Simulation of Microstructural Evolution in Rod Rolling of a Medium C-Mn Steel. P. A. Manohar, Kyuhwan Lim, A. D. Rollett and Youngseog Lee *

Size: px
Start display at page:

Download "Simulation of Microstructural Evolution in Rod Rolling of a Medium C-Mn Steel. P. A. Manohar, Kyuhwan Lim, A. D. Rollett and Youngseog Lee *"

Transcription

1 Simulation of Microstructural Evolution in Rod Rolling of a Medium C-Mn Steel P. A. Manohar, Kyuhwan Lim, A. D. Rollett and Youngseog Lee * Department of Materials Science and Engineering, Carnegie Mellon University, 5 Forbes Avenue, Pittsburgh, PA 15213, USA. manohar@andrew.cmu.edu; kyuhwal@andrew.cmu.edu; rollett@andrew.cmu.edu * Plate and Rod research group, POSCO Technical Research Laboratory, Pohang, P.O. Box 36, KOREA. pc554162@posco.co.kr Keywords: Rod Rolling, Microstructural Evolution, Mathematical Modelling, Process Optimization, Recrystallization Kinetics. Abstract. An Expert System is proposed in this work to conduct computational exploration of the deformation and restoration behavior of a medium C-Mn steel under high strain rate conditions, at elevated temperatures and complex strain paths that occur in rod rolling process. The expert system computes appropriate thermomechanical parameters necessary for describing rod rolling process in detail and then utilizes these parameters in mathematical models to determine microstructure evolution during a typical industrial-scale rod rolling process. Microstructure simulation in rod rolling is a challenging problem due to the fact that several softening mechanisms may operate sequentially or concurrently during each deformation step. Different softening mechanisms have very different impact on microstructure development and therefore it is important to investigate the particular combinations of processing conditions under which transition of operating softening mechanisms occurs. In the present work, the transition from dynamic to metadynamic recrystallization is studied in detail based on the criteria of critical strain, austenite grain size and Zener-Hollomon parameter when the interpass (interdeformation) time is very short of the order of few milliseconds during the later stages of rod rolling. Computational results are subsequently validated by comparing the program output to in-plant measured microstructure data. The proposed expert system is designed as an off-line simulation tool to examine and assess the various options for thermomechanical process optimization. Introduction Optimization of the industrial rod rolling process presents a formidable challenge as this process is characterized by continuous multi-pass deformation (up to 3 deformation passes) at high strain rate in the range.4 3s -1, at elevated temperatures in the range K, and very short interpass times of the order.15 1.s. These processing conditions make it virtually impossible to study experimentally the microstructural evolution during the intermediate stages of hot rolling. On the other hand, knowledge of the in-process microstructural evolution is important for both the optimization of the process schedule and to adjust the properties of the hot rolled product [1,2]. For example, a fine austenite grain size is desirable at the end of rod rolling to decreases its hardenability to obtain a fine ferrite + pearlite structure via controlled cooling, to eliminate or reduce the necessity of post-rolling annealing treatment, and to improve the mechanical properties of the as-rolled products. Previous efforts [3-5] to simulate microstructural evolution in wire rod rolling have concentrated mainly on calculating evolution of the mean austenite grain size in medium C-Mn steels. In the present work, the focus is on the fundamental aspects of microstructure development mechanisms such as static, dynamic and metadynamic recrystallization (SRX, DRX and MDRX respectively) and their kinetics, how to resolve the boundary conditions when they operate concurrently and finally their impact on microstructure evolution in continuous processing.

2 Expert System Development The flow chart for the expert system is given in Figure 1 located at the end of the text. The initial (i.e. as-reheated) microstructure and expected rolling schedule are the basic inputs to the system. The program then calculates the deformation conditions such critical and peak strains, and Zener Hollomon parameter based on initial grain size, pass strain, strain rate and temperature. The program subsequently computes the evolution of microstructure by computation of the recrystallized grain size, fraction recrystallized and recrystallization kinetics for a given rolling pass based on the mathematical models listed in Table 1. Table 1: Mathematical models describing kinetics of relevant softening mechanisms. Parameter DRX MDRX SRX Fraction Recrystallized k (F x ) [6-8] 1 exp(-.693 x 1 exp(-.693(t/t.5 )) ε ε 1 exp B c (t/t.5 ) 1.5 ) ε p B = -.8, K = 1.4, ε = 1.23 x ε c Time for 5% Recrystallization (t.5 ) [8-9] Recrystallized Grain Size (D rex ) [8-9] Finding D when partial [1] and / or combined [11] rex mechanisms operate Peak Strain (ε p ) [12] Pass Strain (ε) [8] Zener Hollomon Parameter (Z) [9] Austenite Grain Growth [4] p -.44 x ε& x 1-13 x ε -3.8 x ε& -.41 x exp(252/rt) 3.9 x 1 4 x Z x1 4 xz x D.67 o x ε -.67 Partial SRX: DRX + MDRX: D = F X DRX 4 / 3 D rex + ( 1 MDRX F X ) DRX 2 D D = D + ( D D ) xf o XMDRX 6.97 x 1 4 x D.3 o x - - Z.17 ε = ε pass + ε ε = K x ε previous x (1-F x ); K = 1 if F x <.1; K =.5 if F x.1 ε& x exp(3/rt) When time for grain growth is 1s: SRX: D f 7 D o 7 = 1.5 x1 27 x exp(-4/rt) x (t 4.32 x t.5 ) MDRX: D f 7 D o 7 = 8.2 x1 25 x exp(-4/rt) x (t 2.65 x t.5 ) When time for grain growth is < 1s: SRX: D f 2 D o 2 = 4. x1 7 x exp(-113/rt) x (t 4.32 x t.5 ) MDRX: D f 2 D o 2 = 1.2 x1 7 x exp(-113/rt) x (t 2.65 x t.5 ) Evolution of mean austenite grain size and the corresponding strain rate as a function of rolling pass is shown in Figure 2 overleaf. The austenite grain size is refined form an initial value of ~3 µm down to ~3.3 µm after finish rolling. Significant increases in mean austenite grain size due to in-process grain growth during the TMP delays are also evident in Fig. 2. This process is iterated until the rolling sequence is finished. The austenite grains coarsen to a mean size of ~15 µm during cooling from finish rolling temperature to the cooling stop temperature (CST), and subsequently during slower cooling form CST to Ar 3. This not surprising because the material studied is medium C-Mn steel where the grain growth is not inhibited by second phase particles or through any significant solute drag effect. Also, the grain growth rate is expected to be high as the grain size is very fine at this stage [13]. This means that

