Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Size: px
Start display at page:

Download "Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries"

Transcription

1 /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 7872, USA. *Author to whom correspondence should be addressed: ghyu@austin.utexas.edu These authors contributed equally.

2 2/8 SUPPORTING INFORMATION Methods. Preparation of bulk LiFePO 4 powders. The preparation of bulk LiFePO 4 powders was carried out under solvothermal reaction with diethylene glycol as solvent. Firstly, FeCl 2 4H 2 O (3 mmol, Fisher Scientific) and LiCl (3 mmol, Acros) were dissolved in diethylene glycol (20 ml, Acros) with magnetic stirring to form light green transparent solution. Afterwards, LiH 2 PO 4 (3 mmol, Fisher Scientific) was dissolved in deionized water (0.5 ml) and slowly added into diethylene glycol with magnetic stirring until greyish green homogenous suspension formed. The preparation of the precursor solution was carried out under Ar atmosphere with the presence of traces of L-ascorbic acid (Acros, 5% with respect to the weight of FeCl 2 4H 2 O) to avoid the oxidation of Fe 2+. Then, the precursor solution was transferred into a glass vial which was directly put into the Teflon pot. Finally, the Teflon pot was put into the stainless steel autoclave and kept at 200 C for sufficient time. Typically, solvothermal treatment for 24 hours yields light greenish white, phase pure bulk LiFePO 4 powders. Preparation of LiFePO 4 nanosheets and carbon coating. Single-crystalline LiFePO 4 nanosheets could be readily obtained by the exfoliation of bulk LiFePO 4 powders. In a typical procedure, bulk LiFePO 4 powders ( g) and 2-propanol (0 ml, Aldrich) were mixed and exposed to ultrasonication. The white suspension was collected by centrifuging, and dried in vacuum. The carbon coating was achieved using polyethylene oxide (Mw. 600,000, Aldrich) as carbon source. In a typical procedure, polyethylene oxide (0% in weight ratio), the as-prepared LiFePO 4 nanosheets and proper amount of deionized water were mechanically mixed in Thinky centrifugal mixer (ARE-30) for 30 min, dried in vacuum, and annealed in Ar/H 2 (90/0, v/v) atmosphere at 650 C for 2 hours. Cell assembly. The electrode was prepared by mixing the as-prepared carbon-coated LiFePO 4 nanosheets, Super P carbon (Timcal Graphite & Carbon), and polyvinylidene fluoride binder (Fisher Scientific) with a weight ratio of 80: 5: 5 in N-methyl-2-pyrrolidone (anhydrous, Fisher Scientific). The mixture was thoroughly mixed in Thinky centrifugal mixer to form the homogenous slurry, which was then casted on aluminium foil and dried in vacuum at 5 C for 2 hrs. The electrochemical performance was evaluated with a standard CR2032 coin cell using metallic lithium as the anode, Celgard 2500 as the separator, and LiPF 6 in : ethylene carbonate and diethyl carbonate (BASF Corp.) as the electrolyte. Characterizations. X-ray powder diffraction patterns were performed on a Philips X-ray diffractometer (APD 3520) equipped with Cu Kα radiation. SEM and TEM observations were carried out on Hitachi S scanning electron microspcope (S-5500) and JEOL transmission electron microscope (200F), respectively. Raman and FTIR measurements were performed on Renishaw Raman system equipped with a 633 nm argon ion laser and Thermal Scientific FT-IR spectrometer (Nicolet TM is TM 5), respectively. BET surface area was tested with a NOVA surface area analyzer (Quantachrome Instruments NOVA4000). Electrochemical characterization was performed on LANHE battery cycler (CT200A) and Bio-logic potentiostat (VMP3) equipped with impedance modules. To measure the tap density, a certain amount of the carbon-coated LiFePO 4 nanosheets were placed in a small measuring cylinder and tapped for 0 min by hand. The measured volume of the tapped powder and its mass were used to calculate the tap density of the product.

