Design of High Strength Wrought Magnesium Alloys!

Size: px
Start display at page:

Download "Design of High Strength Wrought Magnesium Alloys!"

Transcription

1 Design of High Strength Wrought Magnesium Alloys! Joseph Robson! School of Materials! University of Manchester UK!

2 ! Strengthening of Mg! Mg has low density (2/3 Al, 1/4 Fe)! Specific strength of commercial strong wrought Mg alloys is less than commercial strong wrought Al alloys! Density Strength Specific strength Mg! Al! Pure Al and pure Mg have similar strength (Al UTS =80MPa, Mg UTS =90MPa)! Poor age hardening of Mg limits maximum strength! Mg! Elektron-675: 15% strength increase on ageing (F to T5)! AA7449: >500% strength increase on ageing (F to T6)! Al! Mg! Al!

3 Strengthening Mg: Issues! Require higher strength Mg alloys with reduced mechanical anisotropy and asymmetry! Scientific issues! Fundamental deformation mechanisms of Mg! Role of texture! Grain size strengthening! Solute strengthening and softening! Strengthening against deformation twinning! Optimizing precipitation for strengthening (slip and twinning)!

4 Fundamentals of Deformation Magnesium has a hexagonal close packed (hcp) crystal structure! This has important implications for its strength and deformation! 1 st order pyramidal plane! c-axis! Prismatic plane! Slip mode Relative CRSS (at RT) Basal 1 Prismatic 40 Pyramidal 50 2 nd order pyramidal plane! _! <1123>! _! <1120>! Basal plane! Slip systems in Mg! Mg only has 2 easily activated independent slip systems at room temperature!! At least 5 independent slip systems are needed for to accommodate general deformation in a single crystal!

5 Slip modes providing deformation in <a> direction only! Prismatic Slip mode providing deformation in <c+a> direction, but very high CRSS! Problem in Mg is accommodating <c> axis deformation! Twinning produces <c> deformation BUT! Inherently asymmetric! Accommodates limited and fixed (low) strain! Twinning mode providing deformation in <c+a>, low CRSS!

6 Effect of Temperature (T) Non-basal slip in Mg usually initated by thermally activated cross-slip from basal slip easier at higher T! CRSS for slip systems converge at higher T: easier activation of non-basal modes and greater ductility! CRSS for twinning relatively insensitive to T! prism <a> One proposed mechanism for<c+a> slip [Yoo]: Cross slip of basal <a> to prismatic <a>. Combination of prismatic <a> with sessile <c> = glissle <c+a>! basal <a> <c+a>

7 Deformation of Polycrystals x1.5 For engineering applications, we use polycrystals - single crystal limitations are relaxed! 5 independent slip systems not necessarily needed (grains can accommodate deformation cooperatively)! Relative CRSS values for different modes converge! Polycrystalline Mg alloys generally show quite good uniaxial ductility! CRSS x40 Single x-tal pure Mg [Hutchinson and Barnett, Scripta Mater.] Polycrystalline alloy AZ31 ECAP >25% elongation

8 Importance of Texture Limited deformation systems typically leads to strong textures during deformation to produce wrought alloys! Most wrought Mg alloys show basal texture! c-axis TD RD Ductility and isotropy can be greatly enhanced by weakening/changing texture! Alloying: RE additions (and others)! Processing: ECAP, asymmetric rolling! Reduce aniostropy but at expense of strength!

9 Grain Size! Strengthening Grain refinement is potent strengthening mechanism in Mg! Grain refinement below critical level can also suppress twinning (good!)! Critical in Mg to obtain and retain fine grain structure! T6 not used for Mg to avoid recrystallization/grain growth! T5 retains fine grains but reduces age hardening potential! σ y σ y Al! Mg! k = 0.14 MPam -0.5! k = 0.35 MPam -0.5! d -0.5! Mg twinning! Mg nonbasal slip! Slip easier than twinning (small grains)! d -0.5! Age hardenable Mg alloys typically derive~50% of strength from Hall- Petch (grain size) strengthening.!

10 Solute Strengthening Effect of solutes in Mg on strengthening is not fully understood! Solutes strengthen against basal slip (expected)! Some solutes can soften non-basal modes (but not always!) by promoting cross-slip from basal plane! First principles methods (Yasi, Trinkle et al.) have shown good potential to predict this behaviour: It may be useful in producing more isotropic and more formable Mg alloys! Solute softening to improve isotropy will reduce strength! More Zn, prismatic <a> CRSS reduced Akhtar and Teghtsoonian, Acta Metall., 17, p , 1969 (single crystal study)

11 Age hardening: Current limtations! 0.1µm AA2198 Al-Cu-Mg-Li σ y ~500MPa WE43 Mg-Y-RE σ y ~200MPa Low nucleation rate of precipitates (compared with Al)! Precipitates poorly oriented to block basal slip! Current Mg alloys poorly designed to optimize ageing! Cannot fully solutionize strengtheing elements! Interaction between grain refiner and strengthener! Solution treatment not possible (excessive grain growth)! Need to strengthen against both slip and twinning

12 Effect of Precipitate Shape and Habit on Strengthening - 1!

13 Effect of Precipitate Shape and Habit on Strengthening - 2! Strengthening against slip controlled by gap between precipitates (Orowan strengthening)! Two factors control gap! Number of particles/area on slip plane! Mean planar diameter on slip plane! Since basal slip is easiest mode in Mg, gap on basal plane most critical!

