Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application"

Transcription

1 Method to obtain TEOS PECVD Silicon Oxide Thick Layers for Optoelectronics devices Application ABSTRACT D. A. P. Bulla and N. I. Morimoto Laboratório de Sistemas Integráveis da EPUSP São Paulo - S.P. - Brazil We report a method to obtain thick and uniform silicon oxide dielectric layer with effective control of the refractive index, to apply it in optoelectronics devices. TEOS PECVD silicon oxide showed a large stress that impose a strong limitation in the thickness of the deposited layer. Rapid Thermal Annealing (RTA) process was used to densify and relaxation of the stress in the silicon oxide layer. The process, described in this paper, use a combination of the TEOS PECVD deposition and RTA processes to obtain silicon oxide layers up to 4 µm thick. These layers were analyzed by stress meter, ellipsometry, FTIRS and RBS. INTRODUCTION In optoelectronics devices, based on silicon substrate, it is necessary a buffer layer to insulate the dielectric optical medium from the substrate [7] (when red laser is used as light source). The thickness of the buffer layer must be higher than 3 µm, in order to minimize the light absorption by the silicon substrate. Silicon oxide is widely used material as buffer layer due to its optical quality and compatibility with microelectronic processes. TEOS (Tetraethylorthosilicate) PECVD (Plasma Enhanced Chemical Vapor Deposition) silicon oxide, deposited in a home made cluster tool system, showed a high compressive stress [2], which cause the crack of the deposited layer (for thickness > 1.0 µm). Rapid Thermal Annealing (RTA) process promotes the relaxation of the stress on the silicon oxide deposited layer. This paper describe a multilayer TEOS PECVD silicon oxide deposition followed by a RTA treatment process which allow us to obtain silicon oxide layer up to 4 µm thick. The control of the refractive index of TEOS PECVD silicon oxide layer is obtained by controlling the O/Si ratio. EXPERIMENTAL Silicon substrate used for TEOS PECVD oxide deposition were p-type <100>; 5-15 Ω.cm. Table 1 shows the deposition process parameters used for each TEOS PECVD silicon oxide deposition carried out in a home made cluster tool system [1,2]. Table 1: Deposition process parameters used for each TEOS PECVD silicon oxide deposition.

2 RF power (W) 400 Temperature ( C) 360 Distance between electrodes (mm) 15 Oxygen flux (sccm) 200 TEOS flux (sccm) 40 Process pressure (Torr) 2.5 Thickness (nm) 570 RTA process, carried out after each TEOS PECVD deposition, was performed in a halogen lamps RTP furnace (Heatpulse AG Associates Inc.) at 900 C; 120 s; in N 2 ambient. The TEOS PECVD silicon oxide thickness measurements were made in a Rudolph Research ellipsometer model Auto-El-NIR3, OH bonds content was measured by FTIRS (Fourier Transform Infra Red Spectroscopy); RBS (Rutherford Back Scattering) was used to determine the deposited films stoichiometry (O/Si). The stress measurements were made in Tencor Instruments stress meter station model FLX2400 that has the possibility to heat the sample in situ until 900 C. This system obtains the stress by measuring the radius of curvature of the wafer. The radius of curvature is measured using the laser beam reflection technique. Before each TEOS PECVD deposition process, it was made a chamber wall cleaning process using a plasma of a mixture of 100 sccm CF 4 and 20 sccm O 2. This procedure ensures the same initial conditions for all deposition process. The processes sequence used to produce the silicon oxide thick layer Silicon substrates were cleaned by standard RCA process, followed by measurement of FTIR background spectrum and wafer radius of curvature. The sequence for each step of the process was the following: PECVD deposition; FTIRS; ellipsometry; stress measurement; RTA; FTIRS; ellipsometry and stress measurement. This sequence was repeated for each layer of deposited SiO 2. RESULTS AND DISCUSSION Table 2 shows the thickness and the refractive index of the first TEOS PECVD silicon oxide deposited layer. We made the measurements in five different points over the wafer. The average value and the standard deviation were considered as measured thickness and error respectively. Table 2: First TEOS PECVD silicon oxide layer First SiO 2 layer as-deposited after annealing Thickness (nm) ± ± 5.4 Refractive Index 1.44 ± ± 0.02 The uniformity of these as-deposited SiO 2 films is better than 97%, which is suitable for optical applications. After annealing, the film densification was ~11%. The high reproducibility of the silicon oxide deposition process [2] allows us to consider that the others layers have the same characteristics of the first one.

