Atomic percent Ni Atomic percent Ni Ni 84 TI 16 1 um Ni 9 Tl 1

48 Process Model Summary and Conclusion Simulate melt pool temperature, velocity, fluid interface thermal cycle, and composition evolution and distribution Process Sensor and Control Design, Optimization and Implementation Geometry Control Melt pool temperature dynamics and control Composition sensor Microstructure sensor First time in the world one will have the capability to predict the microstructure during the process from plasma, leading to considerable cost and lead time saving

49 Thank you for your attention! Any questions or comments?

Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326

Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326 Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326 OUTLINE Company Overview of Direct Metal Deposition DMD Systems DMD Application in

More information

voestalpine Additive Manufacturing Center Singapore Pte Ltd

voestalpine Additive Manufacturing Center Singapore Pte Ltd voestalpine Additive Manufacturing Center Singapore Direct Metal Deposition, DMD. 30 th November 2017 www.voestalpine.com voestalpine Additive Manufacturing Center. Singapore Direct Metal Deposition» Company

More information

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS Jayanth N PG Student PSG College of Technology jayanthnagaraj@gmail.com Ravi K R Associate Professor PSG College of Technology Krravi.psgias@gmail.com

More information

Thermal Modeling and Experimental Validation in the LENS Process

Thermal Modeling and Experimental Validation in the LENS Process The Eighteenth Solid Freeform Fabrication Symposium August 6-8, 6 2007, Austin, Texas Thermal Modeling and Experimental Validation in the LENS Process Liang Wang 1, Sergio D. Felicelli 2, James E. Craig

More information

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION T.W. Skszek and M. T. J. Lowney Abstract POM Company, Inc., located in Plymouth, Mich., has successfully commercialized the laser-based,

More information

Advanced Robotic Laser Cladding The Oerlikon MetcoClad System. July 2015

Advanced Robotic Laser Cladding The Oerlikon MetcoClad System. July 2015 Advanced Robotic Laser Cladding The Oerlikon MetcoClad System July 2015 Laser Cladding is a welding technology Laser Cladding (LC) means laser build-up welding, also known as Laser Metal Forming (LMF),

More information

Additive Manufacturing Challenges Ahead

Additive Manufacturing Challenges Ahead Additive Manufacturing Challenges Ahead Dr. S. SELVI Associate Professor, Dept. of Mechanical Engineering Institute of Road and Transport Technology, Erode 638 316. selvimech@yahoo.com Received 25, November

More information

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting T. Scharowsky, A. Bauereiß, R.F. Singer, C. Körner *Department of Materials

More information

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS ADDITIVE MANUFACTURING OF TITANIUM ALLOYS F.H. (Sam) Froes Consultant to the Titanium Industry Based on a paper by B. Dutta and F.H. (Sam) Froes which appeared in AM&P Feb. 2014 pp. 18-23 OUTLINE Cost

More information

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process The Seventeenth Solid Freeform Fabrication Symposium Aug 14-16, 2006, Austin, Texas Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process L. Wang 1, S. Felicelli

More information

Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate

Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate , June 30 - July 2, 2010, London, U.K. Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate M. Khalid Imran, S. H. Masood* and Milan Brandt Abstract

More information

EOS Aluminium AlSi10Mg

EOS Aluminium AlSi10Mg is an aluminium alloy in fine powder form which has been specially optimised for processing on EOSINT M systems This document provides information and data for parts built using powder (EOS art.-no. 9011-0024)

More information

Material data sheet. EOS NickelAlloy HX. Description, application

Material data sheet. EOS NickelAlloy HX. Description, application Material data sheet is a heat and corrosion resistant metal alloy powder intended for processing on EOS M 290 systems. This document provides information and data for parts built using powder (EOS art.-no.