14 Effect of Precipitate Shape and Habit on Strengthening - 3! Summary: prismatic plate shaped precipitates are best!

15 Precipitation Strengthening: Twinning! Compressive yield of extrusions (basal texture) controlled by twinning! Precipitation can significantly increase yield strength in compression! Precipitates can be strong obstacles for twin growth! CRSS for twin growth increased by 20-50MPa! Increased CRSS for twin growth not well predicted by Orowan! Measured ΔCRSS CRSS gap Bowing stress (Orowan)

16 Precipitate/Twin interactions

17 Precipitate/Twin: Schematic Twin Twin Twin Twin

18 Contributions to Strengthening Contributions to strengthening against twinning due to unsheared precipitates! Orowan stress required to loop twinning dislocations and leave precipitate unsheared! Back-stress arising from strain incompatibility between unsheared precipitate and sheared matrix! ~25% Contributions to strengthening against twinning ~75% M. R. Barnett

19 Precipitate Induced Backstress Unsheared precipitate generates a misfit leading to a backstress when embedded in twin! Back-stress acts against twin growth harder to twin! Basal and prismatic plates produce maximum back-stress! Accommodation tensor (fn of particle shape/orientation)! Strain discontinuity tensor!

20 Misfit Stresses: Plastic Relaxation Basal plates! c-axis rods! Prismatic plates! x x M. A. Gharghouri, G. C. Weatherly, J. D. Embury, Phil. Mag. A, 78 (1998) pp y y z

21 Precipitation: Asymmetry Use strengthening models for slip (Orowan) and twinning (backstress) to predict effect of precipitate shape/habit on asymmetry! Model predictions of effect of precipitate shape/habit on asymmetry! Measured asymmetry ratios (AR) before and after precipitation (basal plates vs c-axis rods)! Alloy (ppt) AR (before age) AR (after age) AZ91 (basal plate) Z5 (rods)

22 Ideal High Strength Mg Alloy Ideal high strength wrought Mg alloy would have:! 1 Weak/random texture to minimize asymmetry/anistropy! 2 Effective precipitates for strengthening against both slip and twinning (prismatic plates, finely distributed)! 3 Fine grain size for strength, ductility, resistance to twinning! 4 Other desirable properties: corrosion resistance, low flamability! 5 Low cost! Requirement Mg-Al-Zn (AZ) Mg-RE (WE, E675 ) Texture N (strong basal) Y (RE-texture) Effective pptn N (basal plates) Y (prismatic plates) Fine grain size Y/N Y/N Other props N Y Low cost Y N

23 Research to Replace REs RE containing Mg alloys have best properties but high cost/security of supply issues! Large research effort to find replacement to RE alloys that match strength and low anisotropy! Most promising systems (e.g. to replace Mg-RE Elektron-675-T5 σ y =230MPa)! Mg-Zn-Ca (+ Ag): σ y =325MPa, low asymmetry! Mg-Sn-Al-Zr (+ Na): σ y ~300MPa! Key ingredients of such an alloy! Element to induce texture weakening (e.g. Ca)! Elements capable of strong age hardening response! Microalloying to promote precipitate nucleation (Ag, Na)! Element to pin grain boundaries retain fine grains after TMP!

24 High Strength Mg Alloy Design! Alec Davis, CDT PhD student Prismatic plates most effective but common only in Mg-RE alloys! Non-RE alloys can form mix of basal plates/c-axis rods! Design alloy using mix of basal plates/c-axis rods to both! Maximize strengthening (inhibit basal slip)! Minimize asymmetry/anisotropy (suppress twinning)! Prismatic Twin Basal Mg-Sn-Zn (+MA) σ y >230MPa No single phase region 0 = isotropic

25 Summary In specific strength limited applications, high strength Mg alloys underperform high strength Al alloys due to relatively poor ageing response! Strengthening of Mg requires different approaches to strengthening of Al! Increased importance of grain size strengthening! Highly anisotropic strengthening from precipitation! Critical role of texture in anisotropy and asymmetry! Understanding contributions to stengthening can lead to design of reduced cost, higher strength Mg alloys!

26 Acknowledgements Matt Barnett (Deakin), Nikki Stanford (Monash)! EPSRC Light Alloys for Sustainable Transport (LATEST-2), CDT in Advanced Metallic Systems! Magnesium Elektron! Thanks for listening!