3 3/8 SUPPORTING INFORMATION S. Effect of reaction time on the phase structure of the LiFePO 4 powders Intensity / a.u. 8 hrs 6 hrs 24 hrs 48 hrs Theta / degree Figure S. XRD patterns of the LiFePO 4 powders obtained at different reaction time: 8 hrs (black), 6 hrs (red), 24 hrs (blue), and 48 hrs (purple). Black dash lines represent the major characteristic diffraction differences of α and β LiFePO 4. All diffraction peaks can be assigned to β LiFePO 4 for reaction time of 8 hrs, and gradually transformed into α LiFePO 4 for reaction time in excess of 6 hrs. S2. TEM image of the carbon-coated LiFePO 4 nanosheets Figure S2. TEM image of carbon-coated LiFePO 4 nanosheets, showing the carbon layer thickness ~ 5 nm.

4 4/8 SUPPORTING INFORMATION S3. Morphology information of commercial LiFePO 4 /C powder a b 2 um 500 nm Figure S3. (a) Low- and (b) high-magnification SEM image of commercial LiFePO 4 /C powders revealing that the particles are in irregular shapes and the particle size varies in the range of tens to hundreds of nanometers. S4. Impedance spectra of LiFePO 4 nanosheets and commercial LiFePO 4 /C powders c 0 Z Im / ohm c r el r 0 W r 2 Z W 00 0 Nanosheets Commercial powder Z Re / ohm Figure S4. Nyquist plots of LiFePO 4 nanosheets/li metal (black) and commercial LiFePO 4 /Li metal (red) half-cells measured in the frequency region of Hz. Inset: simplified-contact-randles equivalent circuit for the simulation of the Nyquist plots.

5 5/8 SUPPORTING INFORMATION S5. Electric conductivity & lithium ion diffusion coefficient at open circuit state The electric conductivity of the cell could be determined by the intersection at high frequency with Z RE axis in the Nyquist plots shown in Figure S4. The Li-ion diffusion coefficient at open circuit state could be determined from the slope of linear response of Z Re and ω /2 at low frequency region by Eq. () and Eq. (2): D = R 2 T 2 /2A 2 n 4 F 4 C 2 σ 2 () Z Re = K + σω /2 (2) where D is the diffusion coefficient (cm 2 s ), R is the gas constant (8.3 J mol K ), T is the absolute temperature (298 K), A is the surface area of the cathode (.3 cm 2, Figure S5), n is the number of electrons transferred in the half-reaction for the redox couple (for LiFePO 4, n=), F is the Faraday constant (96485 C mol ), C is the is the molar concentration of Li ions in LiFePO 4 ( mol cm 3 ), K is a constant, ω is frequency, and σ is the Warburg factor which corresponds to the slope of the curve shown in Figure 3a. Figure S5. Nitrogen adsorption isotherms of LiFePO 4 nanosheets. The surface area was measured to be m 2 g. S6. Lithium ion diffusion coefficient during charge/discharge Randles-Sevcik equation, Eq. (3), was used to calculate the lithium ion diffusion coefficient during charge/discharge: I pc = n 3/2 AD /2 Cυ /2 (3) where I pc is the peak-current (A), n is the number of electrons in the charge-transfer step (for LiFePO 4, n = ), A is the total surface area of the electroactive material calculated from the mass loading of LiFePO 4 nanosheets and their corresponding specific surface area (cm 2 ), D is the Li ion diffusion coefficient in LiFePO 4 at 298 K (cm 2 s ), C is the molar concentration of Li ions in LiFePO 4 ( mol cm 3 ), and ν is the scan rate (V s ).