More information

Latest Development Work on Induction Assisted Laser Cladding Processes

Latest Development Work on Induction Assisted Laser Cladding Processes Latest Development Work on Induction Assisted Laser Cladding Processes C. Leyens 1,2, F. Brückner 1, S. Nowotny 1 1 Fraunhofer Institute for Material and Beam Technology (IWS), Dresden, Germany 2 Dresden

More information

Building Parts Directly

Building Parts Directly February 2008 Vol. 140 No. 2 Building Parts Directly Some users are discovering that combining direct digital manufacturing with existing manufacturing techniques is better than replacing them Bruce Morey,

More information

LASER CLADDING OF ALUMINIUM USING TiB 2

LASER CLADDING OF ALUMINIUM USING TiB 2 LASER CLADDING OF ALUMINIUM USING TiB 2 (Paper Number 1202) Sanjay Kumar and Sisa Pityana CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa Abstract Modification of Aluminium surface

More information

Additive Manufacturing Technology November

Additive Manufacturing Technology November Additive Manufacturing Technology November 2012 www.3trpd.co.uk Phil Kilburn DMLS Sales Manager Agenda About 3T RPD Ltd Overview of Additive Manufacturing Manufacturing directly in metals Arcam - Electron

More information

Microstructural Investigation of Direct Metal Deposition of H13 Steel on High Strength Copper Substrate

Microstructural Investigation of Direct Metal Deposition of H13 Steel on High Strength Copper Substrate P Proceedings of the World Congress on Engineering 2009 Vol I Microstructural Investigation of Direct Metal Deposition of H13 Steel on High Strength Copper Substrate M. Khalid Imran, S.H. Masood and Milan

More information

Material data sheet. EOS NickelAlloy HX. Description, application

Material data sheet. EOS NickelAlloy HX. Description, application EOS NickelAlloy HX EOS NickelAlloy HX is a heat and corrosion resistant metal alloy powder intended for processing on EOSINT M 280 systems. This document provides information and data for parts built using

More information

Material data sheet. EOS NickelAlloy IN625. Description

Material data sheet. EOS NickelAlloy IN625. Description EOS NickelAlloy IN625 EOS NickelAlloy IN625 is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information

More information

Material data sheet. EOS NickelAlloy HX. Description, application

Material data sheet. EOS NickelAlloy HX. Description, application EOS NickelAlloy HX EOS NickelAlloy HX is a heat and corrosion resistant metal alloy powder intended for processing on EOS M systems. This document provides information and data for parts built using EOS

More information

Material data sheet. EOS Aluminium AlSi10Mg. Description

Material data sheet. EOS Aluminium AlSi10Mg.   Description https://gpiprototype.com EOS Aluminium AlSi10Mg EOS Aluminium AlSi10Mg is an aluminium alloy in fine powder form which has been specially optimised for processing on EOSINT M systems This document provides

More information

Laser assisted Cold Spray

Laser assisted Cold Spray 2009-02-16 Laser assisted Cold Spray Andrew Cockburn, Matthew Bray, Rocco Lupoi Bill O Neill Innovative Manufacturing Research Centre (IMRC) Institute for Manufacturing, Department of Engineering, University

More information

Additive Manufacturing Technology

Additive Manufacturing Technology Additive Manufacturing Technology ME 012193 Spring I 2018 By Associate Prof. Xiaoyong Tian Cell:13709114235 Email: leoxyt@mail.xjtu.edu.cn Lecture 02 Fundmental AM processes Interactions in AM processes

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

Reviewed, accepted September 14, 2006

Reviewed, accepted September 14, 2006 Evaluation of Mechanical Properties and Microstructure for Laser Deposition Process and Welding Process Yaxin Bao 1, Jianzhong Ruan 1, Todd E. Sparks 1, Jambunathan Anand 2, Joseph Newkirk 2, Frank Liou

More information

Additive Manufacturing in the Nuclear Industry

Additive Manufacturing in the Nuclear Industry Additive Manufacturing in the Nuclear Industry Greg Hersak Mechanical Equipment Development May 4, 2018-1- Additive Manufacturing (AM) in the Nuclear Industry Agenda Overview of AM technologies Challenges

More information

Practical considerations and capabilities for laser assisted direct metal deposition

Practical considerations and capabilities for laser assisted direct metal deposition Ž. Materials and Design 21 2000 417 423 Practical considerations and capabilities for laser assisted direct metal deposition Gary K. Lewis a,, Eric Schlienger b a Los Alamos National Laboratory, Los Alamos,

More information

High-Speed Direct Laser Deposition: Technology, Equipment and Materials

High-Speed Direct Laser Deposition: Technology, Equipment and Materials IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS High-Speed Direct Laser Deposition: Technology, Equipment and Materials To cite this article: G A Turichin et al 2016 IOP Conf.

