Low-Loss Grating-Coupled Silicon Ridge Waveguides and Ring Resonators for Optical Gain at Telecommunication Frequencies

Size: px
Start display at page:

Download "Low-Loss Grating-Coupled Silicon Ridge Waveguides and Ring Resonators for Optical Gain at Telecommunication Frequencies"

Transcription

1 Low-Loss Grating-Coupled Silicon Ridge Waveguides and Ring Resonators for Optical Gain at Telecommunication Frequencies J. P. Balthasar Müller Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland Ryan M. Briggs and Harry A. Atwater California Institute of Technology, Pasadena, California 91125, USA (Dated: October 17, 2009) Low-loss grating-coupled ridge waveguides and ring resonators have been modeled and fabricated on silicon-on-insulator wafers. Theoretical models were developed and used to determine properties of the waveguides, and an optimized fabrication process has been employed to minimize loss. The resonators exhibit an intrinsic quality factor as high as Q = 537, 000, corresponding to propagation loss of 1.23dB/cm. We also discuss modal gain as a function of bulk gain for active materials integrated with waveguide structures. This represents a significant step towards a C-band emitting CMOS compatible light source. Recent advances in the dense integration of siliconbased passive photonic components have highlighted the possibility of complex optical devices for computation, sensing, and telecommunications technology on the same chip as conventional CMOS electronics. Silicon-based devices exhibiting optical gain at frequencies below the silicon band gap would constitute critical components, but have yet to be demonstrated. The development of such a light source is hindered by the weak emission properties of suitable emitters, such as erbium-doped glass, in combination with relatively high propagation losses in silicon waveguide structures. 3 High index-contrast silicon-on-insulator (SOI) ridge waveguide structures can be fabricated on pre-existing CMOS fabrication lines and have been demonstrated with very low losses. 6 7 We believe that quasi-planar light sources may be constructed by integrating ridge waveguide ring resonator structures with a suitable gain material. Using wafer bonding, the ridge waveguides can furthermore be combined into slot waveguide structures (Fig. 1) which are capable of drastically improving the properties of emitters in the narrow slot region through enhanced radiative emission, which may enable an efficient light source that can be pumped electrically through the silicon As a gain material covering the ridge waveguides, we here consider erbium-doped yttria films. As gain material in the slot region of slot waveguides we consider erbium-doped silica glass. In the following, we discuss the main loss mechanisms in high-index-contrast single-mode ridge waveguides as well as the modal gain as a function of the bulk active material gain. Furthermore, we demonstrate fabricated low-loss grating coupled ridge waveguides and ring resonators in SOI. Fig. 2 shows an optical microscope image of the fabricated structures. Using single-crystalline silicon, the main source of propagation loss in the waveguides is due to roughnessinduced scattering at the material boundaries. This loss can be shown to scale with the third power of the refractive index difference and therefore constitutes a major FIG. 1: Cross-sections of SOI a) ridge and b) slot waveguides without upper cladding. FIG. 2: Optical micrograph of a fabricated grating-coupled ridge waveguide and ring resonator with the electron-beam resist mask still in place. challenge in the design and fabrication of silicon waveguides. 9 In quasi-transverse-magnetic (TM) mode operation, losses also arise due to leakage of the guided TMpolarized mode into the transverse-electric (TE) mode supported by the silicon slab. This is due to mode conversion at the vertical ridge sidewalls creating quasi-te polarized radiation of higher effective index than the slab TE mode. This loss cannot be reduced through optimized fabrication processes but has been shown to be drastically reduced for certain widths of the ridge, at which some of the leaking radiation interferes destructively. These magic widths, W, are, for single mode operation, given by equation Eq. (1) below:

2 2 λ W = n 2 TE,core n2 TM,guided (1) Here, λ represents the wavelength in free space, n TE,core the effective fundamental guided TE mode index of a silicon slab with thickness equivalent to the thickness of the core of the ridge waveguide, and n TM,guided the effective mode index of the fundamental guided quasi-tm mode supported by the ridge waveguide. 15 The effective mode index of the quasi-tm mode is thus weakly dependent on the ridge width, such that an iterative scheme has to be employed to solve Eq. (1). The guided mode indices are found using COMSOL Multiphysics, a commercially available finite-element mode solver, as well as an effective index method. The effective index method reduces the ridge waveguide geometry into an analytically solvable one-dimensional threelayer slab waveguide problem by assuming the core and slab regions of the waveguide to be of continuous refractive index (refer to inset in Fig. 3). This equivalent index is assumed as the guided fundamental TE or TM mode indices of the three-layer slab waveguide with refractive index profile identical to the the index distribution in the core or slab region When solving for indices corresponding to TE- and TM-polarized modes, the calculations have to be consistently based on mode indices found for the respective polarization. All simulations are for an excitation free space wavelength of 1550 nm and assume the refractive indices of silicon and glass to be and respectively. Both methods are used to ensure single mode operation of all considered waveguide geometries. The third major loss mechanism is bending loss in the ring resonator structures. This loss mechanism also exists independent of fabrication-induced defects and will vary over many orders of magnitude depending on the cross-section and bending radius of the waveguides. Using the effective index method and diffraction theory, the bending loss coefficient, α, can be approximated as: 14 κ 2 γ 2 e γw ( ) α = β ( ) 1 + γ W 2 (κ2 + γ 2 ) exp 2γ3 3β 2 R where κ and γ are defined as: κ = γ = (2) n 2 eff,core k2 0 β2 (3) β 2 n 2 eff,slab k2 0, (4) and k 0 is the free space wavelength, β is the propagation constant of the guided mode, and R is the bending radius of the waveguides. Furthermore, n eff,core and n eff,slab represent the effective index of the core region FIG. 3: Bending loss of the guided TE and TM modes of a SOI ridge waveguide with bending radius of 200μm and a ridge width of 700 nm in 220 nm SOI as a function of normalized slab thickness core thickness slab thickness r =. For high r, when the silicon in the core region is only barely thicker than the surrounding slab, the bending loss can reach values of α 10 2 db/cm. The inset illustrates the effective index method approximation. and slab region respectively. W represents the width of the ridge. Figure 3 shows the bending loss of the fundamental guided TE and TM modes supported by a ridge waveguide in 220 nm SOI as a function of normalized slab thickness. The bending loss becomes quickly negligible for both guided TE and TM modes as the ridge height increases. Narrow ridges can however help reduce scattering loss as they reduce the modal overlap with the material boundaries. The other defining factor is the interaction of a guided mode with the active layer. The modal gain coefficient α mode of a mode supported by the structure is related to the bulk material gain coefficient α bulk of the active material by the confinement factor, Γ, which is given by: 3 Γ = α mode α bulk (5) n A cε 0 E 2 dxdy A Γ = Re{E H }dxdy (6) where n A is the refractive index of the gain material and the surface integral in the denominator is over the area A in which the gain material is located. Eq. (6) shows that the modal gain scales with the electric field in the active region in relation to the total power flow. These field quantities can be determined using COMSOL Multiphysics. Fig. 4 shows representative solutions for a ridge waveguide covered in erbium-doped yttria and a slot waveguide with erbium-doped glass in the slot region. The refractive index of yttria is taken to be 1.9. Fig. 5 depicts simulation results for the confinement factors of the fundamental guided TE and TM modes in