6 6/8 SUPPORTING INFORMATION S7. Rate capability of commercial LiFePO 4 /C powders Specific capacity / mahg C 5C charge discharge Coulombic efficiency 0C Figure S6. Rate capability of commercial LiFePO 4 /C powders at the C-rate ranging from 30 C (C=70 ma g ). 20C Cycle number 30C C Coulombic efficiency / % S8. Representative charge/discharge profiles at various current rate a Potential / V vs Li + /Li C, 20C, 0C, 5C, C, 0.5C Specific capacity / mah g Figure S7. Typical charge/discharge profiles of (a) LiFePO 4 nanosheets, and (b) commercial LiFePO 4 /C powders at current rate ranging from C. b Potential / V vs Li + /Li C, 20C, 0C, 5C, C, 0.5C Specific capacity / mah g

7 7/8 SUPPORTING INFORMATION S9. Cyclic performance of commercial LiFePO 4 /C electrode Specific capacity / mah g charge discharge Coulombic efficiency Cycle number Figure S8. Cyclic performance and corresponding Columbic efficiency of commercial LiFePO 4 /C electrode measured at C-rate of 5. The capacity retention is 84% after 500 cycles based on the capacity of the first and last discharge capacities Coulombic efficiency / %

8 8/8 SUPPORTING INFORMATION S0. Determine the carbon content in the carbon-coated LiFePO 4 nanosheets The LiFePO 4 nanosheets with or without carbon coating are very stable during the TGA experiment (Figure S) when the temperature is below 250 C. The slight weight loss in this temperature range is probably due to the loss of adsorbed water. LiFePO 4 is gradually oxidized with two steps of weight gain between 300 C and 550 C. The obtained product is very stable thereafter. Although the mechanisms occurring at the two steps are not yet fully known, the completely oxidized products of LiFePO 4 are composed of two phases: Li 3 Fe 2 (PO 4 ) 3 and Fe 2 O 3. Therefore, the following oxidative processes for LiFePO 4 during TGA experiment could be proposed according to the following Eq. (4): LiFePO 4 + O2 Li3Fe2 ( PO4 ) 3 + Fe2O3 (4) To determine the carbon content in the LiFePO 4 nanosheets, C-coated LiFePO 4 is oxidized as in the case of LiFePO 4, with carbon being mixed with Li 3 Fe 2 (PO 4 ) 3 and Fe 2 O 3 formed during the oxidation process as represented by Eq. (5): LiFePO 4 / C + O2 Li3Fe2 ( PO4 ) 3 + Fe2O3 + C (5) When heating the LiFePO 4 /C sample to above 550 C, the carbon is oxidized to CO 2. As a consequence, a weight loss associated with the oxidation of carbon takes place in the TG curve according to Eq. (6): LiFePO 4 / C + O2 + no2 Li3Fe2 ( PO4 ) 3 + Fe2O3 + nco2 (5) Above 550 C, total oxidation of both LiFePO 4 and carbon is complete and the overall weight gain in this case is about 3.2% for C-coated LiFePO 4 nanosheets and 5.% for the as-exfoliated LiFePO 4 nanosheets. The carbon content was calculated to be ~.9 wt% based on the weight gain according to Eq. (7): %carbon = weight gain of as-exfoliated LiFePO 4 weight gain of C-coated LiFePO 4 (7) 06 Weight gain / % % 3.2% C coated LiFePO 4 nanosheets 98 LiFePO 4 nanosheets Temperature / C Figure S9. TGA curves of as-exfoliated LiFePO 4 nanosheets (red) and LiFePO 4 nanosheets after carboncoating (blue).

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2017 Supplementary Information Self-Standing Bi 2 O 3 Nanoparticles/Carbon Nanofiber

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Supporting Information LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Xiaolong Zhang, Fangyi Cheng, Jingang Yang, Jun Chen* Key Laboratory of Advanced Energy

More information

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Supporting Information: In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Yi Zhao, Jiaxin Li, Ning Wang, Chuxin Wu, Yunhai Ding, Lunhui Guan*

More information

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode Supporting Information Towards High-Safety Potassium-Sulfur Battery Using Potassium Polysulfide Catholyte and Metal-Free Anode Jang-Yeon Hwang, Hee Min Kim, Chong S. Yoon, Yang-Kook Sun* Department of

More information

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes Supporting information Carbon-Coated Na 3 V 2 (PO 4 ) 3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li-Cathodes By Changbao Zhu, Kepeng Song, Peter