More information

Material data sheet. EOS MaragingSteel MS1. Description

Material data sheet. EOS MaragingSteel MS1. Description EOS MaragingSteel MS1 EOS MaragingSteel MS1 is a steel powder which has been optimized especially for processing on EOSINT M systems. This document provides information and data for parts built using EOS

More information

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering The use of holographic optics in laser additive layer manufacture Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering Traditional Laser Beam Problems Shape Intensity Beam intensity distribution....

More information

Additive Layer Manufacturing: Current & Future Trends

Additive Layer Manufacturing: Current & Future Trends Additive Layer Manufacturing: Current & Future Trends L.N. Carter, M. M. Attallah, Advanced Materials & Processing Group Interdisciplinary Research Centre, School of Metallurgy and Materials Additive Layer

More information

3DMP. Fast I Simple I Economic. GEFERTEC GmbH Berlin Germany. 3DMP - 3D Metal Print fast simple economic

3DMP. Fast I Simple I Economic. GEFERTEC GmbH Berlin Germany.   3DMP - 3D Metal Print fast simple economic 3DMP Fast I Simple I Economic GEFERTEC GmbH Schwarze-Pumpe-Weg 16 12681 Berlin Germany info@gefertec.de Phone: +49 (0) 30 912074 360 www.gefertec.de 3DMP - 3D Metal Print fast simple economic 2 GEFERTEC

More information

High-Speed Infrared Imaging for Characterization of the Additive Manufacturing Process

High-Speed Infrared Imaging for Characterization of the Additive Manufacturing Process 14 th Quantitative InfraRed Thermography Conference High-Speed Infrared Imaging for Characterization of the Additive Manufacturing Process by M.A. Langevin*, A. Huot*, S. Boubanga*, P. Lagueux*, E. Guyot*

More information

EOS NickelAlloy IN718 for EOSINT M 270 Systems

EOS NickelAlloy IN718 for EOSINT M 270 Systems EOS NickelAlloy IN718 for EOSINT M 270 Systems A number of different materials are available for use with EOSINT M systems, offering a broad range of e-manufacturing applications. EOS NickelAlloy IN718

More information

Material data sheet. EOS MaragingSteel MS1 (200W) Description

Material data sheet. EOS MaragingSteel MS1 (200W) Description EOS MaragingSteel MS1 (200W) EOS MaragingSteel MS1 is a steel powder which has been optimized especially for processing on EOS M systems. This document provides information and data for parts built using

More information

MANUFACTURING REINVENTED

MANUFACTURING REINVENTED THE DIGITAL TO PHYSICAL PRODUCT LIFECYCLE COMPANY MANUFACTURING REINVENTED Markforged 3D Printers Product Portfolio INTRODUCTION Markforged has changed the way products are made. No other printer is designed

More information

Additive Manufacturing of Corrosion Resistant Alloys for Energy Applications

Additive Manufacturing of Corrosion Resistant Alloys for Energy Applications Additive Manufacturing of Corrosion Resistant Alloys for Energy Applications T.A. Palmer Department of Engineering Science and Mechanics and Materials Science and Engineering Pennsylvania State University

More information

Material data sheet. EOS Titanium Ti64. Description

Material data sheet. EOS Titanium Ti64. Description EOS Titanium Ti64 EOS Titanium Ti64 is a titanium alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information and data for parts built using

More information

MULTI-MATERIAL PROCESSING BY LENSTM. Michelle L. Griffith, Lane D. Harwell, J. Tony Romero, Eric Schlienger, Clint L. Atwood, and John E.