3 the advantage gained in refining the austenite grain size through DRX and MDRX during rolling is lost to an extent during the cooling segments. Strain Rate(s -1 ) Strain Rate γ Grain Diameter γ Grain Diameter(µm) Pass. Figure 2. Calculated mean γ grain size and average strain rate during rod rolling. Model Validation The specimens obtained from an industrial rod rolling mill at POSCO were sectioned, mounted, polished and etched in 4% Nital in the usual way. The micrographs were taken with a Philips SEM at 4X and 3X to obtain the appropriate resolution for austenite grain size and ferrite grain size respectively. Austenite microstructures are presented in Figure 3a and 3b while ferrite microstructures are presented in Figure 4a and 4b overleaf. The images taken for measuring austenite grain size were traced along ferrite grains precipitated along prior austenite grain boundary to delineate prior austenite grains. It should be mentioned here that some experience and judgment is necessary in tracing the prior austenite boundaries. The average austenite grain size was subsequently determined using the Scion-Image image analysis program to measure area of each grain on the traced image and equal area diameter was calculated according to the procedure outlined in the relevant ASTM standard [14]. The predicted austenite grain size just before the onset of γ α transformation is 15.2 µm while the measured prior austenite grain size in industrially processed steel is 14.4 µm. The transformed ferrite grain size is measured to be 4.6 µm while the predicted ferrite grain size is 4.9 µm. It is clear from this data that the predicted and experimentally measured mean austenite and ferrite grain size compare quite well, which validates the simulation procedure. Discussion Particular combinations of microstructural and processing conditions that lead to DRX and MDRX may now be analyzed in more detail based on the results of the expert system. In the current work, kinetics of dynamic recrystallization expressed in terms of peak and critical strain was utilized. The peak and critical strains were calculated based on the following relations [12]: ε p = 6.97 x 1 4 x D.3 o x Z.17 (1) ε c =.81 x ε p (2) Eq. (1) includes the effect of initial austenite grain size (controls diffusion path length), and temperature-compensated strain rate (Zener-Hollomon parameter) on strain accumulation and relaxation, which in turn decide the critical strain for the onset of DRX.

4 (a) (b) Figure 3. (a) SEM micrograph (3X) of industrially processed steel, and (b) prior γ grain boundaries are traced to determine austenite grain size just before γ α transformation. Measured mean γ grain size is 14.4 µm while model predicted it to be 15.2 µm. (a) (b) Figure 4. (a) SEM micrograph (4X) of industrially processed steel, and (b) Image processing to extract ferrite microstructure from the microstructure shown in (a). Measured mean α grain size is 4.9 µm while model calculation result was 4.6 µm. In the strain range from ε c and ε p, DRX will initiate, but perhaps will not lead to completion when the interpass times are short. In such cases, the amount of material recrystallized dynamically is computed according to a version of JMAK kinetics given according to the following equation [6]: k F XDRX = ε ε 1 exp B c (3) ε p Eqs. (1-3) then allow one to calculate exactly the relative amounts of dynamically and metadynamically recrystallized material during any deformation pass. Based on the foregoing analysis, the major operating mechanism as a function of austenite grain size and Zener-Hollomon parameter is determined for TMP sequence studied in this work as shown in Figure 5. The three-dimensional plot shown in Fig. 5 provides further insight in to particular combinations of process and microstructural variables for SRX, DRX and MDRX to occur. The points for MDRX in Fig. 5 are clustered, which indicates that MDRX is the dominant softening mechanism when the austenite grain size is relatively small (3 17 µm) and Zener-Hollomon parameter is in the range 5 7 x The DRX is dominant where the austenite grain size is in the range 2 4 µm and the Zener-Hollomon parameter is comparatively low in the range.2.5 x The SRX dominates when pass strain does not exceed the critical strain for a given pass, as expected.

5 Recrystallization Type Austenite Grain Size(µm) Z(X1 14 s -1 ) Figure 5: Operating recrystallization mechanism as a function of austenite grain size and Zener- Hollomon parameter. Key: Recrystallization Type 1 = 9% SRX; Type 2 = < 9% SRX (i.e. partial SRX) Type 3 = 9% MDRX Type 4 = < 9% MDRX (i.e. DRX+MDRX). Conclusions 1. An expert system is proposed in this work to compute the microstructural evolution in rod rolling that involves high strain rate deformation and complex strain paths. The predicted austenite microstructure at the end of rolling and the ferrite grain size subsequent to transformation correlate well with the data obtained from industrially processed material thus validating the simulation procedure. 2. Boundary conditions for DRX and MDRX have been resolved based on critical strain, austenite grain size and Zener-Hollomon parameter. It was found that MDRX dominates when austenite grain size is comparatively fine (3 17 µm) and Zener-Hollomon parameter is relatively high (5 7 x 1 14 ) compared to conditions for DRX (D o = 2 4 µm, Z =.2.5 x 1 14 ). References [1] S-H. Cho, K-B. Kang and J. J. Jonas J. J.: ISIJ Int., 41(21), p. 63. [2] H. F. Labib, Y. M. Youssef, R. J. Dashwood and P. D. Lee: Mater. Sci. Technol., 17(21), p [3] E. Anelli E. ISIJ Int., 32(1992), p. 44. [4] T. M. Maccagno, J. J. Jonas and P. D. Hodgson: ISIJ Int., 36(1996), p. 72. [5] A. Zufia and J. M. Llanos: ISIJ Int., 41(21), p [6] P. D. Hodgson: Ph. D. Thesis, (1993), University of Queensland, Australia. [7] P. D. Hodgson and R. K. Gibbs ISIJ Int., 32(1992), p [8] A. Laasraoui and J. J. Jonas: ISIJ Int., 31(1991), p. 95. [9] P. D. Hodgson: Proc. int. conf. Thermec 97, ed. by T. Chandra and T. Sakai, TMS, Wollongong, Australia, (1997), p.121. [1] J. M. Beynon and C. M. Sellars: ISIJ Int., 32(1992), p [11] J. G. Lenard, M. Pietrzyk and L. Cser: Mathematical and physical simulation of the properties of hot rolled products. Elsevier Science, UK, 1 st Ed., (1992), pp [12] C. M. Sellars: Mater. Sci. Technol., 6(199), p [13] M. Hillert: Acta metall., 13(1965), p [14] ASTM Standard E : Annual book of ASTM Standards, 3.1(22), pp

6 START Input composition, initial microstructure and rolling schedule Calculate ε c, ε p, Z ε > ε c? SRX Condition Calculate F XSRX, t.5 F XDRX 9? F XSRX 9? DRX + MDRX Calculate F x, t.5, D Full DRX Calculate F x, D rex Partial SRX Calculate D Full SRX Calculate D rex Calculate in-process grain growth Next Pass Rolling finished? Calculate non-isothermal grain growth Calculate Ferrite Grain Size END Figure 1: Flow chart for the expert system to determine microstructural evolution.