More information

Supporting Information for

Supporting Information for Supporting Information for Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles Feipeng Zhao, 1 Sida Shen, 1 Liang Cheng, 1 Lu Ma, 2 Junhua Zhou, 1 Hualin Ye, 1 Na Han, 1 Tianpin

More information

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of Electronic Supporting Information Synthesis of single crystalline hexagonal nanobricks of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with high percentage of exposed {010} active facets as high rate performance cathode

More information

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries Supporting Information for A Water-in-Salt Electrolyte for Potassium-Ion Batteries Daniel P. Leonard #, Zhixuan Wei #, Gang Chen, Fei Du *, Xiulei Ji * Department of Chemistry, Oregon State University,

More information

A Low-Cost High-Energy Potassium Cathode

A Low-Cost High-Energy Potassium Cathode Supporting information A Low-Cost High-Energy Potassium Cathode Leigang Xue, Yutao Li, Hongcai Gao, Weidong Zhou, Xujie Lü, Watchareeya Kaveevivitchai, Arumugam Manthiram, and John B. Goodenough * Materials

More information

Supplementary Information

Supplementary Information Supplementary Information Low Temperature Plasma Synthesis of Mesoporous Fe 3 O 4 Nanorods Grafted on Reduced Graphene Oxide for High Performance Lithium Storage Quan Zhou, a Zongbin Zhao,* a Zhiyu Wang,

More information

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Unlocking the Potential of Amorphous Red Phosphorus

More information

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4 Supporting information: Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4 Kyeongse Song, Eunbi Cho and Yong-Mook

More information

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries Zhong-li Wang, Dan Xu, Yun Huang, Zhong Wu, Li-min Wang and Xin-bo

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme

More information

High energy all-solid-state lithium batteries with

High energy all-solid-state lithium batteries with Supporting Information High energy all-solid-state lithium batteries with ultralong cycle life Xiayin Yao, Deng Liu, Chunsheng Wang, Peng Long, Gang Peng, Yong-Sheng Hu, *, Hong Li, Liquan Chen, and Xiaoxiong

More information

Supporting Information

Supporting Information Supporting Information Mg 2 B 2 O 5 Nanowires Enabled Multifunctional Solid-State Electrolyte with High Ionic Conductivity, Excellent Mechanical Properties and Flame-retardant Performance Ouwei Sheng,

More information

A high tenacity electrode by assembly of a soft sorbent and. hard skeleton for lithium-sulfur batteries

A high tenacity electrode by assembly of a soft sorbent and. hard skeleton for lithium-sulfur batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 A high tenacity electrode by assembly of a soft sorbent and hard skeleton

More information

Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries

Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2017 Unlocking the potential of amorphous red phosphorus films

More information

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents JOUL, Volume 1 Supplemental Information A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,

More information

Nitrogen-Doped Graphdiyne Applied for Lithium-

Nitrogen-Doped Graphdiyne Applied for Lithium- Supporting Information for Nitrogen-Doped Graphdiyne Applied for Lithium- Ion Storage Shengliang Zhang,, Huiping Du,, Jianjiang He,, Changshui Huang,*, Huibiao Liu, Guanglei Cui and Yuliang Li Qingdao

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information An amorphous material with sponge-like structure as anode for Liion and

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supplementary Information High performance potassium-sulfur batteries based

More information

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1 SUPPORTING INFORMATION Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle Based Lithium Ion Battery Anodes Tae Hoon Hwang, Yong Min Lee, Byung Seon Kong, Jin-Seok Seo, and Jang Wook Choi,,*

More information

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Supporting Information Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Bin Liu, Jun Zhang, Xianfu Wang, Gui Chen, Di

More information

High-Performance All-Solid-State Lithium-Sulfur. Battery Enabled by a Mixed-Conductive Li 2 S

High-Performance All-Solid-State Lithium-Sulfur. Battery Enabled by a Mixed-Conductive Li 2 S Supporting information High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li 2 S Nanocomposite Fudong Han, Jie Yue, Xiulin Fan, Tao Gao, Chao Luo, Zhaohui Ma, Liumin

More information

PVP-Functionalized Nanometer Scale Metal Oxide Coatings for. Cathode Materials: Successful Application to LiMn 2 O 4 Spinel.