MULTI-MATERIAL PROCESSING BY LENSTM. Michelle L. Griffith, Lane D. Harwell, J. Tony Romero, Eric Schlienger, Clint L. Atwood, and John E. MULTI-MATERIAL PROCESSING BY LENSTM Michelle L. Griffith, Lane D. Harwell, J. Tony Romero, Eric Schlienger, Clint L. Atwood, and John E. Smugeresky* Sandia National Laboratories Albuquerque, NM 87185,

More information

Conformal Cooling Using DMLS March 2012

Conformal Cooling Using DMLS March 2012 Whitepaper: Conformal Cooling Using DMLS March 2012 Image courtesy of Phillips Plastics Corp. Tim Ruffner VP New Business Development / Marketing Manager GPI Prototype & Manufacturing Services, Inc. 940

More information

UNCLASSIFIED/UNLIMITED. Ultrasonic Consolidation : Status Report on Development of Solid State Net Shape Processing for Direct Manufacturing

UNCLASSIFIED/UNLIMITED. Ultrasonic Consolidation : Status Report on Development of Solid State Net Shape Processing for Direct Manufacturing of Solid State Net Shape Processing for Direct Manufacturing ABSTRACT Dr. Dawn R. White Solidica, Inc. 3941 Research Park Drive, Ste. C Ann Arbor, MI 48108 USA dawn@solidica.com Ultrasonic Consolidation

More information

Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization

Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization Laser Machining Processes Laser heat processing divided into 3 regions Heating Melting Vaporization Laser Surface Treatment Annealing or Transformation Hardening Surface hardness Surface Melting Homogenization,

More information

Precision Electroforming in High-Strength NiColoy

Precision Electroforming in High-Strength NiColoy Taking the Stress out of Electroforming www.nicoform.com Precision Electroforming in High-Strength NiColoy Copyright 2007 NiCoForm, Inc. (Rochester, NY) Electroforming What is it? What is it good for?

More information

Dilution Effect during Laser Cladding of Inconel 617 with Ni-Al Powders

Dilution Effect during Laser Cladding of Inconel 617 with Ni-Al Powders Dilution Effect during Laser Cladding of Inconel 617 with Ni-Al Powders Ahmed Ali Moosa Department of Production Engineering and Metallurgy University of Technology, Baghdad, Iraq Tel: 964-790-179-3866

More information

Laser powder surfacing of the Si-Mo spheroidal cast iron with nickel powder

Laser powder surfacing of the Si-Mo spheroidal cast iron with nickel powder of Achievements in Materials and Manufacturing Engineering VOLUME 17 ISSUE 1-2 July-August 2006 Laser powder surfacing of the Si-Mo spheroidal cast iron with nickel powder A. Klimpel a *, L.A. Dobrzański

More information

Material data sheet. EOS NickelAlloy IN718. Description

Material data sheet. EOS NickelAlloy IN718. Description EOS NickelAlloy IN718 EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOSINT M systems. This document provides information

More information

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254

Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Polymer Microfabrication (Part II) Prof. Tianhong Cui, Mechanical Engineering ME 8254 Other Polymer Techniques Embossing Low cost High throughput Structures as small as 25 nm Injection molding Features

More information

Material data sheet. EOS NickelAlloy IN625. Description, application

Material data sheet. EOS NickelAlloy IN625. Description, application is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOSINT M 270 systems. This document provides information and data for parts built using powder

More information

Metal powder reuse in additive manufacturing. Alessandro Consalvo AM Support Engineer, Renishaw spa

Metal powder reuse in additive manufacturing. Alessandro Consalvo AM Support Engineer, Renishaw spa Metal powder reuse in additive manufacturing Alessandro Consalvo AM Support Engineer, Renishaw spa Renishaw World leading metrology company founded in 1973. Skills in measurement, motion control, spectroscopy

More information

Nickel Based Superalloy Hastelloy B-3 (UNS N10675)

Nickel Based Superalloy Hastelloy B-3 (UNS N10675) Nickel Based Superalloy Hastelloy B-3 (UNS N10675) Hastelloy B-3 is manufactured for providing excellent resistance to reducing acids at the different content %s and temperature limits. It shows better