3 3 FIG. 4: Electric energy density distributions calculated using COMSOL Multiphysics (arbitrary units). The first row depicts solutions for a silicon ridge waveguide with ridge height 40 nm and ridge width 650 nm in 220 nm SOI that was clad with a 200 nm yttria layer. The fundamental a) TE and b) TM modes. The second row depicts solutions for a silicon slot waveguide with a ridge height of 30 nm, a ridge width of 700 nm and a slot layer thickness of 25 nm. The core thickness of the upper silicon slab as well as the thickness of the lower silicon slab is 220 nm. The fundamental c) TE and d) TM modes. The slot layer consists of SiO2. yttria-clad ridge waveguides as a function of upper slab and cladding thickness. As high-quality erbium-doped yttria films are fabricated using atomic layer deposition, only thin films are practical, such that we limited the domain to a maximum cladding thicknesses of 200 nm. The sparse local minima in the density plots corresponding to the TM-polarized modes are due to non-convergence of the finite-element solver which plagued certain waveguide geometries. The general trends in these plots reflect well-converged solutions and are thus believed by the authors to be an accurate representation of the physical modes. The data suggest an optimal slab thickness for the ridge waveguides depending on the thickness of the yttria cladding. In TE-mode operation, the ideal silicon slab thickness is on the order of a few nanometers, however in TM-mode operation around 150 nm. Accordingly, efficient devices will have to be designed specifically for TE- or TM-mode operation. Peak confinement factors of 50% and 60% were achieved for TE and TM polarizations, respectively. As waveguides designed to operate in TE mode are not required to match the magic width criterion, the ridge width represents another parameter to be optimized. Fig. 6 shows the confinement factors of the fundamental guided quasi-tm modes of a slot waveguide with erbium-doped glass in the slot layer. The increase of the confinement factor with the slot width indicates that the strong enhancement of the electric field in the slot layer is outweighted by the relatively smaller area over which the numerator in Eq. (6) is integrated. However, it is desirable to have slots as thin as possible with respect to the exhibited gain in order to be able to pump the active material electrically, which would represent a great ad- FIG. 5: Confinement factor of the fundamental quasi-te (upper plot) and TM (lower plot) modes of a yttria clad ridge waveguide as a function of silicon slab and cladding thickness. The ridge height is 40 nm and the ridge width is 650 nm. vantage over optical pumping as no auxiliary pump light source is required. Furthermore, the strong electric field in the slot region of TM-polarized slot modes enhances the efficiency of the gain material.4 2 The slot waveguide modes can be described as the coupled modes of two closely spaced silicon slab waveguides. For a core thickness of 220 nm, these modes will decouple for slot thicknesses greater than about 80 nm. The simulations show, however, that the confinement factor for TM-polarized slot modes can well surpass 40%. Some of the lowest loss ridge waveguides have been formed by anisotropic reactive ion etching and selective oxidation.7 6 While both methods yield smooth sidewalls, the oxidation will additionally passivate the silicon which further reduces loss.10 To fabricate our waveguides, negative electron beam resist is first patterned on 220 nm SOI using the electron pattern generator of the Kavli Nanoscience Insitute (KNI). The structures are then formed using a C4 F8 /O2 etch in the KNI s inductively coupled reactive ion etching chamber. The samples are then cleaned in O2 plasma to remove remaining polymer from the surface. Finally, an oxide passivation layer is grown using dry oxidation. Fig. 7 shows SEM and AFM micrographs of a waveguide, revealing a mean square surface roughness below 1.8 nm.