3 Figure 1 shows the thickness of SiO 2 multilayers deposited by TEOS PECVD after RTA in each step. The final thickness, of the silicon oxide layer, exceed the upper limit of the ellipsometer (< 3.2 µm). Then, for the lasts steps, we extrapolate the thickness as shown in figure 1. 5 SiO 2 Layers (after annealing) 4 Thickness (µm) Layers Figure 1: Thickness of SiO 2 multilayers deposited by TEOS PECVD after RTA. Figure 2 shows the behavior of stress in function of the number of deposited layers before and after RTA. The multilayer deposition process was stopped when the film crack. The film crack occurred only during the annealing process of the ninth deposited layer, that correspond a thickness. of ~4.7 µm Stress (10 9 Dyne/cm 2 ) Compr. Tens. without RTA (last) after RTA (last) each layer ~0.52µm Layers Figure 2: Stress measurements for each layer of deposited SiO 2, with and without RTA. FTIRS measurements.

4 FTIRS was used to control the OH bond content and water present in the films [4]. These contaminants induce bad characteristic to optical properties of SiO 2 film. Its presence is associated to increase of loss in optical devices and changes of refractive index material. In the figure (3), are shown FTIR spectra of one layer. In the next depositions (layers) the same behavior were found. The OH absorption peak [6] at 960 and 1119 cm -1 was reduced by RTA. RBS measurements. RBS was used to determine the stoichiometry of SiO x films [5] and to observe the interface behavior between SiO x layers. RBS spectrum is showed in the figure 4. The stoichiometry of SiO x films was determined by fitting the RBS spectrum with the RUMP simulator [3], The O/Si ratio is 1.9/1.1. The interface between layers was not detected. F T I R (single layer) RBS (2 layers) Absorbance (a.u.) before R TP after RTP O -H cont. (a. u.) Beam He + 2.4MeV(70 ) O (SiO 2 ) Si (substrate) Si (SiO 2 ) W avenumbers (cm -1 ) Figure 3: FTIR spectra of a SiO 2 single layer, as-deposited and after RTA. Energy (KeV) Figure 4: RBS spectrum of two SiO 2 layers, after RTA. CONCLUSION We obtained SiO 2 tick films using TEOS PECVD multideposition combined with RTA. The film thickness is stress limited. The thickness limit achieve was ~ 4.2 µm with compressive stress (~1.4x10 9 dyne/cm 2 ). The refractive index of these SiO 2 films showed low variation with the process, 1.44±0.02. The O/Si ratio is 1.9/1.1 which is close to the thermal silicon oxide, and no interface between layers was detected. The OH, present into the film, was minimized by RTA. These films have good characteristics for optoelectronics devices application.

5 ACKNOWLEDGMENTS The authors are in debt with LAMFI/IFUSP by RBS measurements; and C. Viana for your assistence in the PECVD system. Financial support from FAPESP, FINEP, CNPq are gratefully acknowledged. REFERENCES [1] N.I.Morimoto, J.W.Swart and F.M.Yoshihiro, in Proc. X Congr. of Brazilian Microelect. Soc. Vol.1, p.341, Canela, Brazil [2] N.I.Morimoto and J.W.Swart, in Proc. V Symp. Rapid Thermal and Integrated Processing, MRS, Vol 429, p.263, San Francisco, [3] L.R.Doolittle, Nucl. Instrm. Methods B, Vol 9, p.224, [4] J.Mort and F.Jansen, Plasma Deposited Thin Films, CRC Press, [5] W.K.Chu, Backscattering Spectrometry, Academic Press, New York, [6] C.G.Madras, P.Y.Wong, I.N.Miaoulis and L.M.Goldman, in MRS Symp. Proc. Vol.356, [7] H.P.Zappe, Introduction to Semiconductor Integrated Optics, Artch House, Boston, 1995.

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining Sādhanā Vol. 34, Part 4, August 2009, pp. 557 562. Printed in India Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining VIVEKANAND BHATT 1,, SUDHIR CHANDRA 1 and

More information

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor

Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department

More information

Oxide Growth. 1. Introduction

Oxide Growth. 1. Introduction Oxide Growth 1. Introduction Development of high-quality silicon dioxide (SiO2) has helped to establish the dominance of silicon in the production of commercial integrated circuits. Among all the various

More information

Optical characterization of an amorphoushydrogenated carbon film and its application in phase modulated diffractive optical elements

Optical characterization of an amorphoushydrogenated carbon film and its application in phase modulated diffractive optical elements Optical characterization of an amorphoushydrogenated carbon film and its application in phase modulated diffractive optical elements G. A. Cirino a, P. Verdonck a, R. D. Mansano a, L. G. Neto b a LSI-PEE-EPUSP

More information

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab.