More information

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication Materials Science Forum Online: 26-7- ISSN: 1662-9752, Vols. 519-521, pp 1291-1296 doi:1.428/www.scientific.net/msf.519-521.1291 26 Trans Tech Publications, Switzerland Metallurgical Mechanisms Controlling

More information

Characterization and Simulation of High Temperature Process

Characterization and Simulation of High Temperature Process Characterization and Simulation of High Temperature Process Session Chairs: Baojun Zhao Tarasankar DebRoy 469 7th International Symposium on High-Temperature Metallurgical Processing Edited by: Jiann-Yang

More information

Development of Metal-based Additive Manufacturing System with Directed Energy Deposition Technology

Development of Metal-based Additive Manufacturing System with Directed Energy Deposition Technology 1 Development of Metal-based Additive Manufacturing System with Directed Energy Deposition Technology HARUHIKO NIITANI *1 YOSHIHITO FUJITA *2 KOH ISHII *2 TOMOHIRO WAKANA *3 YOSHINAO KOMATSU *4 YASUYUKI

More information

"Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015

Advanced Manufacturing Technologies, UCL, Louvain-la-Neuve, 24/11/2015 "Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015 1 2 Outline Introduction Additive manufacturing Laser Beam Melting vs Laser Cladding Specificities (1) ultra-fast thermal cycles

More information

DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer

DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer Designing for DIRECT METAL LASER SINTERING 1 Overview 2 Process Considerations 3 Design Considerations 4 Design Examples 5 Wrap-up

More information

Center for Laser-based Manufacturing Director: Yung C. Shin, Professor of ME

Center for Laser-based Manufacturing Director: Yung C. Shin, Professor of ME Center for Laser-based Manufacturing Director: of ME become a focal point for developing critical or novel technologies in laser-based manufacturing help industrial companies in implementing new laser

More information

ADVANCED ELECTRON BEAM FREE FORM FABRICATION METHODS & TECHNOLOGY

ADVANCED ELECTRON BEAM FREE FORM FABRICATION METHODS & TECHNOLOGY ADVANCED ELECTRON BEAM FREE FORM FABRICATION METHODS & TECHNOLOGY S. Stecker, K.W. Lachenberg, H. Wang and R.C. Salo Sciaky Incorporated, Chicago, Illinois, USA Abstract Electron Beam Additive Manufacturing

More information

MANUFACTURING REINVENTED MARKFORGED.COM

MANUFACTURING REINVENTED MARKFORGED.COM MANUFACTURING REINVENTED MARKFORGED.COM ABOUT MARKFORGED Markforged was founded to change the way products are made. At the intersection of traditional manufacturing and cutting-edge material science,

More information

MSC Solutions for Additive Manufacturing Simufact Additive

MSC Solutions for Additive Manufacturing Simufact Additive MSC Solutions for Additive Manufacturing Simufact Additive 15.01.2018 Simufact Product Portfolio Cold Forming Hot Forging Sheet Metal Forming Mechanical Joining Powder Bed Fusion Arc Welding Laser Beam

More information

Three-Dimensional Fabrication of Metallic Parts and Molds Using Hybrid Process of Powder Layer Compaction and Milling

Three-Dimensional Fabrication of Metallic Parts and Molds Using Hybrid Process of Powder Layer Compaction and Milling Three-Dimensional Fabrication of Metallic Parts and Molds Using Hybrid Process of Powder Layer Compaction and Milling Yoshiaki Mizukami* and Kozo Osakada Division of Mechanical Science, Graduate School

More information

MODELLING & SIMULATION OF LASER MATERIAL PROCESSING: PREDICTING MELT POOL GEOMETRY AND TEMPERATURE DISTRIBUTION

MODELLING & SIMULATION OF LASER MATERIAL PROCESSING: PREDICTING MELT POOL GEOMETRY AND TEMPERATURE DISTRIBUTION Proceeding of International Conference MS 07, India, December 3-5, 2007 1 MODELLING & SIMULATION OF LASER MATERIAL PROCESSING: PREDICTING MELT POOL GEOMETRY AND TEMPERATURE DISTRIBUTION M. A Sheikh Laser