On the Recrystallisation Characteristics and Kinetics of a 9SMn28 Free Cutting Steel

On the Recrystallisation Characteristics and Kinetics of a 9SMn28 Free Cutting Steel Materials Science Forum Vols. 558-559 (2007) pp. 333-338 online at http://www.scientific.net (2007) Trans Tech Publications, Switzerland On the Recrystallisation Characteristics and Kinetics of a 9SMn28

More information

A New Model for Interpass Softening Based on the Strain Hardening Rate Prior to Unloading

A New Model for Interpass Softening Based on the Strain Hardening Rate Prior to Unloading Materials Science Forum Online: 25-11-15 ISSN: 1662-9752, Vols. 5-51, pp 15-26 doi:1.428/www.scientific.net/msf.5-51.15 25 Trans Tech Publications, Switzerland A New Model for Interpass Softening Based

More information

FINITE ELEMENTS METHOD (FEM) SIMULATION OF BAR ROLLING IN OVAL - CIRCLE PASS SCHEDULE

FINITE ELEMENTS METHOD (FEM) SIMULATION OF BAR ROLLING IN OVAL - CIRCLE PASS SCHEDULE FINITE ELEMENTS METHOD (FEM) SIMULATION OF BAR ROLLING IN OVAL - CIRCLE PASS SCHEDULE Milan KOTAS a, Richard FABÍK b, Tomáš GAJDZICA a, Jiří KLIBER b a TŘINECKÉ ŽELEZÁRNY, a. s., Průmyslová 1000, 73970

More information

Hot deformation behavior of Nb-V microalloyed steel

Hot deformation behavior of Nb-V microalloyed steel Journal of Mechanical Engineering Research Vol 2(5, pp 92-96, October 21 Available online at http://wwwacademicjournalsorg/jmer ISSN 2141-2383 21 Academic Journals Full Length Research Paper Hot deformation

More information

Grain growth, precipitate state and microstructure evolution in an Nb-alloyed PHFP (AFP) steel

Grain growth, precipitate state and microstructure evolution in an Nb-alloyed PHFP (AFP) steel Grain growth, precipitate state and microstructure evolution in an Nb-alloyed PHFP (AFP) steel Master s Thesis Presentation by Mamta Sharma, M. Sc. Steel Institute, RWTH Aachen Supervisors: Univ. Prof.

More information

Effect of Silicon on the Kinetics of Nb(C, N) Precipitation during the Hot Working of Nb-bearing Steels

Effect of Silicon on the Kinetics of Nb(C, N) Precipitation during the Hot Working of Nb-bearing Steels , pp. 613 618 Effect of Silicon on the Kinetics of Nb(C, N) Precipitation during the Hot Working of Nb-bearing Steels JinXiang DONG, Fulvio SICILIANO Jr., John J. JONAS, W. J. LIU 1) and Elhachmi ESSADIQI

More information

Multi-pass Hot Rolling of Steels

Multi-pass Hot Rolling of Steels Multi-pass Hot Rolling of Steels Multi-pass hot rolling is a general practice in the production of plates. An illustration of a plate mill, Fig. 1, is shown below to demonstrate how a series of processes

More information

Predicting the Occurrence of Dynamic Transformation and Rolling Mill Loads Drops by Hot Torsion and Compression Testing

Predicting the Occurrence of Dynamic Transformation and Rolling Mill Loads Drops by Hot Torsion and Compression Testing International Journal of Metallurgical Engineering 2013, 2(1): 1-9 DOI: 10.5923/j.ijmee.20130201.01 Predicting the Occurrence of Dynamic Transformation and Rolling Mill Loads Drops by Hot Torsion and Compression

More information

Effect of TMCP Parameters on the Microstructure and Properties of an Nb Ti Microalloyed Steel

Effect of TMCP Parameters on the Microstructure and Properties of an Nb Ti Microalloyed Steel , pp. 851 857 Effect of TMCP Parameters on the Microstructure and Properties of an Nb Ti Microalloyed Steel Yanchun LIU, Fuxian ZHU, Yanmei LI and Guodong WANG The State Key Laboratory of Rolling & Automation,

More information

Formation of Ultrafine Ferrite by Strain-induced Dynamic Transformation in Plain Low Carbon Steel

Formation of Ultrafine Ferrite by Strain-induced Dynamic Transformation in Plain Low Carbon Steel , pp. 746 754 Formation of Ultrafine Ferrite by Strain-induced Dynamic Transformation in Plain Low Carbon Steel Jong-Kyo CHOI, Dong-Han SEO, Jae-Sang LEE, Kyung-Keun UM and Wung-Yong CHOO POSCO Technical

More information

Microstructural Evolution in Microalloyed Steels with High-Speed Thermomechanical Bar and Rod Rolling

Microstructural Evolution in Microalloyed Steels with High-Speed Thermomechanical Bar and Rod Rolling Microstructural Evolution in Microalloyed Steels with High-Speed Thermomechanical Bar and Rod Rolling Robert Cryderman, Blake Whitely, and John Speer Advanced Steel Processing and Products Research Center,

More information

Effect of Recovery & Precipitation on Recrystallization of Micro-alloyed Steels

Effect of Recovery & Precipitation on Recrystallization of Micro-alloyed Steels Effect of Recovery & Precipitation on Recrystallization of Micro-alloyed Steels Md Kashif Rehman Dr Hatem S Zurob McMASTER U N I V E R S I T Y 1280 Main Street West, Hamilton, ON, Canada L8S 4L7 1 Presentation

More information

Kinetics of Dynamic Recrystallization in AA2024 Aluminum Alloy

Kinetics of Dynamic Recrystallization in AA2024 Aluminum Alloy Modern Applied Science; Vol. 8, No. 6; 2014 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Kinetics of Dynamic Recrystallization in AA2024 Aluminum Alloy Xiaoxun

More information

The Effects of Dispersoids on the Recrystallization Behavior in a Cold Rolled AA3103-Aluminium Alloy

The Effects of Dispersoids on the Recrystallization Behavior in a Cold Rolled AA3103-Aluminium Alloy Proceedings of the 9 th International Conference on Aluminium Alloys (2004) 1229 Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd The Effects of Dispersoids

More information

GRAIN REFINEMENT AND HIGH PRECIPITATION HARDENING BY COMBINING MICROALLOYING AND ULTRA FAST COOLING

GRAIN REFINEMENT AND HIGH PRECIPITATION HARDENING BY COMBINING MICROALLOYING AND ULTRA FAST COOLING GRAIN REFINEMENT AND HIGH PRECIPITATION HARDENING BY COMBINING MICROALLOYING AND ULTRA FAST COOLING Christophe Mesplont Centre for Research in Metallurgy, Belgium ABSTRACT Microalloying with Nb has been

More information

AustenIte GrAIn Growth CAlCulAtIon of 0.028% nb steel

AustenIte GrAIn Growth CAlCulAtIon of 0.028% nb steel J o u r n a l o f J. Min. Metall. Sect. B-Metall. 47 (2) B (2011) 199-209 M i n i n g a n d M e t a l l u r g y AustenIte GrAIn Growth CAlCulAtIon of 0.028% nb steel D. Priadi *,#, r.a.m. napitupulu *,**