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab. Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA Issues on contaminants on EUV mask Particle removal on EUV mask surface Carbon contamination removal on EUV mask surface

More information

Thermal Annealing Effects on the Thermoelectric and Optical Properties of SiO 2 /SiO 2 +Au Multilayer Thin Films

Thermal Annealing Effects on the Thermoelectric and Optical Properties of SiO 2 /SiO 2 +Au Multilayer Thin Films American Journal of Materials Science 2015, 5(3A): 31-35 DOI: 10.5923/s.materials.201502.05 Thermal Annealing Effects on the Thermoelectric and Optical Properties of SiO 2 /SiO 2 +Au Multilayer Thin Films

More information

Measurement of thickness of native silicon dioxide with a scanning electron microscope

Measurement of thickness of native silicon dioxide with a scanning electron microscope Measurement of thickness of native silicon dioxide with a scanning electron microscope V. P. Gavrilenko* a, Yu. A. Novikov b, A. V. Rakov b, P. A. Todua a a Center for Surface and Vacuum Research, 40 Novatorov

More information

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition

Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical Vapor Deposition Mat. Res. Soc. Symp. Proc. Vol. 784 2004 Materials Research Society C7.7.1 Fabrication of Ru/Bi 4-x La x Ti 3 O 12 /Ru Ferroelectric Capacitor Structure Using a Ru Film Deposited by Metalorganic Chemical

More information

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation

Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation Mat. Res. Soc. Symp. Proc. Vol. 686 2002 Materials Research Society Electrical Properties of Ultra Shallow p Junction on n type Si Wafer Using Decaborane Ion Implantation Jae-Hoon Song, Duck-Kyun Choi

More information

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces A. P. Young a) Department of Electrical Engineering, The Ohio State University, Columbus,

More information

Low temperature deposition of thin passivation layers by plasma ALD

Low temperature deposition of thin passivation layers by plasma ALD 1 Low temperature deposition of thin passivation layers by plasma ALD Bernd Gruska, SENTECH Instruments GmbH, Germany 1. SENTECH in brief 2. Low temperature deposition processes 3. SENTECH SI ALD LL System

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

200mm Next Generation MEMS Technology update. Florent Ducrot

200mm Next Generation MEMS Technology update. Florent Ducrot 200mm Next Generation MEMS Technology update Florent Ducrot The Most Exciting Industries on Earth Semiconductor Display Solar 20,000,000x reduction in COST PER TRANSISTOR in 30 years 1 20x reduction in

More information

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides 10.1149/1.2392914, copyright The Electrochemical Society Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides D. Comedi a, O. H. Y. Zalloum b, D. E. Blakie b, J. Wojcik

More information

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001)

State of the art quality of a GeOx interfacial passivation layer formed on Ge(001) APPLICATION NOTE State of the art quality of a Ox interfacial passivation layer formed on (001) Summary A number of research efforts have been made to realize Metal-Oxide-Semiconductor Field Effect Transistors

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Supporting Information

Supporting Information Supporting Information Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip Zhengfei Dai,, Lei Xu,#,, Guotao Duan *,, Tie Li *,,

More information

Impurity free vacancy disordering of InGaAs quantum dots

Impurity free vacancy disordering of InGaAs quantum dots JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 12 15 DECEMBER 2004 Impurity free vacancy disordering of InGaAs quantum dots P. Lever, H. H. Tan, and C. Jagadish Department of Electronic Materials Engineering,

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

micro resist technology

micro resist technology Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

DEPOSITION OF THIN FILMS ON POLYCARBONATES BY PULSE DIELECTRIC BARRIER DISCHARGE

DEPOSITION OF THIN FILMS ON POLYCARBONATES BY PULSE DIELECTRIC BARRIER DISCHARGE a DEPOSITION OF THIN FILMS ON POLYCARBONATES BY PULSE DIELECTRIC BARRIER DISCHARGE T. Opalińska a, B. Ulejczyk a, L. Karpiński b, K. Schmidt-Szałowski c a) Industrial Chemistry Research Institute, Rydygiera

More information

Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD)

Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD) Procese de depunere in sistemul Plasma Enhanced Chemical Vapor Deposition (PECVD) Ciprian Iliescu Conţinutul acestui material nu reprezintă in mod obligatoriu poziţia oficială a Uniunii Europene sau a