More information

3 Major 3d printing process and technology introduction

3 Major 3d printing process and technology introduction 3 Major 3d printing process and technology introduction Summary After several decades of development, Now there are a variety of 3D printing technology process, from the categories divided into extrusion

More information

Additive Manufacturing

Additive Manufacturing www.dmgmori.com LASERTEC 65 3D Additive Manufacturing Laser Deposition Welding & Milling LASERTEC integration in DMG MORI machines ALL IN 1: Laser Deposition Welding & Milling Additive Manufacturing in

More information

Finite Element Analysis of Additively Manufactured Products

Finite Element Analysis of Additively Manufactured Products Finite Element Analysis of Additively Manufactured Products Megan Lobdell, Brian Croop and Hubert Lobo DatapointLabs, Ithaca, NY, USA Summary With the growing interest in 3D printing, there is a desire

More information

Laser Surface processing -The features and the applications -

Laser Surface processing -The features and the applications - Laser Surface processing -The features and the applications - 1)Introduction 2) Heating process 3) Melting process 4) Laser vaporizing process 5) Laser CVD & PVD 6)laser marking and engraving By Munehary

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION

FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION Proceedings of the 5th Annual ISC Research Symposium ISCRS 2011 April 7, 2011, Rolla, Missouri FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION Sriram Prabhu Department Of Manufacturing

More information

STUDY OF SHAPE DEPOSITION MANUFACTURING

STUDY OF SHAPE DEPOSITION MANUFACTURING STUDY OF SHAPE DEPOSITION MANUFACTURING 1 Ashish Bhorkade, 2 Chetan Bharambe, 3 Suraj Bhangale 4 Pankaj Patil 1,2,3 B.E.Scholar BVCOE&RI Nashik 4 Assistant Professor Mechanical Dept. BVCOE&RI Nashik ABSTRACT

More information

Copper Based Bi-metallic Core Pin Using DMD: Industrial Evaluation

Copper Based Bi-metallic Core Pin Using DMD: Industrial Evaluation Vol. 2 (2012) No. 3 ISSN: 2088-5334 Copper Based Bi-metallic Core Pin Using DMD: Industrial Evaluation M. Khalid Imran #, Syed Masood #, Milan Brandt *, Stefan Gulizia +, Mahnaz Zahedi + # Industrial Research

More information

Applications of Additive Manufacturing in Forging

Applications of Additive Manufacturing in Forging Applications of Additive Manufacturing in Forging Final Report D.Schwam* and B. Silwal** *Case Western Reserve University, Cleveland, OH ** Georgia Southern University, Statesboro, GA October 2017 1 Table

More information

Additive manufacturing of metallic alloys and its medical applications

Additive manufacturing of metallic alloys and its medical applications Additive manufacturing of metallic alloys and its medical applications A. Di Schino 1, M. Richetta 2 1 Dipartimento di Ingegneria Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy

More information

Recent Progress in Droplet-Based Manufacturing Research

Recent Progress in Droplet-Based Manufacturing Research Recent Progress in Droplet-Based Manufacturing Research H.-Y. Kim, J.-P. Cherng, and J.-H. Chun Abstract This article reports the recent progress of research made in the Droplet-Based Manufacturing Laboratory

More information

ELECTRON BEAM FREEFORM FABRICATION: A RAPID METAL DEPOSITION PROCESS

ELECTRON BEAM FREEFORM FABRICATION: A RAPID METAL DEPOSITION PROCESS ELECTRON BEAM FREEFORM FABRICATION: A RAPID METAL DEPOSITION PROCESS Karen M. B. Taminger and Robert A. Hafley NASA Langley Research Center, Hampton, VA Abstract Manufacturing of structural metal parts

More information

Variable Polarity GTAW in Rapid Prototyping of Aluminum Parts

Variable Polarity GTAW in Rapid Prototyping of Aluminum Parts Variable Polarity GTAW in Rapid Prototyping of Aluminum Parts Huijun Wang and Radovan Kovacevic Southern Methodist University, Department of Mechanical Engineering, P.O. Box 750337, Dallas, Texas, U.S.A.