PVP-Functionalized Nanometer Scale Metal Oxide Coatings for. Cathode Materials: Successful Application to LiMn 2 O 4 Spinel. PVP-Functionalized Nanometer Scale Metal Oxide Coatings for Cathode Materials: Successful Application to LiMn 2 O 4 Spinel Nanoparticles Hyesun Lim, Jaephil Cho* Department of Applied Chemistry Hanyang

More information

Spray Drying Method for Large-Scale and High. Performance Silicon Negative Electrodes in Li-ion. Batteries

Spray Drying Method for Large-Scale and High. Performance Silicon Negative Electrodes in Li-ion. Batteries SUPPORTING INFORMATION Spray Drying Method for Large-Scale and High Performance Silicon Negative Electrodes in Li-ion Batteries Dae Soo Jung, Tae Hoon Hwang, Seung Bin Park, and Jang Wook Choi,,* Graduate

More information

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte Supplementary Information for: Novel concept of rechargeable battery using iron oxide nanorods anode and nickel hydroxide cathode in aqueous electrolyte Zhaolin Liu *, Siok Wei Tay and Xu Li Institute

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Sodium-ion battery based on ion exchange membranes as electrolyte and separator Chengying Cao, Weiwei Liu, Lei Tan, Xiaozhen Liao and Lei Li* School of Chemical and Chemistry Engineering, Shanghai Jiaotong

More information

A membrane-free ferrocene-based high-rate semiliquid

A membrane-free ferrocene-based high-rate semiliquid Supporting Information A membrane-free ferrocene-based high-rate semiliquid battery Yu Ding,, Yu Zhao,, and Guihua Yu, * Materials Science and Engineering Program and Department of Mechanical Engineering,

More information

Supporting Information

Supporting Information Supporting Information Nucleation and Growth of Lithium Peroxide in the Li O2 Battery Sampson Lau and Lynden A. Archer * * E-mail: laa25@cornell.edu Chemical and Biomolecular Engineering, Cornell University,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Supporting Information

Supporting Information Supporting Information Hydrogenation Driven Conductive Na 2 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries Shidong Fu, Jiangfeng Ni, Yong Xu, Qiao Zhang*, and Liang Li*, College of Physics,

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage.

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage. Supporting Information Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity Weihan Li, Zhenzhong Yang, Minsi Li, Yu Jiang, Xiang Wei,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Capacity fade in high energy silicon-graphite electrodes for lithium-ion

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

Application in High-Performance Lithium-

Application in High-Performance Lithium- Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium- Sulfur (Li-S) Batteries Jiepeng Rong,Mingyuan

More information

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Hematite photoanode with gradient structure shows an unprecedentedly

More information

Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea Supporting Information Self-Passivation of LiNiO 2 Cathode for Lithium-Ion Battery through Zr Doping Chong S. Yoon, Un-Hyuck Kim, Geon-Tae Park, Suk Jun Kim, Kwang-Ho Kim, Jaekook Kim, and Yang-Kook Sun*

More information

Supporting Information for

Supporting Information for Supporting Information for Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries Guangyuan Zheng, Yuan Yang, Judy J. Cha, Seung Sae Hong and Yi

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery**

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery** Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for Li-S battery**

More information

One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anode for sodium-ion batteries

One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anode for sodium-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 One-pot synthesis of ultra-small magnetite nanoparticles on the surface

More information

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Supplementary Information Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Kunpeng Cai 1,, Min-Kyu Song 1,, Elton J. Cairns 2,3, and Yuegang Zhang 1,,* 1

More information

Design and Comparative Study of O3/P2 Hybrid Structures for

Design and Comparative Study of O3/P2 Hybrid Structures for Supporting Information Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries Xingguo Qi, a,b,# Lilu Liu, a,b,# Ningning Song, c Fei Gao, d Kai Yang, d Yaxiang

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface

Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface Promoting long-term cycling performance of high-voltage Li 2 CoPO 4 F by the stabilization of electrode/electrolyte interface Xiaobiao Wu a, Sihui Wang a, Xiaochen Lin a, Guiming Zhong a, Zhengliang Gong