More information

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Materials Transactions, Vol. 48, No. 5 (27) pp. 975 to 979 #27 The Japan Institute of Metals Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Akira Heya 1, Naoto Matsuo 1, Tadashi Serikawa

More information

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Erten Eser, Steven S. Hegedus and Wayne A. Buchanan Institute of Energy Conversion University of Delaware, Newark,

More information

ME 141B: The MEMS Class Introduction to MEMS and MEMS Design. Sumita Pennathur UCSB

ME 141B: The MEMS Class Introduction to MEMS and MEMS Design. Sumita Pennathur UCSB ME 141B: The MEMS Class Introduction to MEMS and MEMS Design Sumita Pennathur UCSB Outline today Introduction to thin films Oxidation Deal-grove model CVD Epitaxy Electrodeposition 10/6/10 2/45 Creating

More information

Processing guidelines. Negative Tone Photoresist Series ma-n 2400

Processing guidelines. Negative Tone Photoresist Series ma-n 2400 Characteristics Processing guidelines Negative Tone Photoresist Series ma-n 2400 ma-n 2400 is a negative tone photoresist series designed for the use in micro- and nanoelectronics. The resists are available

More information

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005

3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 3.155J / 6.152J Micro/Nano Processing Technology TAKE-HOME QUIZ FALL TERM 2005 1) This is an open book, take-home quiz. You are not to consult with other class members or anyone else. You may discuss the

More information

Isolation of elements

Isolation of elements 1 In an IC, devices on the same substrate must be isolated from one another so that there is no current conduction between them. Isolation uses either the junction or dielectric technique or a combination

More information

Analysis of optical properties of solar energy materials

Analysis of optical properties of solar energy materials Analysis of optical properties of solar energy materials Comices Energie solaire - Namur - 23/04/2012 Michel Voué Physique des Matériaux et Optique Centre de Recherche en Physique des Matériaux Université

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Understanding Optical Coatings For Military Applications

Understanding Optical Coatings For Military Applications Understanding Optical Coatings For Military Applications By Trey Turner, Chief Technology Officer, REO Virtually all optical components used in military applications, such as target designation, rangefinding

More information

MARORA A Plasma Selective-oxidation Apparatus for Metal-gate Devices

MARORA A Plasma Selective-oxidation Apparatus for Metal-gate Devices Hitachi Review Vol. 57 (2008), No. 3 127 MARORA A Plasma Selective-oxidation Apparatus for Metal-gate Devices Tadashi Terasaki Masayuki Tomita Katsuhiko Yamamoto Unryu Ogawa, Dr. Eng. Yoshiki Yonamoto,

More information

Process Flow in Cross Sections

Process Flow in Cross Sections Process Flow in Cross Sections Process (simplified) 0. Clean wafer in nasty acids (HF, HNO 3, H 2 SO 4,...) --> wear gloves! 1. Grow 500 nm of SiO 2 (by putting the wafer in a furnace with O 2 2. Coat

More information

Thin AC-PDP Vacuum In-line Sealing Using Direct-Joint Packaging Method

Thin AC-PDP Vacuum In-line Sealing Using Direct-Joint Packaging Method H128 0013-4651/2004/151 5 /H128/5/$7.00 The Electrochemical Society, Inc. Thin AC-PDP Vacuum In-line Sealing Using Direct-Joint Packaging Method Duck-Jung Lee, a,b,z Seung-IL Moon, a Yun-Hi Lee, c and

More information

High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates

High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates Jim Sullivan, Harry R. Kirk, Sien Kang, Philip J. Ong, and Francois J. Henley Silicon

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

Effect of Ge incorporation on bandgap and photosensitivity of amorphous SiGe thin films *

Effect of Ge incorporation on bandgap and photosensitivity of amorphous SiGe thin films * Materials Sciences and Applications, 2011, *, ** doi:10.4236/msa.2011.***** Published Online ** 2011 (http://www.scirp.org/journal/msa) Effect of Ge incorporation on bandgap and photosensitivity of amorphous

More information

300mm Wafer Stain Formation by Spin Etching

300mm Wafer Stain Formation by Spin Etching 10.1149/1.2980313 The Electrochemical Society 300mm Wafer Stain Formation by Spin Etching K. Sato a, S. Mashimoto a, and M. Watanabe a a Process Development, SEZ Japan, Inc., Hongo, Bunkyo-ku 1130033,