More information

An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture. Ivor Davies. RP&T Centre WMG, University of Warwick

An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture. Ivor Davies. RP&T Centre WMG, University of Warwick An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture Ivor Davies RP&T Centre WMG, University of Warwick 2 Contents Rapid Prototyping Basic Principle Data Requirements RP Processes

More information

Every Industry - Every Day DIRECT METAL LASER MELTING. The Experts in Metal Additive Manufacturing.

Every Industry - Every Day DIRECT METAL LASER MELTING. The Experts in Metal Additive Manufacturing. DIRECT METAL LASER MELTING The Experts in Metal Additive Manufacturing Every Industry - Every Day www.gpiprototype.com 847-615-8900 Sales@GPIprototype.com GPI Prototype and Manufacturing Services has been

More information

Particle characterization of Metal Powders with Dynamic Image Analysis

Particle characterization of Metal Powders with Dynamic Image Analysis Retsch Technology GmbH Retsch-Allee 1-5 42781 Haan, Germany Phone Fax +49 21 04 / 23 33-300 +49 21 04 / 23 33-399 E-Mail Internet technology@retsch.com www.retsch-technology.com Particle characterization

More information

Material data sheet. EOS StainlessSteel 316L. Description

Material data sheet. EOS StainlessSteel 316L. Description is a corrosion resistant iron based alloy which has been optimized especially for processing on EOSINT M280 systems. This document provides information and data for parts built using powder (EOS art.-no.

More information

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999]

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999] Literature Review Based on this knowledge the work of others relating to selective laser sintering (SLSLM) of metal is reviewed, leading to a statement of aims for this PhD project. Provides background

More information

MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING

MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING MECHANICAL PROPERTIES OF PURE TITANIUM MODELS PROCESSED BY SELECTIVE LASER MELTING Edson Santos*, F. Abe, Y. Kitamura*, K. Osakada* and M. Shiomi* *Division of Mechanical Science, Graduate School of Mechanical

More information

MACHINE VISION BASED CONTROL OF GAS TUNGSTEN ARC WELDING FOR RAPID PROTOTYPING. I. S. Kmecko, R. Kovacevic and Z. Jandric

MACHINE VISION BASED CONTROL OF GAS TUNGSTEN ARC WELDING FOR RAPID PROTOTYPING. I. S. Kmecko, R. Kovacevic and Z. Jandric MACHINE VISION BASED CONTROL OF GAS TUNGSTEN ARC WELDING FOR RAPID PROTOTYPING I. S. Kmecko, R. Kovacevic and Z. Jandric Research Center for Advanced Manufacturing, School of Engineering and Applied Science,

More information

3D METALS Discover the variety of Metal Powders The range of our standard metal powders

3D METALS Discover the variety of Metal Powders The range of our standard metal powders 3D METALS Discover the variety of Metal Powders The range of our standard metal powders Non Ferrous, Tool Steel, Stainless Steel and Light Alloys SLM The Industrial Manufacturing Revolution PIONEERS in

More information

Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering

Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering Harold and Inge Marcus Department of Industrial and Manufacturing Engineering Introduction to CIMP-3D Center for Innovative Materials

More information

Metal Powder the Raw Material of Future Production

Metal Powder the Raw Material of Future Production Metal Powder the Raw Material of Future Production Introduction and Overview Applications for Powder Metallurgy Methods &Systems for Powder Production Physical and Chemical Properties of Metal Powder Economic

More information

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool.