More information

Structural Evolution and Properties of Hot Rolled Steel Alloys

Structural Evolution and Properties of Hot Rolled Steel Alloys Journal of Minerals & Materials Characterization & Engineering, Vol. 11, No.4, pp.417-426, 2012 jmmce.org Printed in the USA. All rights reserved Structural Evolution and Properties of Hot Rolled Steel

More information

Title: Modeling of microstructure in the HAZ for microalloyed steel S700 MC

Title: Modeling of microstructure in the HAZ for microalloyed steel S700 MC Kompetenznetzwerk für Fügetechnik Title: Modeling of microstructure in the HAZ for microalloyed steel S7 MC Sub title: Modeling of grain growth in HAZ Autor: Mizanur Rahman Projekt: Join4+, 1.1 Datum:

More information

Effects of Austenite Conditioning on Austenite/Ferrite Phase Transformation of HSLA Steel

Effects of Austenite Conditioning on Austenite/Ferrite Phase Transformation of HSLA Steel Materials Transactions, Vol. 45, No. 1 (2004) pp. 137 to 142 #2004 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Effects of Austenite Conditioning on Austenite/Ferrite Phase Transformation of HSLA

More information

Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni

Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni , pp. 692 698 Effects of Coiling Temperature on Microstructure and Mechanical Properties of High-strength Hot-rolled Steel Plates Containing Cu, Cr and Ni Sung-Joon KIM, Chang Gil LEE, Tae-Ho LEE and Sunghak

More information

Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator

Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator Journal of Materials Processing Technology 141 (2003) 337 342 Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator Young-Sang Na a,, Jong-Taek Yeom a, Nho-Kwang Park a, Jai-Young

More information

This is a repository copy of Softening Kinetics of Plain Carbon Steels Containing Dilute Nb Additions.

This is a repository copy of Softening Kinetics of Plain Carbon Steels Containing Dilute Nb Additions. This is a repository copy of Softening Kinetics of Plain Carbon Steels Containing Dilute Nb Additions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119751/ Version: Accepted

More information

Application of between- stand cooling in the production hot rolled strips

Application of between- stand cooling in the production hot rolled strips Focused on Fracture Mechanics in Central and East Europe Application of between- stand cooling in the production hot rolled strips U. Muhin, S. Belskij, E.Makarov Lipetsk State Technical University, Lipetsk,

More information

GRAIN REFINEMENT AND TEXTURE CHANGE IN INTERSTITIAL FREE STEELS AFTER SEVERE ROLLING AND ULTRA-SHORT ANNEALING

GRAIN REFINEMENT AND TEXTURE CHANGE IN INTERSTITIAL FREE STEELS AFTER SEVERE ROLLING AND ULTRA-SHORT ANNEALING Materials Science Forum Online: 2004-10-15 ISSN: 1662-9752, Vols. 467-470, pp 287-292 doi:10.4028/www.scientific.net/msf.467-470.287 2004 Trans Tech Publications, Switzerland Citation & Copyright (to be

More information

HOT DEFORMATION EFFECTS ON AUSTENITE DECOMPOSITION

HOT DEFORMATION EFFECTS ON AUSTENITE DECOMPOSITION OUTLINE---Contents HOT DEFORMATION EFFECTS ON AUSTENITE DECOMPOSITION 3-7 Parameters, techniques 8-17 Ferrite, TTT, acceleration 18-25 Nucleation and growth 26-31 Composition: low C tool steels H. J. McQueen,

More information

Austenite Grain Boundary Pinning during Reheating by Mixed AlN and Nb(C,N) Particles

Austenite Grain Boundary Pinning during Reheating by Mixed AlN and Nb(C,N) Particles , pp. 677 684 Austenite Grain Boundary Pinning during Reheating by Mixed AlN and Nb(C,N) Particles Amrita KUNDU* School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK. (Received

More information

Hot Deformation and Acicular Ferrite Microstructure in C Mn Steel Containing Ti 2 O 3 Inclusions

Hot Deformation and Acicular Ferrite Microstructure in C Mn Steel Containing Ti 2 O 3 Inclusions , pp. 819 823 Hot Deformation and Acicular Ferrite Microstructure in C Mn Steel Containing Ti 2 O 3 Inclusions Jae-Hyeok SHIM, Jung-Soo BYUN, Young Whan CHO, 1) Young-Joo OH, 1) Jae-Dong SHIM 1) and Dong

More information

Modelling the Microstructural Evolution During Hot Strip Rolling of Niobium Microalloyed Steels

Modelling the Microstructural Evolution During Hot Strip Rolling of Niobium Microalloyed Steels Modelling the Microstructural Evolution During Hot Rolling of Niobium Microalloyed Steels Antonio Gorni 1, Marcelo Rebellato 2, Vishwanathan Nagarajan 3 and Ronaldo Barbosa 4 1 Aranda Editora, Alameda

More information

This is the last draft sent to the Editorial by the authors of the article:

This is the last draft sent to the Editorial by the authors of the article: This is the last draft sent to the Editorial by the authors of the article: M. GÓMEZ, L. RANCEL, P. P. GÓMEZ, J. I. ROBLA, S. F. MEDINA Simplification of Hot Rolling Schedule in Ti-Microalloyed Steels

More information

MECHANICAL PROPERTIES OF AN ULTRAFINE GRAINED C-MN STEEL

MECHANICAL PROPERTIES OF AN ULTRAFINE GRAINED C-MN STEEL MECHANICAL PROPERTIES OF AN ULTRAFINE GRAINED C-MN STEEL Rongjie Song; Dirk Ponge; Dierk Raabe Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany ABSTRACT The mechanical

More information

Effect of Heat Treatment on the Microstructure of Spray Formed AISI M2 High-speed Steel. Lima, R. M.; Jesus, E. R. B.; Rossi, J. L.

Effect of Heat Treatment on the Microstructure of Spray Formed AISI M2 High-speed Steel. Lima, R. M.; Jesus, E. R. B.; Rossi, J. L. Effect of Heat Treatment on the Microstructure of Spray Formed AISI M2 High-speed Steel Lima, R. M.; Jesus, E. R. B.; Rossi, J. L. Instituto de Pesquisas Energéticas e Nucleares - IPEN Powder Processing

More information

INFLUENCE OF SECOND PHASE PARTICLES ON RECRYSTALLISATION OF COLD-ROLLED LOW CARBON MICROALLOYED STEELS DURING ISOTHERMAL ANNEALING

INFLUENCE OF SECOND PHASE PARTICLES ON RECRYSTALLISATION OF COLD-ROLLED LOW CARBON MICROALLOYED STEELS DURING ISOTHERMAL ANNEALING INFLUENCE OF SECOND PHASE PARTICLES ON RECRYSTALLISATION OF COLD-ROLLED LOW CARBON MICROALLOYED STEELS DURING ISOTHERMAL ANNEALING Carlos Capdevila a, Tommy De Cock b, Carlos García-Mateo c, Francisca