More information

Evaluation of a New Advanced Low-k Material

Evaluation of a New Advanced Low-k Material Evaluation of a New Advanced Low-k Material E. A. Smirnov 1, Kris Vanstreels, Patrick Verdonck, Ivan Ciofi, Denis Shamiryan, and Mikhail R. Baklanov, IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium, E-mail:

More information

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES G. Fortunato, A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, and L. Mariucci CNR-IMM,

More information

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon

A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon A Deep Silicon RIE Primer Bosch Etching of Deep Structures in Silicon April 2009 A Deep Silicon RIE Primer 1.0) Etching: Silicon does not naturally etch anisotropically in fluorine based chemistries. Si

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Formation and Annihilation of Hydrogen-Related Donor States in Proton-Implanted and Subsequently Plasma-Hydrogenated N-Type Float-Zone Silicon

Formation and Annihilation of Hydrogen-Related Donor States in Proton-Implanted and Subsequently Plasma-Hydrogenated N-Type Float-Zone Silicon Formation and Annihilation of Hydrogen-Related Donor States in Proton-Implanted and Subsequently Plasma-Hydrogenated N-Type Float-Zone Silicon Reinhart Job, University of Hagen, Germany Franz-Josef Niedernostheide,

More information

X-ray Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy X-ray Photoelectron Spectroscopy X-ray photoelectron spectroscopy (XPS) is a non-destructive technique used to analyze the elemental compositions, chemical and electronic states of materials. XPS has a

More information

Rapid Thermal Processing (RTP) Dr. Lynn Fuller

Rapid Thermal Processing (RTP) Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Rapid Thermal Processing (RTP) Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

p. 57 p. 89 p. 97 p. 119

p. 57 p. 89 p. 97 p. 119 Preface Program Committee Members Transistor Physics History John Bardeen and Transistor Physics p. 3 Challenges p. xiii p. xv Technology in the Internet Era p. 33 Metrology Needs and Challenges for the

More information

5.8 Diaphragm Uniaxial Optical Accelerometer

5.8 Diaphragm Uniaxial Optical Accelerometer 5.8 Diaphragm Uniaxial Optical Accelerometer Optical accelerometers are based on the BESOI (Bond and Etch back Silicon On Insulator) wafers, supplied by Shin-Etsu with (100) orientation, 4 diameter and

More information

High-Resolution, Electrohydrodynamic Inkjet Printing of Stretchable, Metal Oxide Semiconductor Transistors with High Performances

High-Resolution, Electrohydrodynamic Inkjet Printing of Stretchable, Metal Oxide Semiconductor Transistors with High Performances Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 ` Electronic Supplementary Information High-Resolution, Electrohydrodynamic Inkjet Printing of

More information

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm)

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm) 4 Silicon Temperature Sensors 4.1 Introduction The KTY temperature sensor developed by Infineon Technologies is based on the principle of the Spreading Resistance. The expression Spreading Resistance derives

More information

Optical Constants of Ge and GeO 2 from Ellipsometry

Optical Constants of Ge and GeO 2 from Ellipsometry Optical Constants of Ge and GeO 2 from Ellipsometry T. Nathan Nunley, Nalin Fernando, Jaime Moya, Nuwanjula S. Samarasingha, Cayla M. Nelson, Stefan Zollner Department of Physics, New Mexico State University,

More information

Laser Spike Annealing for sub-20nm Logic Devices

Laser Spike Annealing for sub-20nm Logic Devices Laser Spike Annealing for sub-20nm Logic Devices Jeff Hebb, Ph.D. July 10, 2014 1 NCCAVS Junction Technology Group Semicon West Meeting July 10, 2014 Outline Introduction Pattern Loading Effects LSA Applications

More information

University of Minnesota Nano Center Standard Operating Procedure

University of Minnesota Nano Center Standard Operating Procedure Equipment Name: University of Minnesota Nano Center PECVD Coral Name: pecvd Revision Number: 2.0 Model: Plasmatherm 340 Revisionist: Mark Fisher Location: Bay 3 Date: 20 Sept 2013 1 Description The Plasmatherm

More information

Roll-to-roll Technology for Transparent High Barrier Films

Roll-to-roll Technology for Transparent High Barrier Films Roll-to-roll Technology for Transparent High Barrier Films Presented at the AIMCAL Fall Technical Conference, October 19-22, 2008, Myrtle Beach, SC, USA Nicolas Schiller, John Fahlteich, Matthias Fahland,