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool. Proceedings of the 4th Annual ISC Research Symposium ISCRS 2010 April 21, 2010, Rolla, Missouri LOW COST IMAGING OF MELTPOOL IN MICRO LASER AIDED MANUFACTURING PROCESS (µlamp) ABSTRACT This paper describes

More information

Control of Microstructure in Laser Additive Manufacturing

Control of Microstructure in Laser Additive Manufacturing Control of Microstructure in Laser Additive Manufacturing by Mohammad Hossein Farshidianfar A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING

THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING João Batista FOGAGNOLO 1, Edwin SALLICA-LEVA 1, Eder

More information

EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized

EOS NickelAlloy IN718 is a heat and corrosion resistant nickel alloy powder which has been optimized is a heat and corrosion resistant nickel alloy powder which has been optimized especially for processing on EOS M systems. This document provides information and data for parts built using powder (EOS

More information

Material data sheet. EOS MaragingSteel MS1. Description

Material data sheet. EOS MaragingSteel MS1. Description EOS MaragingSteel MS1 EOS MaragingSteel MS1 is a tool steel powder intended for processing on EOS DMLS TM systems. This document provides information and data for parts built using EOS MaragingSteel MS1

More information

Building blocks for a digital twin of additive manufacturing

Building blocks for a digital twin of additive manufacturing Building blocks for a digital twin of additive manufacturing - a path to understand the most important metallurgical variables H.L. Wei, T. Mukherjee and T. DebRoy, Department of Materials Science and

More information

CNC - LASER MACHINES OF THE SERIES LS Welding Cutting Hardening Drilling Structuring

CNC - LASER MACHINES OF THE SERIES LS Welding Cutting Hardening Drilling Structuring CNC - LASER MACHINES OF THE SERIES LS Welding Cutting Hardening Drilling Structuring Automotive E-Mobility Medical engineering CROSS-SECTOR COMPETENCE FOR YOUR SUCCESS. RIGHT FROM THE BEGINNING. Electrical

More information

THE CHARACTERIZATION OF THE PERFORMANCE OF A NEW POWDER FEEDER FOR LASER BASED ADDITIVE MANUFACTURING

THE CHARACTERIZATION OF THE PERFORMANCE OF A NEW POWDER FEEDER FOR LASER BASED ADDITIVE MANUFACTURING THE CHARACTERIZATION OF THE PERFORMANCE OF A NEW POWDER FEEDER FOR LASER BASED ADDITIVE MANUFACTURING H. Mei, M. Valant, D. Hu, R. Kovacevic Research Center for Advanced Manufacturing Southern Methodist

More information

Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal

Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal Laser Surface Melting Want to melt the surface locally Melt & rapid solidification get fine homogeneous structures (recrystallize) Little thermal penetration thus small thermal distortion for sensitive

More information

Material data sheet. EOS StainlessSteel 17-4 for EOSINT M 270. Description, application

Material data sheet. EOS StainlessSteel 17-4 for EOSINT M 270. Description, application EOS StainlessSteel 17-4 for EOSINT M 270 A number of different materials are available for use with EOSINT M systems, offering a broad range of e-manufacturing applications. EOS Stainless Steel 17-4 is

More information

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM Adrian P. POP 1, Petru UNGUR 1, Gheorghe BEJINARU MIHOC 2 1 University of Oradea, e-mail: adippop@yahoo.com; petru_ungur@yahoo.com; 2 Transilvania University

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

The World s First Hybrid Turbine Blade & Turbo Fan Remanufacturing Machine

The World s First Hybrid Turbine Blade & Turbo Fan Remanufacturing Machine The World s First Hybrid Turbine Blade & Turbo Fan Remanufacturing Machine HSC-turning-milling centre of the HSTM-series: HSTM, HSTM XL and HSTM HD What is a Hybrid machine? A Hybrid machine is one where

More information

* EOSYSTEM v. 2.6 or higher enables EOSPRINT v. 2.0 (EOS art.-no ) or higher usage

* EOSYSTEM v. 2.6 or higher enables EOSPRINT v. 2.0 (EOS art.-no ) or higher usage EOS MaragingSteel MS1 EOS MaragingSteel MS1 is a tool steel powder intended for processing on EOS DMLS TM systems. This document provides information and data for parts built using - EOS Powder: EOS MaragingSteel

More information