More information

The coarsening effect of SA508-3 steel used as heavy forgings material

The coarsening effect of SA508-3 steel used as heavy forgings material MATEC Web of Conferences 21, 02010 (2015) DOI: 10.1051/matecconf/20152102010 C Owned by the authors, published by EDP Sciences, 2015 The coarsening effect of SA508-3 steel used as heavy forgings material

More information

MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF HOT ROLLED DUAL- PHASE STEEL. Yuriy A. BEZOBRAZOV, Anton A. NAUMOV

MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF HOT ROLLED DUAL- PHASE STEEL. Yuriy A. BEZOBRAZOV, Anton A. NAUMOV MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF HOT ROLLED DUAL- PHASE STEEL Yuriy A. BEZOBRAZOV, Anton A. NAUMOV St. Petersburg State Polytechnic University, St. Petersburg, Russian Federation nw86master@mail.ru,

More information

MTLS 4L04 Steel Section. Lecture 6

MTLS 4L04 Steel Section. Lecture 6 MTLS 4L04 Steel Section Lecture 6 Tempering of Martensite To get around the problem of the brittleness of the Martensite, Martensite is heat treated at elevated temperatures (200-700 C) to precipitate

More information

OPTIMIZATION OF HIGH QUALITY PRODUCTION IN HOT ROLLING MILLS USING ADVANCED PROCESS MODELS*

OPTIMIZATION OF HIGH QUALITY PRODUCTION IN HOT ROLLING MILLS USING ADVANCED PROCESS MODELS* OPTIMIZATION OF HIGH QUALITY PRODUCTION IN HOT ROLLING MILLS USING ADVANCED PROCESS MODELS* Detlef Ehlert 1 Olaf Jepsen 2 Gregor Schneider 3 Abstract Flexibility in terms of producing high sophisticated

More information

Arch. Metall. Mater. 62 (2017), 2B,

Arch. Metall. Mater. 62 (2017), 2B, Arch. Metall. Mater. 62 (2017), 2B, 1191-1196 DOI: 10.1515/amm-2017-0175 J.-H. LEE*, D.-O. KIM**, K. LEE*** # COMPRESSIVE DEFORMATION BEHAVIOR OF THICK MICRO-ALLOYED HSLA STEEL PLATES AT ELEVATED TEMPERATURES

More information

Static recrystallization behaviour of Ti-Nb microalloyed high-strength steel

Static recrystallization behaviour of Ti-Nb microalloyed high-strength steel http://dx.doi.org/10.17159/2411-9717/2017/v117n5a7 Static recrystallization behaviour of Ti-Nb microalloyed high-strength steel by C-Y. Zhou*, G-L. Wu *, and X-B. Liu* The static recrystallization behaviour

More information

Dynamic Recovery and Static Recrystallization of 1.8 % Al Steel in Hot Deformation*

Dynamic Recovery and Static Recrystallization of 1.8 % Al Steel in Hot Deformation* Dynamic Recovery and Static Recrystallization of 1.8 % Al Steel in Hot Deformation* By Chiaki OUCHI** and Tomoyoshi OKITA** Synopsis Dynamic recovery and the following static recrystallization process

More information

Table 1 - Chemical Compositions of Experimental Steels [weight %]

Table 1 - Chemical Compositions of Experimental Steels [weight %] Materials Science Forum Online: 2016-11-15 ISSN: 1662-9752, Vol. 879, pp 2094-2099 doi:10.4028/www.scientific.net/msf.879.2094 2017 Trans Tech Publications, Switzerland Effects of Microalloy Additions

More information

Mathematical Modeling of Single Peak Dynamic Recrystallization Flow Stress Curves in Metallic Alloys

Mathematical Modeling of Single Peak Dynamic Recrystallization Flow Stress Curves in Metallic Alloys Mathematical Modeling of Single Peak Dynamic Recrystallization Flow Stress Curves in Metallic Alloys R. Ebrahimi and E. Shafiei Department of Materials Science and Engineering, School of Engineering, Shiraz

More information

GROWTH BEHAVIOR OF GH720LI ALLOY

GROWTH BEHAVIOR OF GH720LI ALLOY THE EFFECT OF PRIMARY γ DISTRIBUTION ON GRAIN GROWTH BEHAVIOR OF GH720LI ALLOY Maicang Zhang, Jianxin Dong, Zhongnan Bi, Qiuying Yu University of Science and Technology Beijing, Beijing, 100083, P R China

More information

Heat treatment and effects of Cr and Ni in low alloy steel

Heat treatment and effects of Cr and Ni in low alloy steel Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1439 1445. Indian Academy of Sciences. Heat treatment and effects of Cr and Ni in low alloy steel MOHAMMAD ABDUR RAZZAK Materials and Metallurgical

More information

RECRYSTALLIZATION BEHAVIOR OF α MARTENSITE IN TRANSFORMABLE FERRITIC STAINLESS STEELS

RECRYSTALLIZATION BEHAVIOR OF α MARTENSITE IN TRANSFORMABLE FERRITIC STAINLESS STEELS RECRYSTALLIZATION BEHAVIOR OF α MARTENSITE IN TRANSFORMABLE FERRITIC STAINLESS STEELS Javad Mola, Bruno C. De Cooman - Graduate Institute of Ferrous Technology, POSTECH, Pohang, South Korea Jieon Park

More information

Kinetics - Heat Treatment

Kinetics - Heat Treatment Kinetics - Heat Treatment Nonequilibrium Cooling All of the discussion up till now has been for slow cooling Many times, this is TOO slow, and unnecessary Nonequilibrium effects Phase changes at T other

More information

Effect of Mn and Si addition on the dynamic transformation of austenite during strip rolling

Effect of Mn and Si addition on the dynamic transformation of austenite during strip rolling Hatchett Seminar London, July 16, 2014 Effect of Mn and Si addition on the dynamic transformation of austenite during strip rolling John J. Jonas Birks Professor of Metallurgy Emeritus McGill University

More information

An Approach to Predict the Depth of the Decarburized Ferrite Layer of Spring Steel Based on Measured Temperature History of Material during Cooling

An Approach to Predict the Depth of the Decarburized Ferrite Layer of Spring Steel Based on Measured Temperature History of Material during Cooling , pp. 1682 1689 An Approach to Predict the Depth of the Decarburized Ferrite Layer of Spring Steel Based on Measured Temperature History of Material during Cooling Sangwoo CHOI 1) and Youngseog LEE 2)

More information

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2008 Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

More information

Hot deformation and recrystallization of austenitic stainless steel. Part I: dynamic recrystallization

Hot deformation and recrystallization of austenitic stainless steel. Part I: dynamic recrystallization University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 Hot deformation and recrystallization of austenitic stainless steel.