More information

CREOL, The College of Optics & Photonics, University of Central Florida

CREOL, The College of Optics & Photonics, University of Central Florida Metal Substrate Induced Control of Ag Nanoparticle Plasmon Resonances for Tunable SERS Substrates Pieter G. Kik 1, Amitabh Ghoshal 1, Manuel Marquez 2 and Min Hu 1 1 CREOL, The College of Optics and Photonics,

More information

Vacuum Equipment for TCO and AR Coatings Deposition by Reactive Magnetron Sputtering

Vacuum Equipment for TCO and AR Coatings Deposition by Reactive Magnetron Sputtering Vacuum Equipment for TCO and AR Coatings Deposition by Reactive Magnetron Sputtering E. Yadin; V. Kozlov; E. Machevskis, Sidrabe, Inc., 17 Krustpils str.,riga, LV1073, Latvia. Tel: +371 7249806, Fax: +371

More information

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS Badgap Engineering: Precise Control of Emission Wavelength Wavelength Division Multiplexing Fiber Transmission Window Optical Amplification Spectrum Design and Fabrication of emitters and detectors Composition

More information

Photonic Drying Pulsed Light as a low Temperature Sintering Process

Photonic Drying Pulsed Light as a low Temperature Sintering Process Photonic Drying Pulsed Light as a low Temperature Sintering Process Lou Panico Xenon Corporation W E S T E R N M I C H I G A N U N I V E R S I T Y PRESENTATION OVERVIEW What is Printed Electronics Materials

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes Jason Chou and Sze Pei Lim Indium Corporation Agenda Company introduction Semiconductor assembly roadmap challenges Fine

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Simple method for formation of nanometer scale holes in membranes. E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Simple method for formation of nanometer scale holes in membranes T. Schenkel 1, E. A. Stach, V. Radmilovic, S.-J. Park, and A. Persaud E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 When

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2011

EE C245 ME C218 Introduction to MEMS Design Fall 2011 Lecture Outline EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720

More information

Available online at ScienceDirect. Energy Procedia 44 (2014 )

Available online at  ScienceDirect. Energy Procedia 44 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 44 (2014 ) 132 137 E-MRS Spring Meeting 2013 Symposium D - Advanced Inorganic Materials and Structures for Photovoltaics, 27-31 May

More information

Plasma..TI'1eITI1 I.P.

Plasma..TI'1eITI1 I.P. Plasma..TI'1eITI1 I.P. RPPI..ICRTION NOTES PLASMA ETCHING OF SIUCON NITRIDE AND SIUCON DIOXIDE Silicon nitride and silicon dioxide thin films find e variety of uses in both semiconductor and nonsemiconductor

More information

Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study

Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study JOURNAL OF APPLIED PHYSICS 97, 073519 2005 Electronic structure and x-ray-absorption near-edge structure of amorphous Zr-oxide and Hf-oxide thin films: A first-principles study SungKwan Kim, a Yangsoo

More information

Nickel-induced crystallization of amorphous silicon

Nickel-induced crystallization of amorphous silicon University of Arkansas, Fayetteville ScholarWorks@UARK Mechanical Engineering Undergraduate Honors Theses Mechanical Engineering 5-2009 Nickel-induced crystallization of amorphous silicon Robert Fleming

More information

1. Introduction. What is implantation? Advantages

1. Introduction. What is implantation? Advantages Ion implantation Contents 1. Introduction 2. Ion range 3. implantation profiles 4. ion channeling 5. ion implantation-induced damage 6. annealing behavior of the damage 7. process consideration 8. comparison

More information

AC Reactive Sputtering with Inverted Cylindrical Magnetrons

AC Reactive Sputtering with Inverted Cylindrical Magnetrons AC Reactive Sputtering with Inverted Cylindrical Magnetrons D.A. Glocker, Isoflux Incorporated, Rush, NY; and V.W. Lindberg and A.R. Woodard, Rochester Institute of Technology, Rochester, NY Key Words:

More information

Isolation Technology. Dr. Lynn Fuller

Isolation Technology. Dr. Lynn Fuller ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Isolation Technology Dr. Lynn Fuller Motorola Professor 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041

More information

Atomic Oxygen-Resistant, Static-Dissipative, Pinhole-Free Coatings for Spacecraft

Atomic Oxygen-Resistant, Static-Dissipative, Pinhole-Free Coatings for Spacecraft Physical Sciences Inc. VG10-109 Atomic Oxygen-Resistant, Static-Dissipative, Pinhole-Free Coatings for Spacecraft Michelle T. Schulberg, Robert H. Krech, Frederick S. Lauten Physical Sciences Inc. Roy