4 4 FIG. 7: a) SEM and b) AFM micrographs of a C 4F 8/O 2 etched waveguide with a 30-nm ridge height. FIG. 6: Confinement factor of the fundamental quasi-tm mode of a slot waveguide with silica glass in the slot layer as a function of upper slab and slot thickness. The ridge height is 40 nm and the ridge width is 700 nm. The fabricated waveguides have a ridge height of 30 nm and a ridge width of 720 nm. The ring resonators have a diameter of 400 μm and are seperated from the waveguides by a coupling gap of 1 μm. The gratings are optimized for operation at 1550 nm. Light from a New Focus 6428 Vidia Swept tunable diode laser is coupled into the structures using a lensed fiber focuser with an estimated working distance of 12.4 mm and a spot size of 8 μm. The TE and TM modes are selectively adressed by adjusting the angle of incidence of the light onto the gratings. The laser is then set to sweep over wavelengths around 1550 nm at a constant speed of 1 nm/s. The outcoming light is picked up using an identical lensed fiber focuser aimed at the through- or drop port and measured using a InGaAs photoreceiver. The drop port intensities transmitted in quasi-te and TM modes as a function of input wavelength are shown in Fig. 8. They show a clear intensity drop off at the ring resonator resonances. The resonances are spaced nm apart in TE- and nm in TM-like mode operation. From this free spectral range the group indices of the guided TE and TM resonator modes can be exstracted as 3.76 and 3.66, respectively. The linewidth of the resonators in TE-mode operation is 8.65pm and in TM mode operation 26.5pm. This corresponds to propagation losses of 1.23dB/cm and 3.71dB/cm respectively. The loaded quality factor Q is then 179, 000 for TE and 58, 000 for TM. 11 As there are identical through- and drop port couplers, the intrinsic Qs of the resonators are then 537, 000 and 174, 000, as given by the equation: 1 Q loaded = = Q intrinsic Q coupler 3 (7) Q intrinsic where Q intrinsic = Q coupler for a critically coupled resonator. The 15dB extinction at resonance in TE-mode operation justifies the assumption of critical coupling, FIG. 8: The upper row depicts the through port intensities as a function of wavelength measured in quasi-te- and TMmode operation, displaying the free spectral range. The lower row depicts individual resonances in quasi-te- and TM-mode operation. but the assumption is more dubious for TM-mode operation. The signal in TM-mode operation is overall noisier, because the gratings work less efficiently for this polarization. Conclusively, considering the high possible confinement factors and assuming no significant further loss in the gain materials, light emitting devices based on the fabricated ridge waveguide devices should be possible. The demonstrated theoretical methods can be used to optimize the design of such structures. Acknowledgments The authors gratefully acknowledge the rest of the Atwater group at Caltech as well as the KNI staff for their help. J. P. B. Müller thanks the Caltech - University of Iceland Exchange Program as well as the Kavli Nanoscience Institute for his undergraduate research fellowships. J. P. B. Müller thanks his co-mentor R. M. Briggs and his mentor H. A. Atwater for a fantastic summer in California!

5 5 1 R. M. Briggs, M. Shearn, A. Scherer and H. A. Atwater, Appl. Phys. Lett. 94, (2009). 2 R. M. Briggs, G. M. Miller and H. A. Atwater, Modifying the Radiative Quantum Efficiency of Erbium-Doped Glass in Silicon Slot Waveguides, rbriggs@caltech.edu 3 J. T. Robinson, K. Preston, O. Painter and M. Lipson, Opt. Exp. 16, (2008). 4 H. P. Urbach and G. L. J. A. Rikken, Phys. Rev. A. 57, 3913 (1998). 5 V. R. Almeida, Q. Xu, C. A. Barrios and M. Lipson, Opt. Lett. 29, 1209 (2004). 6 J. C. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen and M. Lipson, Opt. Expr. 17, 4753 (2009). 7 K. K. Lee, D. R. Lim,J. Shin,F. Cerrina and L. C. Kimerling, Opt. Lett. 26, 1888 (2001). 8 C. A. Barrios, M. Lipson, Opt. Exp. 13, (2005). 9 S. Suzuki, M. Yanagisawa, Y. Hibino and K. Oda, J. Lightwave Technol. 12, 790 (1994). 10 M. Borselli, T. J. Johnson, O. Painter, Loss characterization and surface passivation in silicon microphotonics IEEE conference (2006). 11 A. Yariv, P. Yeh, Photonics, 6th Ed. Oxford Univer. Press (2007). 12 D. L. Lee, Electromagnetic Principles of Integrated Optics, John Wiley & Sons(1986). 13 K. Okamoto, Fundamentals of Optical Waveguides, Academ. Press (1999). 14 D. Marcuse, IEEE Jour. of Quant. El. 29, 2957 (1993). 15 M. A. Webster, R. M. Pafchek, G. Sukumaran and T. L. Koch, Appl. Phys. Lett. 87, (2005). 16 M. A. Webster, R. M. Pafchek, A. Mitchell and T. L. Koch, IEEE Photonics Techn. Lett. 19, 1041 (2007). 17 Y. C. Jun, R. M. Briggs, H. A. Atwater and M. L. Brongersma, Opt. Exp. 17, 7479 (2009).

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Auburn University *yzw0040@auburn.edu Abstract: A diffraction grating coupled

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphoton..7 Supplementary Information On-chip optical isolation in monolithically integrated nonreciprocal optical resonators Lei Bi *, Juejun Hu, Peng Jiang, Dong Hun

More information

Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides

Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides Stijn Scheerlinck, Jonathan Schrauwen, Frederik Van Laere, Dirk Taillaert, Dries Van Thourhout and Roel Baets

More information

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON Maxim Fadel and Edgar Voges University of Dortmund, High Frequency Institute, Friedrich-Woehler Weg 4, 44227 Dortmund, Germany ABSTRACT

More information

Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum

Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum Payam Rabiei, 1,* Jichi Ma, 1 Saeed Khan, 1,2 Jeff Chiles, 1 and Sasan Fathpour 1,2 1 CREOL, The College

More information

Amorphous silicon waveguides for microphotonics

Amorphous silicon waveguides for microphotonics 4 Amorphous silicon waveguides for microphotonics Amorphous silicon a-si was made by ion irradiation of crystalline silicon with 1 10 15 Xe ions cm 2 at 77 K in the 1 4 MeV energy range. Thermal relaxation

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

Rare Earth Doping of Silicon-Rich Silicon Oxide for Silicon-Based Optoelectronic Applications