More information

Recrystallization kinetics of austenite in Nb microalloyed steel

Recrystallization kinetics of austenite in Nb microalloyed steel Downloaded from orbit.dtu.dk on: Dec 5, 17 Recrystallization kinetics of austenite in Nb microalloyed Gerosa, R.; Rivolta, B.; Moumeni, Elham; Tecchiati, E.; Paggi, A.; Anelli, E. Publication date: 12

More information

Modeling the Controlled Rolling Critical Temperatures Using Empirical Equations and Neural Networks 1

Modeling the Controlled Rolling Critical Temperatures Using Empirical Equations and Neural Networks 1 Modeling the Controlled Rolling Critical Temperatures Using Empirical Equations and Neural Networks 1 Antonio Augusto GORNI, Celso Gomes CAVALCANTI Research Department, COSIPA, C.P. 11, 11573-900, Cubatão

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 ) 38 43

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) 38 43 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 38 43 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress Center,

More information

Microstructure Evolution of Polycrystalline Pure Nickel during Static Recrystallization 1

Microstructure Evolution of Polycrystalline Pure Nickel during Static Recrystallization 1 Materials Transactions, Vol. 43, No. 9 (2002) pp. 2243 to 2248 c 2002 The Japan Institute of Metals Microstructure Evolution of Polycrystalline Pure Nickel during Static Recrystallization 1 Makoto Hasegawa

More information

Numerical Analysis for the Prediction of Microstructure after Hot Forming of Structural Metals

Numerical Analysis for the Prediction of Microstructure after Hot Forming of Structural Metals Materials Transactions, Vol. 50, No. 7 (2009) pp. 1620 to 1625 Special Issue on New Functions and Properties of Engineering Materials Created by Designing and Processing #2009 The Japan Institute of Metals

More information

Computer Simulation of Microstructure Evolution during Hot Forging of Waspaloy and Nickel Alloy 718

Computer Simulation of Microstructure Evolution during Hot Forging of Waspaloy and Nickel Alloy 718 6)7&3DSHU Computer Simulation of Microstructure Evolution during Hot Forging of Waspaloy and Nickel Alloy 718 D. Huang, W.T. Wu, D. Lambert, and S.L. Semiatin * Scientific Forming Technologies Corporation,

More information

Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper

Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper Materials Transactions, Vol. 51, No. 9 (1) pp. 1614 to 16 #1 The Japan Institute of Metals Cellular Automata Modeling of Grain Coarsening and Refinement during the Dynamic Recrystallization of Pure Copper

More information

Modeling the Effect of Solute Drag on Recovery and Recrystallization during Hot Deformation of Nb Microalloyed Steels

Modeling the Effect of Solute Drag on Recovery and Recrystallization during Hot Deformation of Nb Microalloyed Steels , pp. 239 247 Modeling the Effect of Solute Drag on Recovery and Recrystallization during Hot Deformation of Nb Microalloyed Steels Linda BÄCKE Dalarna University, Borlänge, Sweden/SSAB Strip Products,

More information

Multi-phase-field Simulations of Dynamic Recrystallization during Transient Deformation

Multi-phase-field Simulations of Dynamic Recrystallization during Transient Deformation , pp. 1717 173 Multi-phase-field Simulations of Dynamic Recrystallization during Transient Deformation Tomohiro TAKAKI, 1) Akinori YAMANAKA ) and Yoshihiro TOMITA 3) 1) Graduate School of Science and Technology,

More information

Particle-stimulated Nucleation of Ferrite in Heavy Steel Sections

Particle-stimulated Nucleation of Ferrite in Heavy Steel Sections , pp. 1233 1240 Particle-stimulated Nucleation of Ferrite in Heavy Steel Sections Khaled F. Al HAJERI, 1) C. Isaac GARCIA, 2) Mingjian HUA 2) and Anthony J. DEARDO 2) 1) Formerly Basic Metals Processing

More information

Lab Materials Science

Lab Materials Science Institute for Micro- and Nanomaterials Lab Summer Term 2007 Group 9: Adelheid Grob & Sukhum Ruangchai & Brook Esseye lab on June, 21st 2007 1 Questions 1.1 What is the goal of metallographic sample preparation?

More information

PHYSICAL SIMULATION OF THERMOMECHANICAL TREATMENT EMPLOYING GLEEBLE 3800 SIMULATOR

PHYSICAL SIMULATION OF THERMOMECHANICAL TREATMENT EMPLOYING GLEEBLE 3800 SIMULATOR PHYSICAL SIMULATION OF THERMOMECHANICAL TREATMENT EMPLOYING GLEEBLE 3800 SIMULATOR ABSTRACT ROMAN KUZIAK Institute for Ferrous Metallurgy, Gliwice, POLAND The paper will focus on the characterization of

More information

DETERMINATION OF CCT DIAGRAMS BY THERMAL ANALYSIS OF AN HSLA BAINITIC STEEL SUBMITTED TO THERMOMECHANICAL TREATMENT

DETERMINATION OF CCT DIAGRAMS BY THERMAL ANALYSIS OF AN HSLA BAINITIC STEEL SUBMITTED TO THERMOMECHANICAL TREATMENT Pergamon Scripta Materialia, Vol. 40, No. 2, pp. 165 169, 1999 Elsevier Science Ltd Copyright 1999 Acta Metallurgica Inc. Printed in the USA. All rights reserved. 1359-6462/99 $20.00.00 PII S1359-6462(98)00410-2

More information

Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel

Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel Zhang, W-F., Li, X-L., Sha, W., Yan, W., Wang, W., Shan, Y., & Yang, K. (2014). Hot deformation characteristics

More information

Deakin Research Online

Deakin Research Online Deakin Research Online This is the published version: Beladi, H., Hodgson, P. D. and Adachi, Y. 2008, Formation of ultrafine ferrite by dynamic strain-induced transformation, in MS & T 2008: Materials

More information

Influence of Deformation on the Kinetics of Phase Transformation in a Forging Steel During Warm Working

Influence of Deformation on the Kinetics of Phase Transformation in a Forging Steel During Warm Working Vol. Materials 7, No. Research, 2, 2004 Vol. 7, No. Influence 2, 247-253, of 2004. Deformation on the Kinetics of Phase Transformation in a Forging Steel During Warm Working 2004 247 Influence of Deformation

More information

Direct observation of niobium segregation to dislocations in steel

Direct observation of niobium segregation to dislocations in steel Charles Hatchett Award 2017 of the Institute of Materials, Minerals and Mining (IOM3) 1 Direct observation of niobium segregation to dislocations in steel J. Takahashi, K. Kawakami, J. Hamada *, K. Kimura

More information

Deakin Research Online

Deakin Research Online Deakin Research Online This is the published version: Barnett, Matthew, Kelly, Georgina and Hodgson, Peter 2002-07, Inferring dynamic recrystallization in ferrite using the kinetics of static recrystallization,

More information

Toughness and Microstructure of Coarse Grain Heat Affected Zone with High Heat Input Welding in Zr-bearing Low Carbon Steel