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers

Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers Schottky-Barrier-Height Modulation of Ni Silicide/Si Contacts by Insertion of Thin Er or Pt Layers Yoshihisa Ohishi 1, Kohei Noguchi 1, Kuniyuki Kakushima 2, Parhat Ahmet 1, Kazuo Tsutsui 2, Nobuyuki Sugii

More information

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material

Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material Thin Films: Sputtering Systems (Jaeger Ch 6 & Ruska Ch 7,) Sputtering: gas plasma transfers atoms from target to substrate Can deposit any material on any substrate (in principal) Start with pumping down

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Characterization of thin Gd 2 O 3 magnetron sputtered layers

Characterization of thin Gd 2 O 3 magnetron sputtered layers Characterization of thin Gd 2 O 3 magnetron sputtered layers Jacek Gryglewicz * a, Piotr Firek b, Jakub Jaśiński b, Robert Mroczyński b, Jan Szmidt b a Wroclaw University of Technology, Janiszewskiego

More information

Technology. Semiconductor Manufacturing. Hong Xiao INTRODUCTION TO SECOND EDITION SPIE PRESS

Technology. Semiconductor Manufacturing. Hong Xiao INTRODUCTION TO SECOND EDITION SPIE PRESS INTRODUCTION TO Semiconductor Manufacturing Technology SECOND EDITION Hong Xiao TECHNISCHE INFORMATIONSBiBUOTHEK UNIVERSITATSBIBLIOTHEK HANNOVER SPIE PRESS Bellingham,Washington USA Contents Preface to

More information

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers David W. Stollberg, Ph.D., P.E. Research Engineer and Adjunct Faculty GTRI_B-1 Field Emitters GTRI_B-2

More information

Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu

Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu 10.119/1.36982 The Electrochemical Society Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu National Key Laboratory of Science and Technology

More information

a-sin x :H Antireflective And Passivation Layer Deposited By Atmospheric Pressure Plasma

a-sin x :H Antireflective And Passivation Layer Deposited By Atmospheric Pressure Plasma Vailable online at www.sciencedirect.com Energy Procedia 27 (2012 ) 365 371 SiliconPV: April 03-05, 2012, Leuven, Belgium a-sin x :H Antireflective And Passivation Layer Deposited By Atmospheric Pressure

More information

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson

Alternative Methods of Yttria Deposition For Semiconductor Applications. Rajan Bamola Paul Robinson Alternative Methods of Yttria Deposition For Semiconductor Applications Rajan Bamola Paul Robinson Origin of Productivity Losses in Etch Process Aggressive corrosive/erosive plasma used for etch Corrosion/erosion

More information

Regents of the University of California

Regents of the University of California Surface-Micromachining Process Flow Photoresist Sacrificial Oxide Structural Polysilcon Deposit sacrificial PSG: Target = 2 m 1 hr. 40 min. LPCVD @450 o C Densify the PSG Anneal @950 o C for 30 min. Lithography

More information

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers

Coatings. Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition. Coatings on Optical Fibers Anti-Reflection Custom Ion Assisted Deposition (IAD) process Advance Plasma Source (APS) plasma-ion assisted Deposition Anti-Reflection on Optical Fibers OptoSigma supplies a wide selection of optical

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3

Section 4: Thermal Oxidation. Jaeger Chapter 3 Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

Interconnects. Outline. Interconnect scaling issues Aluminum technology Copper technology. Properties of Interconnect Materials

Interconnects. Outline. Interconnect scaling issues Aluminum technology Copper technology. Properties of Interconnect Materials Interconnects Outline Interconnect scaling issues Aluminum technology Copper technology 1 Properties of Interconnect Materials Metals Silicides Barriers Material Thin film Melting resistivity point ( C)

More information

Semiconductor Manufacturing Technology. IC Fabrication Process Overview

Semiconductor Manufacturing Technology. IC Fabrication Process Overview Semiconductor Manufacturing Technology Michael Quirk & Julian Serda October 00 by Prentice Hall Chapter 9 IC Fabrication Process Overview /4 Objectives After studying the material in this chapter, you

More information

Poly-SiGe MEMS actuators for adaptive optics

Poly-SiGe MEMS actuators for adaptive optics Poly-SiGe MEMS actuators for adaptive optics Blake C.-Y. Lin a,b, Tsu-Jae King a, and Richard S. Muller a,b a Department of Electrical Engineering and Computer Sciences, b Berkeley Sensor and Actuator

More information

Advanced Sheet-to-Sheet and Roll-to-Roll thin-film processing on ultra-thin flexible glass for flexible electronic devices

Advanced Sheet-to-Sheet and Roll-to-Roll thin-film processing on ultra-thin flexible glass for flexible electronic devices Advanced Sheet-to-Sheet and Roll-to-Roll thin-film processing on ultra-thin flexible glass for flexible electronic devices M. Junghaehnel 1, J. Westphalen 1, F. Naumann 2, G. Lorenz 2, M. Fahland 1, S.