Rare Earth Doping of Silicon-Rich Silicon Oxide for Silicon-Based Optoelectronic Applications Journal of the Korean Physical Society, Vol. 39, December 2001, pp. S78 S82 Rare Earth Doping of Silicon-Rich Silicon Oxide for Silicon-Based Optoelectronic Applications Se-Young Seo, Hak-Seung Han and

More information

Photonics applications IV. Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure

Photonics applications IV. Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure Photonics applications IV Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure 1 Why does fabrication issue matter for photonics applications? Geometrical

More information

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system

Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Compact hybrid plasmonic-si waveguide structures utilizing Albanova E-beam lithography system Introduction Xu Sun Laboratory of Photonics and Microwave Engineering, Royal Institute of Technology (KTH),

More information

Stimulated emission in erbium doped silicon rich nitride waveguides

Stimulated emission in erbium doped silicon rich nitride waveguides Stimulated emission in erbium doped silicon rich nitride waveguides Debo Olaosebikan 1, Selcuk Yerci, Alexander Gondarenko 1, Kyle Preston 1, Rui Li, Luca Dal Negro and Michal Lipson 1* 1 Department of

More information

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT)

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT) ECE280: Nano-Plasmonics and Its Applications Week5 Extraordinary Optical Transmission (EOT) Introduction Sub-wavelength apertures in metal films provide light confinement beyond the fundamental diffraction

More information

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers Subhasis Chaudhuri *1 1, 2, 3, John V. Badding 1 Department of Chemistry, Pennsylvania State University, University Park, PA

More information

Monolithic Microphotonic Optical Isolator

Monolithic Microphotonic Optical Isolator Monolithic Microphotonic Optical Isolator Lei Bi, Juejun Hu, Dong Hun Kim, Peng Jiang, Gerald F Dionne, Caroline A Ross, L.C. Kimerling Dept. of Materials Science and Engineering Massachusetts Institute

More information

Longitudinal Strain Sensitive Effect in a Photonic Crystal Cavity

Longitudinal Strain Sensitive Effect in a Photonic Crystal Cavity Longitudinal Strain Sensitive Effect in a Photonic Crystal Cavity Author Tung, Bui Thanh, Dao, Dzung Viet, Ikeda, Taro, Kanamori, Yoshiaki, Hane, Kazuhiro, Sugiyama, Susumu Published 2011 Conference Title

More information

INTEGRATED OPTICAL ISOLATOR

INTEGRATED OPTICAL ISOLATOR INTEGRATED OPTICAL ISOLATOR Presented by Gokhan Ozgur Advisor: Dr. Gary Evans July 02, 2004 Electrical Engineering - SMU INTRODUCTION They are used to eliminate light that is back-reflected, from splices

More information

Ching-Fuh Lin*, Shih-Che Hung, Shu-Chia Shiu, and Jiun-

Ching-Fuh Lin*, Shih-Che Hung, Shu-Chia Shiu, and Jiun- Fabrication of circular Si waveguides on bulk Si substrate by KrF Excimer Laser System for Optical Interconnect Ching-Fuh Lin*, Shih-Che Hung, Shu-Chia Shiu, and Jiun- Jie Chao Graduate Institute of Photonics

More information

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER

Chapter 7 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER Chapter 7 66 NANOIMPRINTED CIRCULAR GRATING DISTRIBUTED FEEDBACK DYE LASER 7.1 Introduction In recent years, polymer dye lasers have attracted much attention due to their low-cost processing, wide choice

More information

TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES

TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES TEMPERATURE-DEPENDENT REFRACTIVE INDICES OF OPTICAL PLANAR WAVEGUIDES Aiman Kassir a, Abang Annuar Ehsan b, Noraspalelawati Razali b, Mohd Kamil Abd Rahman a and Sahbudin Shaari b Faculty of Applied Sciences,

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration

Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration Yusheng Bian, 1 Zheng Zheng, 1,* Xin Zhao, 1 Jinsong Zhu, 2 and Tao Zhou 3 1 School of Electronic and Information Engineering,

More information

2.1 µm CW Raman Laser in GeO 2 Fiber

2.1 µm CW Raman Laser in GeO 2 Fiber 2.1 µm CW Raman Laser in GeO 2 Fiber B. A. Cumberland, S. V. Popov and J. R. Taylor Femtosecond Optics Group, Imperial College London, SW7 2AZ, United Kingdom O. I. Medvedkov, S. A. Vasiliev, E. M. Dianov

More information

Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H 2 thermal annealing

Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H 2 thermal annealing I N S T I T U T D E R E C H E R C H E T E C H N O L O G I Q U E Optimization of optical performances in submicron silicon-on-insulator rib and strip waveguides by H thermal annealing Erwine Pargon 1, Cyril

More information

Simple UV-based Soft-lithography Process for. Fabrication of Low-Loss Polymer PSQ-L-based. Waveguides

Simple UV-based Soft-lithography Process for. Fabrication of Low-Loss Polymer PSQ-L-based. Waveguides Simple UV-based Soft-lithography Process for Fabrication of Low-Loss Polymer PSQ-L-based Waveguides Jie Teng 1, 2, 4, Stijn Scheerlinck 4, Geert Morthier 4, Roel Baets 4, Hongbo Zhang 2,3, Xigao Jian 2,3,

More information

SPP waveguides. Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics. dielectric waveguide ~ 10.