Toughness and Microstructure of Coarse Grain Heat Affected Zone with High Heat Input Welding in Zr-bearing Low Carbon Steel , pp. 188 192 Toughness and Microstructure of Coarse Grain Heat Affected Zone with High Heat Input Welding in Zr-bearing Low Carbon Steel Minghao SHI,* Pengyan ZHANG and Fuxian ZHU State Key Laboratory

More information

Grain Size Effect on Behaviour and Microstructure of a Warm Deformed Ti-IF Steel A. Oudin 1, M. R. Barnett 1 and P. D. Hodgson 1

Grain Size Effect on Behaviour and Microstructure of a Warm Deformed Ti-IF Steel A. Oudin 1, M. R. Barnett 1 and P. D. Hodgson 1 Grain Size Effect on Behaviour and Microstructure of a Warm Deformed Ti-IF Steel A. Oudin 1, M. R. Barnett 1 and P. D. Hodgson 1 1 School of Engineering and Technology - Deakin University - Geelong VIC

More information

Effects of Normalizing Process on the Microstructural Evolution and Mechanical Properties of Low Carbon Steel Weld Metal with Niobium Addition

Effects of Normalizing Process on the Microstructural Evolution and Mechanical Properties of Low Carbon Steel Weld Metal with Niobium Addition , pp. 248 254 Effects of Normalizing Process on the Microstructural Evolution and Mechanical Properties of Low Carbon Steel Weld Metal with Niobium Addition Shanping LU, Shitong WEI, Zhiquan LIU, Dianzhong

More information

Tensile Flow Behavior in Inconel 600 Alloy Sheet at Elevated Temperatures

Tensile Flow Behavior in Inconel 600 Alloy Sheet at Elevated Temperatures Available online at www.sciencedirect.com Procedia Engineering 36 (212 ) 114 12 IUMRS-ICA 211 Tensile Flow Behavior in Inconel 6 Alloy Sheet at Elevated Temperatures Horng-Yu Wu a, Pin-Hou Sun b, Feng-Jun

More information

Recrystallization. Chapter 7

Recrystallization. Chapter 7 Chapter 7 Recrystallization 7.1 INTRODUCTION The earlier chapters have described creep as a process where dislocation hardening is accompanied by dynamic recovery. It should be discussed at this point

More information

Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization of Hi-B electrical steel

Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization of Hi-B electrical steel Indian Journal of Engineering & Materials Sciences Vol. 23, April & June 2016, pp. 165-170 Effect of normalization on the microstructure and texture evolution during primary and secondary recrystallization

More information

Hot Deformation Behavior of High Strength Low Alloy Steel by Thermo Mechanical Simulator and Finite Element Method

Hot Deformation Behavior of High Strength Low Alloy Steel by Thermo Mechanical Simulator and Finite Element Method IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Hot Deformation Behavior of High Strength Low Alloy Steel by Thermo Mechanical Simulator and Finite Element Method To cite this

More information

Development of Anti-coarsening Extra-fine Steel for Carburizing

Development of Anti-coarsening Extra-fine Steel for Carburizing UDC 669. 14. 18. 25-155. 2 : 62. 186. 5 Development of Anti-coarsening Extra-fine Steel for Carburizing Manabu KUBOTA* 1 Tatsuro OCHI* 1 Abstract There are large needs for omitting intermediate heat treatments

More information

As-Quenched Martensite with Precipitation Hardening

As-Quenched Martensite with Precipitation Hardening Technical Report As-Quenched Martensite with Precipitation Hardening UDC 621. 785. 616 Kazuki FUJIWARA* Kaori KAWANO Abstract The hardness of martensite depends on the content of the interstitial element

More information

The behavior of precipitates during hotdeformation of low-manganese, titanium-added pipeline steels

The behavior of precipitates during hotdeformation of low-manganese, titanium-added pipeline steels University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2010 The behavior of precipitates during hotdeformation of low-manganese,

More information

KINETICS OF GRAIN GROWTH AND RECRYSTALLIZATION DURING FORMING MODES FOR PROCESSING OF STEEL SA 508

KINETICS OF GRAIN GROWTH AND RECRYSTALLIZATION DURING FORMING MODES FOR PROCESSING OF STEEL SA 508 KINETICS OF GRAIN GROWTH AND RECRYSTALLIZATION DURING FORMING MODES FOR PROCESSING OF STEEL SA 508 Petr ZUNA 1), Jakub HORNÍK 1), Jaroslav MÁLEK 1), František JANDOŠ 2) 1) CTU in Prague, Faculty of Mechanical

More information

Structural Elongation and Alignment in an Fe-0.4C Alloy by Isothermal Ferrite Transformation in High Magnetic Fields

Structural Elongation and Alignment in an Fe-0.4C Alloy by Isothermal Ferrite Transformation in High Magnetic Fields Materials Transactions, Vol. 44, No. 12 (2003) pp. 2532 to 2536 Special Issue on Structural and Functional Control of Materials through Solid-Solid Phase Transformations in High Magnetic Field #2003 The

More information

EVALUATION OF THERMAL FATIGUE PROPERTIES OF HSS ROLL MATERIALS. Jong Il Park a Chang Kyu Kim b Sunghak Lee b

EVALUATION OF THERMAL FATIGUE PROPERTIES OF HSS ROLL MATERIALS. Jong Il Park a Chang Kyu Kim b Sunghak Lee b EVALUATION OF THERMAL FATIGUE PROPERTIES OF HSS ROLL MATERIALS Jong Il Park a Chang Kyu Kim b Sunghak Lee b a Hot Rolling Department, Pohang Iron and Steel Co., Ltd., Pohang 79-75 b Center for Advanced

More information

Kinetics of austenite formation during continuous heating in a low carbon steel

Kinetics of austenite formation during continuous heating in a low carbon steel Materials Characterization 58 (2007) 256 261 Kinetics of austenite formation during continuous heating in a low carbon steel F.L.G. Oliveira a, M.S. Andrade b, A.B. Cota c, a REDEMAT, Federal University

More information

Keywords: Al-Mg alloys, chemical composition, cold deformation, recovery, heating rate, recrystallization

Keywords: Al-Mg alloys, chemical composition, cold deformation, recovery, heating rate, recrystallization The influence of thermomechanical treatment and chemical composition on recrystallization of Al-Mg alloys Lj.Radović 1,a, M.Nikačević 1,b, M.Popović 2,c, E.Romhanji 2,d 1 Military Technical Institute,

More information

Dynamic Recrystallization and Precipitation Behavior of Mn Cu V Weathering Steel

Dynamic Recrystallization and Precipitation Behavior of Mn Cu V Weathering Steel J. Mater. Sci. Technol., 2011, 27(12), 1131-1138. Dynamic Recrystallization and Precipitation Behavior of Mn Cu V Weathering Steel Hongyan Wu, Linxiu Du and Xianghua Liu State Key Laboratory of Rolling