More information

Passivation of silicon wafers by Silicon Carbide (SiC x ) thin film grown by sputtering

Passivation of silicon wafers by Silicon Carbide (SiC x ) thin film grown by sputtering Available online at www.sciencedirect.com Energy Procedia 10 (2011 ) 71 75 European Materials Research Society Conference Symp. Advanced Inorganic Materials and Concepts for Photovoltaics Passivation of

More information

The Relation of Temperature Distribution on Silicon Wafer with Furnace Temperature and Gas Flow During Thermal Dry Oxidation Process

The Relation of Temperature Distribution on Silicon Wafer with Furnace Temperature and Gas Flow During Thermal Dry Oxidation Process The Relation of Temperature Distribution on Silicon Wafer with Furnace Temperature and Gas Flow During Thermal Dry Oxidation Process A.H. Azman 1, a *, S. Norhafiezah 2, b, RM Ayub 3, c, M. K. Md Arshad

More information

Corrosion Protect DLC Coating on Steel and Hastelloy

Corrosion Protect DLC Coating on Steel and Hastelloy Materials Transactions, Vol. 49, No. 6 (2008) pp. 1333 to 1337 #2008 The Japan Institute of Metals Corrosion Protect DLC Coating on Steel and Hastelloy Hironobu Miya and Jie Wang Semiconductor Equipment

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Behavior of the parameters of microcrystalline silicon TFTs under mechanical strain. S. Janfaoui*, C. Simon, N. Coulon, T.

Behavior of the parameters of microcrystalline silicon TFTs under mechanical strain. S. Janfaoui*, C. Simon, N. Coulon, T. Author manuscript, published in "Solid-State Electronics 93 (2014) 1-7" DOI : 10.1016/j.sse.2013.12.001 Behavior of the parameters of microcrystalline silicon TFTs under mechanical strain S. Janfaoui*,

More information

NON-PLANAR SILICON OXIDATION: AN EXTENSION OF THE DEAL-GROVE MODEL BRIAN D. LEMME. B.S., University of Nebraska-Lincoln, 2000 A REPORT

NON-PLANAR SILICON OXIDATION: AN EXTENSION OF THE DEAL-GROVE MODEL BRIAN D. LEMME. B.S., University of Nebraska-Lincoln, 2000 A REPORT NON-PLANAR SILICON OXIDATION: AN EXTENSION OF THE DEAL-GROVE MODEL by BRIAN D. LEMME B.S., University of Nebraska-Lincoln, 2000 A REPORT submitted in partial fulfillment of the requirements for the degree

More information

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG)

Optical Coatings. Photonics 4 Luxury Coatings , Genève. Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) Optical Coatings Photonics 4 Luxury Coatings 21.06.2017, Genève Dr. Andreas Bächli Head of Optical Coatings at RhySearch, Buchs (SG) RhySearch The Research- and Innovation Center in the Rhine Valley RhySearch

More information

Renesas Electronics, 2 IBM at Albany Nanotech, 3 IBM T. J. Watson Research Center, 4 IBM Microelectronics, and 5 GLOBALFOUNDRIES

Renesas Electronics, 2 IBM at Albany Nanotech, 3 IBM T. J. Watson Research Center, 4 IBM Microelectronics, and 5 GLOBALFOUNDRIES Effective Cu Surface Pre-treatment for High-reliable 22nmnode Cu Dual Damascene Interconnects with High Plasma Resistant Ultra Low-k Dielectric (k=2.2) F. Ito 1, H. Shobha 2, M. Tagami 1, T. Nogami 2,

More information

Nonplanar Metallization. Planar Metallization. Professor N Cheung, U.C. Berkeley

Nonplanar Metallization. Planar Metallization. Professor N Cheung, U.C. Berkeley Nonplanar Metallization Planar Metallization Passivation Metal 5 (copper) Metal 3 (copper) Interlevel dielectric (ILD) Via (tungsten) Metal 1 (copper) Tungsten Plug to Si Silicon Caps and Plugs oxide oxide

More information