SPP waveguides. Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics. dielectric waveguide ~ 10. SPP waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics CMOS transistor: Medium-sized molecule dielectric waveguide ~ 10 Silicon Photonics? Could such an Architecture

More information

PROJECT PERIODIC REPORT

PROJECT PERIODIC REPORT PROJECT PERIODIC REPORT Grant Agreement number: 619456 Project acronym: SITOGA Project title: Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with

More information

Fiber lasers. 1 Introduction. 2 Optical bers. Rui Miguel Cordeiro (F141104) April 13, 2015

Fiber lasers. 1 Introduction. 2 Optical bers. Rui Miguel Cordeiro (F141104) April 13, 2015 Fiber lasers Rui Miguel Cordeiro (F141104) April 13, 2015 1 Introduction Fiber lasers are, by denition, lasers in which the gain media is an optical ber. Sometimes, laser devices in which the output is

More information

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors

Nanophotonics: principle and application. Khai Q. Le Lecture 11 Optical biosensors Nanophotonics: principle and application Khai Q. Le Lecture 11 Optical biosensors Outline Biosensors: Introduction Optical Biosensors Label-Free Biosensor: Ringresonator Theory Measurements: Bulk sensing

More information

Whispering gallery modes at 800 nm and 1550 nm in concentric Si-nc/Er:SiO 2 microdisks

Whispering gallery modes at 800 nm and 1550 nm in concentric Si-nc/Er:SiO 2 microdisks Whispering gallery modes at 800 nm and 1550 nm in concentric Si-nc/Er:SiO 2 microdisks Elton Marchena Brandon Redding Tim Creazzo Shouyuan Shi Dennis W. Prather Journal of Nanophotonics, Vol. 4, 049501

More information

Multilayer Silver / Dielectric Thin-Film Coated Hollow Waveguides for Sensor and Laser Power Delivery Applications

Multilayer Silver / Dielectric Thin-Film Coated Hollow Waveguides for Sensor and Laser Power Delivery Applications Multilayer Silver / Dielectric Thin-Film Coated Hollow Waveguides for Sensor and Laser Power Delivery Applications Theory, Design, and Fabrication Carlos M. Bledt a, James A. Harrington a, and Jason M.

More information

Fabrication and Characterization of Two-Dimensional Photonic. Crystal Microcavities in Nanocrystalline Diamond

Fabrication and Characterization of Two-Dimensional Photonic. Crystal Microcavities in Nanocrystalline Diamond Fabrication and Characterization of Two-Dimensional Photonic Crystal C. F. Wang, a),b) R. Hanson, a) D. D. Awschalom, a)c) E. L. Hu c),d) University of California, Santa Barbara, California 93106 T. Feygelson,

More information

LIGHT confinement and low loss propagation are the

LIGHT confinement and low loss propagation are the IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 43, NO. 6, JUNE 2007 479 Metal Dielectric Slot-Waveguide Structures for the Propagation of Surface Plasmon Polaritons at 1.55 m Ning-Ning Feng, Mark L. Brongersma,

More information

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Carlos M. Bledt * a, Daniel V. Kopp a, and James A. Harrington a

More information

Plasmonic Photovoltaics

Plasmonic Photovoltaics Plasmonic Photovoltaics Investigators Harry A. Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science, California Institute of Technology Krista Langeland, Ph.D. student,

More information

CONCURRENT DUAL BAND FILTERS USING PLASMONIC MIM WAVEGUIDE RING RESONATOR

CONCURRENT DUAL BAND FILTERS USING PLASMONIC MIM WAVEGUIDE RING RESONATOR CONCURRENT DUAL BAND FILTERS USING PLASMONIC MIM WAVEGUIDE RING RESONATOR M. Vishwanath 1, 2, Habibulla Khan 1 and K. Thirupathaiah 2 1 Department of Electronics and Communication Engineering, KL University,

More information

Self-aligned via and trench for metal contact in III-V semiconductor devices

Self-aligned via and trench for metal contact in III-V semiconductor devices Self-aligned via and trench for metal contact in III-V semiconductor devices Jun Fei Zheng a Intel Corporation, Santa Clara, California 95052 Hilmi Volkan Demir Nanotechnology Research Center, Department

More information

Fabrication of photonic band-gap crystals

Fabrication of photonic band-gap crystals Fabrication of photonic band-gap crystals C. C. Cheng and A. Scherer California Institute of Technology, Pasadena, California 91125 Received 19 June 1995; accepted 9 August 1995 We describe the fabrication

More information

SUPPLEMENTARY INFORMATION. Efficient unidirectional polarization-controlled excitation of. surface plasmon polaritons

SUPPLEMENTARY INFORMATION. Efficient unidirectional polarization-controlled excitation of. surface plasmon polaritons SUPPLEMENTARY INFORMATION Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons Anders Pors 1,*, Michael G. Nielsen 1,2,*, Thomas Bernardin 2, Jean-Claude Weeber 2 &

More information

Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide. glass nanofilms

Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide. glass nanofilms Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms Christos Markos, Irnis Kubat, and Ole Bang DTU Fotonik, Department of Photonics Engineering,

More information

nanosilicon Nanophotonics

nanosilicon Nanophotonics nanosilicon Nanophotonics Lorenzo Pavesi Universita di Trento Italy Outline Silicon Photonics NanoSilicon photonics Silicon Nanophotonics NanoSilicon Nanophotonics Conclusion Outline Silicon Photonics

More information

FOUR. Absorption and emission spectroscopy in Er 3+ Yb 3+ doped aluminum oxide waveguides. Chapter

FOUR. Absorption and emission spectroscopy in Er 3+ Yb 3+ doped aluminum oxide waveguides. Chapter Chapter FOUR Absorption and emission spectroscopy in Er 3+ Yb 3+ doped aluminum oxide waveguides The spectroscopic properties of Al O 3 waveguides ion-implanted with Er 3+ and Yb 3+ are investigated in

More information

UV15: For Fabrication of Polymer Optical Waveguides

UV15: For Fabrication of Polymer Optical Waveguides CASE STUDY UV15: For Fabrication of Polymer Optical Waveguides Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA Phone +1.201.343.8983 Fax +1.201.343.2132 main@masterbond.com CASE STUDY UV15:

More information

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005

Seminar: Structural characterization of photonic crystals based on synthetic and natural opals. Olga Kavtreva. July 19, 2005 Seminar: Structural characterization of photonic crystals based on synthetic and natural opals Olga Kavtreva July 19, 2005 Abstract Novel class of dielectric structures with a refractive index which exhibits

More information

Indium Phosphide Planar Integrated Optics Comes of Age. For planar integrated optics, the future has finally arrived

Indium Phosphide Planar Integrated Optics Comes of Age. For planar integrated optics, the future has finally arrived Indium Phosphide Planar Integrated Optics Comes of Age Jens Noeckel Tom Pierson Jane Zucker Nanovation Technologies For planar integrated optics, the future has finally arrived Integrated optics had its

More information

Multilayer 3-D photonics in silicon

Multilayer 3-D photonics in silicon Multilayer 3-D photonics in silicon Prakash Koonath and Bahram Jalali Department of Electrical Engineering, University of California, Los Angeles 90095-1954 jalali@ucla.edu Abstract: Three-dimensionally

More information

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry Red luminescence from Si quantum dots embedded in films grown with controlled stoichiometry Zhitao Kang, Brannon Arnold, Christopher Summers, Brent Wagner Georgia Institute of Technology, Atlanta, GA 30332

More information

Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform

Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform Nicolás Sherwood-Droz*, Alexander Gondarenko and Michal Lipson School of Electrical and Computer Engineering, Cornell University,

More information

Phil Saunders, spacechannel.org

Phil Saunders, spacechannel.org Guidi with Phil Saunders, spacechannel.org ng Light Long-Range nge Plasmons Aloyse Degiron, Pierre Berini and David R. Smith Long-range surface plasmons are optical modes propagating along metallic circuits

More information

High Performance Optical Coatings Deposited Using Closed Field Magnetron Sputtering

High Performance Optical Coatings Deposited Using Closed Field Magnetron Sputtering High Performance Optical Coatings Deposited Using Closed Field Magnetron Sputtering D.R. Gibson, I.T. Brinkley, and J.L. Martin Applied Multilayers LLC, 1801 SE Commerce Avenue, Battle Ground, WA 98604

More information

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich

Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics. Chris Nadovich Simulation of Vector Mode Grating Coupler Interfaces for Integrated Optics Chris Nadovich Research Objective The novel combination of a forked holographic grating with a Bragg coupler structure to create

More information

Dispersion characteristics of silicon nanorod based carpet cloaks

Dispersion characteristics of silicon nanorod based carpet cloaks Dispersion characteristics of silicon nanorod based carpet cloaks Venkata A. Tamma 1, John Blair 2, Christopher J. Summers 2 and Wounjhang Park 1* 1 Department of Electrical, Computer & Energy Engineering,

More information

CHAPTER 3. Experimental Results of Magnesium oxide (MgO) Thin Films

CHAPTER 3. Experimental Results of Magnesium oxide (MgO) Thin Films CHAPTER 3 Experimental Results of Magnesium oxide (MgO) Thin Films Chapter: III ---------------------------------------------------------------- Experimental Results of Magnesium oxide (MgO) Thin Films

More information

Photonic Crystals Quantum Cascade Lasers in THz regime

Photonic Crystals Quantum Cascade Lasers in THz regime Photonic Crystals Quantum Cascade Lasers in THz regime Speaker: Roland Cerna EPFL Doctoral course 2009 Photonic Crystals Lecturer: Dr. Romuald Houdé Outline Motivation Introduction Quantum cascade laser

More information

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides 10.1149/1.2392914, copyright The Electrochemical Society Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides D. Comedi a, O. H. Y. Zalloum b, D. E. Blakie b, J. Wojcik

More information

Wide Dynamic Range Sensing in Photonic Crystal Microcavity. Biosensors

Wide Dynamic Range Sensing in Photonic Crystal Microcavity. Biosensors Wide Dynamic Range Sensing in Photonic Crystal Microcavity Biosensors Chun-Ju Yang 1 *, Hai Yan 1,Yi Zou 1, Swapnajit Chakravarty 2 *, Naimei Tang 2, Zheng Wang 1, Ray T. Chen 1, 2 * 1 Dept. Electrical

More information

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Rosure B. Abdulrahman, Arif S. Alagoz, Tansel Karabacak Department of Applied Science, University of Arkansas at Little Rock,

More information

Wavelength and Temperature Dependence of the Er +3 Concentration in the Erbium Doped Fiber Amplifier

Wavelength and Temperature Dependence of the Er +3 Concentration in the Erbium Doped Fiber Amplifier Research Journal of Applied Sciences, Engineering and Technology 2(4): 396-400, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: May 09, 2010 Accepted Date: May 22, 2010 Published

More information

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers

Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Fabrication of Micro and Nano Structures in Glass using Ultrafast Lasers Denise M. Krol University of California, Davis IMI Glass Workshop Washington DC April 15-17, 2007 Femtosecond laser modification

More information

Simulating Plasmon Effect in Nanostructured OLED Cathode Using Finite Element Method

Simulating Plasmon Effect in Nanostructured OLED Cathode Using Finite Element Method Simulating Plasmon Effect in Nanostructured OLED Cathode Using Finite Element Method Leiming WANG, Jun AMANO, Po-Chieh HUNG Abstract Coupling of light to surface plasmons at metal cathode represents a

More information

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications

Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems Applications Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002 Special Issue Paper Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si 3 N 4 /Si Substrates for Robust Microelectromechanical Systems