More information

Supporting Information for. Pseudocapacitive layered birnessite sodium manganese dioxide for

Supporting Information for. Pseudocapacitive layered birnessite sodium manganese dioxide for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information for Pseudocapacitive layered birnessite sodium manganese

More information

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH Nanocrystalline LiFePO as cathode material for lithium battery applications Abstract S.C SIAH Engineering Science Programme, National University of Singapore Kent Ridge, Singapore 119260 LiFePO was prepared

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting information A Low Temperature Molten Salt Process for Aluminothermic

More information

Low Charge Overpotentials in Lithium-Oxygen Batteries Based on Tetraglyme Electrolytes with Limited Amount of Water

Low Charge Overpotentials in Lithium-Oxygen Batteries Based on Tetraglyme Electrolytes with Limited Amount of Water Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) Low Charge Overpotentials in Lithium-Oxygen

More information

Supporting Information. Top-down fabrication of crystalline metal-organic framework nanosheets. Experimental section

Supporting Information. Top-down fabrication of crystalline metal-organic framework nanosheets. Experimental section Supporting Information Top-down fabrication of crystalline metal-organic framework nanosheets Pei-Zhou Li, a,b Yasushi Maeda a and Qiang Xu* a,b a National Institute of Advanced Industrial Science and

More information

suppressing charging instabilities of Li-O 2 batteries

suppressing charging instabilities of Li-O 2 batteries Supporting information for Highly efficient Br /NO 3 dual-anion electrolyte for suppressing charging instabilities of Li-O 2 batteries Xing Xin, Kimihiko Ito, Yoshimi Kubo* GREEN, National Institute for

More information

Supporting Information

Supporting Information Supporting Information Garnet electrolyte with an ultra-low interfacial resistance for Li-metal batteries Yutao Li, Xi Chen, Andrei Dolocan, Zhiming Cui, Sen Xin, Leigang Xue, Henghui Xu, Kyusung Park,

More information

Supporting Information

Supporting Information Supporting Information Novel DMSO-based Electrolyte for High Performance Rechargeable Li-O 2 Batteries Dan Xu, a Zhong-li Wang, a Ji-jing Xu, a Lei-lei Zhang, a,b and Xin-bo Zhang a* a State Key Laboratory

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supporting Information A Fast Chemical Approach towards Sb 2 S 3 Film with Large Grain Size for

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO 3 Yifan Dong, Tyler Slade, Matthew J. Stolt, Linsen Li, Steven N. Girard, Liqiang

More information

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode SUPPORTING INFORMATION A Rechargeable Aluminum-Ion Battery Based on MoS 2 Microsphere Cathode Zhanyu Li a, Bangbang Niu a, Jian Liu a, Jianling Li a* Feiyu Kang b a School of Metallurgical and Ecological

More information

Anomalous high ionic conductivity of nanoporous β-li 3 PS 4

Anomalous high ionic conductivity of nanoporous β-li 3 PS 4 Anomalous high ionic conductivity of nanoporous β-li 3 PS 4 Zengcai Liu 1, Wujun Fu 1, E. Andrew Payzant 1,2, Xiang Yu 1, Zili Wu 1,3, Nancy J. Dudney 2, Jim Kiggans 2, Kunlun Hong 1, Adam J. Rondinone

More information

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

More information

Final Report for AOARD Grant FA Lithium-air Battery Research. December 2009

Final Report for AOARD Grant FA Lithium-air Battery Research. December 2009 Final Report for AOARD Grant FA 4869-7-1-49 Lithium-air Battery Research December 29 Name of Principal Investigators: Prof. N. Munichandraiah - e-mail address : muni@ipc.iisc.ernet.in - Institution : Indian

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 218 Supporting Information anoporous sulfur bridged hexaazatrinaphthylene framework as organic cathode

More information

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects Supporting Information A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects Yujie Hao, a Sheng Wang, a Feng Xu, a Yijie Liu, a Ningning Feng, a Ping He, *a Haoshen