More information

Stainless steel & duplex

Stainless steel & duplex Stainless steel & duplex Different effects of carbon and nitrogen on precipitation behavior and mechanical properties in austenitic stainless steels Kyung-Shik Kim, Jee-Hyun Kang, Sung-Joon Kim Austenitic

More information

Evolution of Microstructure and Texture Associated with Ridging in Ferritic Stainless Steels

Evolution of Microstructure and Texture Associated with Ridging in Ferritic Stainless Steels , pp. 100 105 Evolution of Microstructure and Texture Associated with Ridging in Ferritic Stainless Steels SooHo PARK, KwangYuk KIM, YongDeuk LEE and ChanGyung PARK 1) Stainless Steel Research Group, Technical

More information

Iranian Journal of Materials Science & Engineering Vol. 7, Number 1, Winter 2010

Iranian Journal of Materials Science & Engineering Vol. 7, Number 1, Winter 2010 Iranian Journal of Materials Science & Engineering Vol. 7, Number 1, Winter 2010 THE EFFECT OF COOLING RATE AND AUSTENITE GRAIN SIZE ON THE AUSTENITE TO FERRITE TRANSFORMATION TEMPERATURE AND DIFFERENT

More information

Microstructure modeling of the dynamic recrystallization kinetics during turbine disc forging of the nickel based superalloy Allvac 718Plus T M

Microstructure modeling of the dynamic recrystallization kinetics during turbine disc forging of the nickel based superalloy Allvac 718Plus T M Microstructure modeling of the dynamic recrystallization kinetics during turbine disc forging of the nickel based superalloy Allvac 718Plus T M D. Huber 1, C. Stotter 1, C. Sommitsch 1,2, S. Mitsche 3,

More information

Microstructural evolution of Ti-added interstitial free steel in high strain deformation by hot torsion

Microstructural evolution of Ti-added interstitial free steel in high strain deformation by hot torsion IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Microstructural evolution of Ti-added interstitial free steel in high strain deformation by hot torsion To cite this article:

More information

THE INFLUENCE OF THERMO MECHANICAL TREATMENT ON RECRYSTALLIZATION OF AlMg4.5Cu0.5 ALLOY

THE INFLUENCE OF THERMO MECHANICAL TREATMENT ON RECRYSTALLIZATION OF AlMg4.5Cu0.5 ALLOY Association of Metallurgical Engineers of Serbia AMES Review paper UDC:669.715 721 3-152-174=20 THE INFLUENCE OF THERMO MECHANICAL TREATMENT ON RECRYSTALLIZATION OF AlMg4.5Cu0.5 ALLOY LJ. RADOVIĆ 1, M.

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

PRODUCTION CONCEPTS OF NIOBIUM MICROALLOYED STRUCTURAL HOLLOWS BY SEAMLESS PIPE ROLLING

PRODUCTION CONCEPTS OF NIOBIUM MICROALLOYED STRUCTURAL HOLLOWS BY SEAMLESS PIPE ROLLING PRODUCTION CONCEPTS OF NIOBIUM MICROALLOYED STRUCTURAL HOLLOWS BY SEAMLESS PIPE ROLLING Hardy Mohrbacher NiobelCon bvba, Swaenebeecklaan 5, B-2970 Schilde, Belgium hm@niobelcon.net Abstract Seamless tubes

More information

Simulation Analysis and Application of Hot Rolled Large Size H-beams

Simulation Analysis and Application of Hot Rolled Large Size H-beams Simulation Analysis and Application of Hot Rolled Large Size H-beams Guoming Zhu, Xingye Guo, Chao Lu, Yonglin Kang, Sixun Zhang School of Material Science and Engineering, University of Science and Technology

More information

Influence of Hot Rolling and Post-Tempering on the Mechanical Properties of Duplex Stainless Steel Containing Martensite and Ferrite

Influence of Hot Rolling and Post-Tempering on the Mechanical Properties of Duplex Stainless Steel Containing Martensite and Ferrite Materials Transactions, Vol. 47, No. 11 (06) pp. 2779 to 2785 #06 The Japan Institute of Metals Influence of Hot Rolling and Post-Tempering on the Mechanical Properties of Duplex Stainless Steel Containing

More information

Application of Laser Ultrasonics to Studies of Recrystallisation and Grain Growth in Metals

Application of Laser Ultrasonics to Studies of Recrystallisation and Grain Growth in Metals 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Application of Laser Ultrasonics to Studies of Recrystallisation and Grain Growth

More information

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 34L STAINLESS STEEL H.-J. Christ, C. K. Wamukwamba and H. Mughrabi The fatigue behaviour of the austenitic stainless steel AISI34L

More information

Modelling Deformation-induced Precipitation Kinetics in Microalloyed Steels during Hot Rolling

Modelling Deformation-induced Precipitation Kinetics in Microalloyed Steels during Hot Rolling Modelling Deformation-induced Precipitation Kinetics in Microalloyed Steels during Hot Rolling Zhanli Guo 1,a and A.P. Miodownik 1 1 Sente Software Ltd., Surrey Technology Centre, Guildford GU2 7YG, U.K.

More information

Microstructural evolution of Al Zn Mg Cu (Sc) alloy during hot extrusion and heat treatments

Microstructural evolution of Al Zn Mg Cu (Sc) alloy during hot extrusion and heat treatments Journal of Materials Processing Technology 155 156 (2004) 1330 1336 Microstructural evolution of Al Zn Mg Cu (Sc) alloy during hot extrusion and heat treatments Dong-Woo Suh a,, Sang-Yong Lee a, Kyong-Hwan

More information

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 54 CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 3.1 HIGH STRENGTH ALUMINIUM ALLOY In the proposed work, 7075 Al alloy (high strength) has been identified, as a material for the studies on

More information

Effect of Changing Strain Rate on Flow Stress during Hot Deformation of Type 316L Stainless Steel

Effect of Changing Strain Rate on Flow Stress during Hot Deformation of Type 316L Stainless Steel Effect of Changing Strain Rate on Flow Stress during Hot Deformation of Type 316L Stainless Steel M.F. Abbod 1, C.M. Sellars 2*, A. Tanaka 3, D.A. Linkens 4*, M. Mahfouf 4* * IMMPETUS Institute for Microstructural

More information

ACOUSTIC EMISSION OF SENSITIZED 304 STAINLESS STEEL WITH SIMULTANEOUS HYDROGEN CHARGING

ACOUSTIC EMISSION OF SENSITIZED 304 STAINLESS STEEL WITH SIMULTANEOUS HYDROGEN CHARGING ACOUSTIC EMISSION OF SENSITIZED 304 STAINLESS STEEL WITH SIMULTANEOUS HYDROGEN CHARGING S. H. CARPENTER, KANJI ONO* and D. ARMENTROUT Department of Physics, University of Denver, Denver, CO 80208 USA.

More information