More information

RIE lag in diffractive optical element etching

RIE lag in diffractive optical element etching Microelectronic Engineering 54 (2000) 315 322 www.elsevier.nl/ locate/ mee RIE lag in diffractive optical element etching Jyh-Hua Ting *, Jung-Chieh Su, Shyang Su a, b a,c a National Nano Device Laboratories,

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy

Title: Localized surface plasmon resonance of metal nanodot and nanowire arrays studied by far-field and near-field optical microscopy Contract Number: AOARD-06-4074 Principal Investigator: Heh-Nan Lin Address: Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan

More information

Supporting Information: Gold nanorod plasmonic upconversion microlaser

Supporting Information: Gold nanorod plasmonic upconversion microlaser Supporting Information: Gold nanorod plasmonic upconversion microlaser 1 Materials Synthesis and Properties Ce Shi, Soheil Soltani, Andrea M. Armani 1.1 Nanorod synthesis First the gold nanorods (NRs)

More information

ADOPT Winter School Merging silicon photonics and plasmonics

ADOPT Winter School Merging silicon photonics and plasmonics ADOPT Winter School 2014 Merging silicon photonics and plasmonics Prof. Min Qiu Optics and Photonics, Royal Institute of Technology, Sweden and Optical Engineering, Zhejiang University, China Contents

More information

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Shunquan Wang, Changhe Zhou, Yanyan Zhang, and Huayi Ru We describe the design, fabrication,

More information

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS

REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS REAGENTLESS SENSORS WAVEGUIDE GRATING COUPLING SENSORS MACH-ZEHNDER INTERFEROMETER SENSORS SURFACE PLASMON RESONANCE SENSORS Reagentless Grating Coupler Sensor Angle, θ, is related to the analyte refractive

More information

Direct observation of surface plasmon-polariton dispersion

Direct observation of surface plasmon-polariton dispersion Direct observation of surface plasmon-polariton dispersion Armando Giannattasio and William L. Barnes School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom a.giannattasio@exeter.ac.uk

More information

Copper nanorod array assisted silicon waveguide polarization beam splitter

Copper nanorod array assisted silicon waveguide polarization beam splitter Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center 4-21-2014 Copper nanorod array assisted silicon waveguide polarization beam splitter Sangsik Kim Purdue University,

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 May 11(7):pages 85-91 Open Access Journal High compact temperature

More information

Low-loss light transmission in a rectangularshaped hybrid metal trench at 1550 nm

Low-loss light transmission in a rectangularshaped hybrid metal trench at 1550 nm Low-loss light transmission in a rectangularshaped hybrid metal trench at 1550 nm Pengfei Yang, 1, Zhigang Di, 2 and Hongxing Xu 1,3,4,* 1 Beijing National Laboratory for Condensed Matter Physics and Institute

More information

Chip and system-level integration technologies for silicon photonics

Chip and system-level integration technologies for silicon photonics Chip and system-level integration technologies for silicon photonics Bert Jan Offrein 5th International Symposium for Optical Interconnect in Data Centres Outline The need for integration at component

More information

micromachines ISSN X

micromachines ISSN X Micromachines 2012, 3, 55-61; doi:10.3390/mi3010055 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Surface Plasmon Excitation and Localization by Metal-Coated Axicon

More information

Fabrication of micro/nano structures in glass by lasers

Fabrication of micro/nano structures in glass by lasers Lehigh University Lehigh Preserve International Workshop on Scientific Challenges for Glass Research Glass Conferences and Workshops Spring 4-1-2007 Fabrication of micro/nano structures in glass by lasers

More information

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227

Surface Plasmon Effects in Nano-Optics. Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227 Surface Plasmon Effects in Nano-Optics Greg Gbur Department of Physics and Optical Science, UNC Charlotte, Charlotte, North Carolina 28227 Shanghai, Jan 2007 Summary Introduction: What is a surface plasmon?

More information

Nanorice Chain Waveguides Based on Low and High Order Mode Coupling

Nanorice Chain Waveguides Based on Low and High Order Mode Coupling Nanorice Chain Waveguides Based on Low and High Order Mode Coupling Xudong Cui, and Daniel Erni General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg- Essen,

More information

Fs- Using Ultrafast Lasers to Add New Functionality to Glass

Fs- Using Ultrafast Lasers to Add New Functionality to Glass An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference Fs- Using Ultrafast Lasers to Add New Functionality to Glass Denise M. Krol University of California, Davis 17th

More information

OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING

OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING OPTICAL MODE PATTERN STUDY OF GAN BASED LEDS WITH AND WITHOUT NANOSCALE TOP GRATING by Greg Chavoor Senior Project ELECTRICAL ENGINEERING DEPARTMENT California Polytechnic State University San Luis Obispo

More information

A High Speed Surface Illuminated Si Photodiode. Using Microstructured Holes for Absorption. Enhancements at nm wavelength

A High Speed Surface Illuminated Si Photodiode. Using Microstructured Holes for Absorption. Enhancements at nm wavelength A High Speed Surface Illuminated Si Photodiode Using Microstructured Holes for Absorption Enhancements at 900 1000 nm wavelength Supporting Information Yang Gao, Hilal Cansizoglu, Soroush Ghandiparsi,

More information

Effects of active fiber length on the tunability of erbium-doped fiber ring lasers

Effects of active fiber length on the tunability of erbium-doped fiber ring lasers Effects of active fiber length on the tunability of erbium-doped fiber ring lasers Xinyong Dong, P. Shum, N. Q. Ngo, and C. C. Chan School of Electrical & Electronics Engineering, Nanyang Technological

More information

Lecture 13 Nanophotonics in plasmonics. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 13 Nanophotonics in plasmonics. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 13 Nanophotonics in plasmonics EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter interaction (1/26): How

More information

Design of new square-lattice photonic crystal fibers for optical communication applications

Design of new square-lattice photonic crystal fibers for optical communication applications International Journal of the Physical Sciences Vol. 6(), pp. 5-, 9 September, Available online at http://www.academicjournals.org/ijps DOI:.597/IJPS.579 ISSN 99-95 Academic Journals Full Length Research

More information

Semiconductor Technology

Semiconductor Technology Semiconductor Technology from A to Z Oxidation www.halbleiter.org Contents Contents List of Figures List of Tables II III 1 Oxidation 1 1.1 Overview..................................... 1 1.1.1 Application...............................