More information

Novel Materials for Lithium-Ion Batteries

Novel Materials for Lithium-Ion Batteries Novel Materials for Lithium-Ion Batteries John Bradley May 18th 2012 Project Supervisors: Prof. West & Chaou Tan Abstract The effect of carbon coating on two novel battery cathode materials LiMnP 2 O 7

More information

Supplementary information. performance Li-ion battery

Supplementary information. performance Li-ion battery Supplementary information The investigation of Ni(OH) 2 /Ni as anode for high performance Li-ion battery Shibing Ni a, Xiaohu Lv a, Tao Li a, Xuelin Yang a,and Lulu Zhang a College of Mechanical and Material

More information

Electronic Supplementary Information A general method to prepare transition-metal ammonium phosphate nanoflake constructed microspheres

Electronic Supplementary Information A general method to prepare transition-metal ammonium phosphate nanoflake constructed microspheres Electronic Supplementary Information A general method to prepare transition-metal ammonium phosphate nanoflake constructed microspheres Changfeng Zeng, a Wei Wei b and Lixiong Zhang b a College of Mechanic

More information

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors Supporting information MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors Lanyong Yu, Longfeng Hu, Babak Anasori, Yi-Tao Liu, Qizhen Zhu, Peng Zhang, Yury Gogotsi,

More information

Electrochemical and Transport Properties of Ions in Mixtures of. Electroactive Ionic Liquid and Propylene Carbonate with a Lithium

Electrochemical and Transport Properties of Ions in Mixtures of. Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Supporting Information Electrochemical and Transport Properties of Ions in Mixtures of Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Salt for Lithium-ion Batteries Bruno Gélinas, Myriann

More information

Sb C Nanofibers with Long Cycle Life as an Anode Material for High-performance Sodium-ion Batteries

Sb C Nanofibers with Long Cycle Life as an Anode Material for High-performance Sodium-ion Batteries Supplementary Material (ESI) for Energy & Environmental Science Sb C Nanofibers with Long Cycle Life as an Anode Material for High-performance Sodium-ion Batteries Lin Wu, a Xiaohong Hu, b* Jiangfeng Qian,

More information

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning 2016 International Conference on Intelligent Manufacturing and Materials (ICIMM 2016) ISBN: 978-1-60595-363-2 The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning Yiqiang

More information

Superior Additive of Exfoliated RuO 2 Nanosheet. Oxide over Graphene

Superior Additive of Exfoliated RuO 2 Nanosheet. Oxide over Graphene Supporting Information Superior Additive of Exfoliated RuO 2 Nanosheet for Optimizing the Electrode Performance of Metal Oxide over Graphene Seul Lee, a, Xiaoyan Jin a, In Young Kim, a Tae-Ha Gu, a Ji-Won

More information

Double-Network Nanostructured Hydrogel-Derived. Ultrafine Sn Fe Alloy in 3D Carbon Framework for

Double-Network Nanostructured Hydrogel-Derived. Ultrafine Sn Fe Alloy in 3D Carbon Framework for Supporting Information Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn Fe Alloy in 3D Carbon Framework for Enhanced Lithium Storage Hongxia Shi,, Zhiwei Fang,, Xiao Zhang, Feng Li, Yawen Tang,

More information

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Intercalation of Bi nanoparticles into

More information

Supplementary Information

Supplementary Information Supplementary Information An all-integrated bifunctional separator for Li dendrite detection via solution synthesis of thermostable polyimide nanoporous membrane Dingchang Lin, Denys Zhuo, Yayuan Liu,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating Quan Pang, Laidong Zhou, Linda F. Nazar* Department of Chemistry and the Waterloo Institute for

More information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Operando Electron Magnetic Measurements in Li-ion Batteries Gregory Gershinsky, Elad Bar, Laure Monconduit,

More information

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal Supporting Information An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal Adam P. Cohn 1, Nitin Muralidharan 2, Rachel Carter 1, Keith Share 2, and Cary L. Pint 1,2 * 1 Department of