More information

Near- and mid- infrared group IV photonics

Near- and mid- infrared group IV photonics Near- and mid- infrared group IV photonics C. G. Littlejohns 1,2, M. Saïd Rouifed 1, H. Qiu 1, T. Guo Xin 1, T. Hu 1, T. Dominguez Bucio 2, M. Nedeljkovic 2, G. Z. Mashanovich 2, G. T. Reed 2, F. Y. Gardes

More information

Low-Frequency Magnetic Field Shielding Physics and Discovery for Fabric Enclosures Using Numerical Modeling

Low-Frequency Magnetic Field Shielding Physics and Discovery for Fabric Enclosures Using Numerical Modeling Low-Frequency Magnetic Field Shielding Physics and Discovery for Fabric Enclosures Using Numerical Modeling Bruce Archambeault, Andrey Radchenko, Tamar Makharashvili and James Drewniak Missouri University

More information

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition J.S. King 1, C. W. Neff 1, W. Park 2, D. Morton 3, E. Forsythe 3, S. Blomquist 3, and C. J. Summers 1 (1) School of Materials

More information

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping

Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping Crystallographic Characterization of GaN Nanowires by Raman Spectral Image Mapping Heerad Farkhoor, Adam Schwartzberg, Jeffrey Urban August 12, 2009 Abstract Obtaining structural information of nano-structured

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector International Journal of Electrical Components and Energy Conversion 2017; 3(5): 83-87 http://www.sciencepublishinggroup.com/j/ijecec doi: 10.11648/j.ijecec.20170305.11 ISSN: 2469-8040 (Print); ISSN: 2469-8059

More information

Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals

Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals PHYSICAL REVIEW B 67, 115106 2003 Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals M. J. A. de Dood* and A. Polman FOM Institute for Atomic and Molecular Physics, Kruislaan

More information

Production and analysis of optical gratings and nanostructures created by laser based methods

Production and analysis of optical gratings and nanostructures created by laser based methods Summary of the Ph.D. thesis Production and analysis of optical gratings and nanostructures created by laser based methods Kiss Bálint Supervisor: Dr. Vass Csaba Research fellow Doctoral School in Physics

More information

Raman and Er-doped Microlasers on a Si chip by Solgel Method

Raman and Er-doped Microlasers on a Si chip by Solgel Method Raman and Er-doped Microlasers on a Si chip by Solgel Method Lan Yang, Sean Spillane, Bumki Min, Tal Carmon and Kerry Vahala Department of Applied Physics California Institute of Technology 1 Outline Introduction

More information

Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics

Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics Leiming Wang *, Jun Amano, and Po-Chieh Hung Konica Minolta Laboratory USA Inc. *Corresponding author: 2855 Campus Drive

More information

Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures

Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures W. Ma and A. S. Helmy Vol. 31, No. 7 / July 2014 / J. Opt. Soc. Am. B 1723 Asymmetric long-range hybrid-plasmonic modes in asymmetric nanometer-scale structures Wen Ma and Amr S. Helmy* The Edward S. Rogers

More information

7-2E. Photonic crystals

7-2E. Photonic crystals 7-2E. Photonic crystals Purdue Univ, Prof. Shalaev, http://cobweb.ecn.purdue.edu/~shalaev/ Univ Central Florida, CREOL, Prof Kik, http://sharepoint.optics.ucf.edu/kik/ose6938i/handouts/forms/allitems.aspx

More information

Study the Effect of Temperature on the Optimum Length of Er 3+ Doped Almino-germanosilicate, Aluminum-Oxide and Yattria-Silicate Glass

Study the Effect of Temperature on the Optimum Length of Er 3+ Doped Almino-germanosilicate, Aluminum-Oxide and Yattria-Silicate Glass Research Journal of Applied Sciences, Engineering and Technology 2(4): 381-386, 2010 ISSN: 2040-7467 Maxwell Scientific Organization, 2010 Submitted Date: April 21, 2010 Accepted Date: May 05, 2010 Published

More information

Surface plasmon dielectric waveguides

Surface plasmon dielectric waveguides Surface plasmon dielectric waveguides Igor I. Smolyaninov, Yu-Ju Hung, and Christopher C. Davis Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 Phone:

More information

1. Photonic crystal band-edge lasers

1. Photonic crystal band-edge lasers TIGP Nanoscience A Part 1: Photonic Crystals 1. Photonic crystal band-edge lasers 2. Photonic crystal defect lasers 3. Electrically-pumped photonic crystal lasers 1. Photonic crystal band-edge lasers Min-Hsiung

More information

arxiv: v2 [physics.optics] 7 Jan 2016

arxiv: v2 [physics.optics] 7 Jan 2016 A high-q, ultrathin-walled microbubble resonator for aerostatic pressure sensing arxiv:1506.01457v2 [physics.optics] 7 Jan 2016 Yong Yang, 1,2 Sunny Saurabh, 1 Jonathan M. Ward, 1 and Síle Nic Chormaic

More information

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company

Fiber Bragg Gratings. Research, Design, Fabrication, and Volume Production. All capabilities within one company Your Optical Fiber Solutions Partner Fiber Bragg Gratings Research, Design, Fabrication, and Volume Production OFS Fiber and Cable Division All capabilities within one company OFS Specialty Photonics Division

More information