More information

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Supporting Information Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Yu Lei,, Lei Qin,, Ruliang Liu,, Kah Chun Lau, Yiying Wu, Dengyun Zhai, *, Baohua Li, and Feiyu Kang *,

More information

Supporting Information. Ultrathin and Large-Sized Vanadium Oxide Nanosheets Mildly. Prepared at Room Temperature for High Performance Fiber-Based

Supporting Information. Ultrathin and Large-Sized Vanadium Oxide Nanosheets Mildly. Prepared at Room Temperature for High Performance Fiber-Based Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Ultrathin and Large-Sized Vanadium Oxide Nanosheets

More information

Morphology controlled synthesis of monodispersed manganese. sulfide nanocrystals and their primary application for supercapacitor

Morphology controlled synthesis of monodispersed manganese. sulfide nanocrystals and their primary application for supercapacitor Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals

More information

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Oxygen Evolution Reaction

More information

High-Rate Alkali-Ion Batteries: from Rational. Synthesis to In-situ Probing

High-Rate Alkali-Ion Batteries: from Rational. Synthesis to In-situ Probing Supporting Information for Two-Dimensional Holey Co 3 O 4 Nanosheets for High-Rate Alkali-Ion Batteries: from Rational Synthesis to In-situ Probing Dahong Chen,,,# Lele Peng,,# Yifei Yuan,,,# Yue Zhu,

More information

The Li-O 2 Battery with a Dimethylformamide Electrolyte

The Li-O 2 Battery with a Dimethylformamide Electrolyte The Li-O 2 Battery with a Dimethylformamide Electrolyte Yuhui Chen, Stefan A. Freunberger, Zhangquan Peng, Fanny Bardé and Peter G. Bruce* School of Chemistry, University of St. Andrews, North Haugh, St.

More information

Soft silicon anodes for lithium ion batteries

Soft silicon anodes for lithium ion batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Soft silicon anodes for lithium ion batteries Qizhen

More information

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Korean J. Chem. Eng., 27(1), 91-95 (2010) DOI: 10.1007/s11814-009-0298-0 RAPID COMMUNICATION Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Sung-Chul Hong*,

More information

Supporting Information

Supporting Information Supporting Information Intercalation Synthesis of Prussian Blue Analog Nanocone and Their Conversion into Fe Doped Co x P Nanocone for Enhanced Hydrogen Evolution Xiaosong Guo, Xiaoguang Yu, Zijia Feng,

More information

Supporting Information for Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries

Supporting Information for Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries Supporting Information for Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries Shinichi Komaba,* a Toru Ishikawa, a Naoaki Yabuuchi, a Wataru Murata, a Atsushi Ito, b and

More information

Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY.

Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY. Paper ID: 373 Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY Lin Zou, Yong-Ping Zheng, Feiyu Kang, Wanci Shen, Can Xu Laboratory

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019. Supporting Information for Small, DOI: 10.1002/smll.201804609 Dual-Function, Tunable, Nitrogen-Doped Carbon for High- Performance

More information

Supporting Information. enhanced electrochemical performance for energy storage

Supporting Information. enhanced electrochemical performance for energy storage Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Facile fabrication of hierarchical porous rose-like

More information

All-solid-state Batteries with Thick Electrode Configurations

All-solid-state Batteries with Thick Electrode Configurations All-solid-state Batteries with Thick Electrode Configurations Yuki Kato, * Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno Toyota Motor Europe NV/SA, Hoge Wei 33, 1930 Zaventem,

More information

SUPPORTING INFORMATION. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery

SUPPORTING INFORMATION. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery SUPPORTING INFORMATION High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery Huali Wang, Sichen Gu, Ying Bai,, ** Shi Chen, Feng Wu,, and Chuan Wu,, ** Beijing Key

More information

Terephthalonitrile-derived nitrogen-rich networks for high

Terephthalonitrile-derived nitrogen-rich networks for high Electronic Supplementary Information Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors Long Hao, a Bin Luo, a Xianglong Li, a Meihua Jin, a Yan Fang, a Zhihong Tang,

More information