27 {10-12} twin in magnesium

The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys

The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys The effect of composition and temperature on the deformation behaviour of magnesium-aluminium binary alloys by Ajay Kumar Mahato A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor

More information

Strengthening Mechanisms

Strengthening Mechanisms Strengthening Mechanisms The ability of a metal/ alloy to plastically deform depends on the ability of dislocations to move. Strengthening techniques rely on restricting dislocation motion to render a

More information

Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling

Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling Materials Transactions, Vol. 43, No. 10 (2002) pp. 2554 to 2560 c 2002 The Japan Institute of Metals Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single

More information

Formability and Crystallographic Texture in Novel Magnesium Alloys

Formability and Crystallographic Texture in Novel Magnesium Alloys Formability and Crystallographic Texture in Novel Magnesium Alloys Carlos Soto, Dr. Pnina Ari-Gur, Andreas, Quojo Quainoo, Dr. Betsy Aller, Dr. Andrew Kline Western Michigan University Abstract By looking

More information

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary

Materials Issues in Fatigue and Fracture. 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Failure 5.4 Summary 1 A simple view of fatigue 1. Will a crack nucleate? 2. Will it grow? 3. How fast will

More information

Chapter 8. Deformation and Strengthening Mechanisms

Chapter 8. Deformation and Strengthening Mechanisms Chapter 8 Deformation and Strengthening Mechanisms Chapter 8 Deformation Deformation and Strengthening Issues to Address... Why are dislocations observed primarily in metals and alloys? How are strength

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

Strengthening Mechanisms. Today s Topics

Strengthening Mechanisms. Today s Topics MME 131: Lecture 17 Strengthening Mechanisms Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Strengthening strategies: Grain strengthening Solid solution strengthening Work hardening

More information

IN-SITU NEUTRON DIFFRACTION STUDY OF AGING OF A Mg-Y-Nd-Zr ALLOY (WE43): EFFECTS OF PRECIPITATION ON INDIVIDUAL DEFORMATION MECHANISMS

IN-SITU NEUTRON DIFFRACTION STUDY OF AGING OF A Mg-Y-Nd-Zr ALLOY (WE43): EFFECTS OF PRECIPITATION ON INDIVIDUAL DEFORMATION MECHANISMS Mg2012: 9th International Conference on Magnesium Alloys and their Applications W.J. Poole and K.U. Kainer IN-SITU NEUTRON DIFFRACTION STUDY OF AGING OF A Mg-Y-Nd-Zr ALLOY (WE43): EFFECTS OF PRECIPITATION

More information

Single Crystal Deformation

Single Crystal Deformation Single Crystal Deformation To make the connection between dislocation behavior and yield strength as measured in tension, consider the deformation of a single crystal. Given an orientation for single slip,

More information

Module-6. Dislocations and Strengthening Mechanisms

Module-6. Dislocations and Strengthening Mechanisms Module-6 Dislocations and Strengthening Mechanisms Contents 1) Dislocations & Plastic deformation and Mechanisms of plastic deformation in metals 2) Strengthening mechanisms in metals 3) Recovery, Recrystallization

More information

Chapter 7: Dislocations and strengthening mechanisms. Strengthening by grain size reduction

Chapter 7: Dislocations and strengthening mechanisms. Strengthening by grain size reduction Chapter 7: Dislocations and strengthening mechanisms Mechanisms of strengthening in metals Strengthening by grain size reduction Solid-solution strengthening Strain hardening Recovery, recrystallization,

More information

19/03/2014. Research In Focus. Microstructural Control for Optimized Formability

19/03/2014. Research In Focus. Microstructural Control for Optimized Formability Conquering low formability for optimized microstructures Dr João Fonseca Conquering Low Formability for optimized microstructures Key Objectives AIM: Advance understanding and predictive modelling to enable

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

EFFECT OF MICROSTRUCTURAL PARAMETERS ON TWINNING ACTIVITY OF MAGNESIUM ALLOYS

EFFECT OF MICROSTRUCTURAL PARAMETERS ON TWINNING ACTIVITY OF MAGNESIUM ALLOYS EFFECT OF MICROSTRUCTURAL PARAMETERS ON TWINNING ACTIVITY OF MAGNESIUM ALLOYS VLIV MIKROSTRUKTURNÍCH PARAMETRŮ NA AKTIVITU DVOJČATĚNÍ V SLITINÁCH HOŘČÍKU Kristian MÁTHIS, Jan ČAPEK, Zuzana ZDRAŽILOVÁ FACULTY

More information

Fundamentals of Plastic Deformation of Metals

Fundamentals of Plastic Deformation of Metals We have finished chapters 1 5 of Callister s book. Now we will discuss chapter 10 of Callister s book Fundamentals of Plastic Deformation of Metals Chapter 10 of Callister s book 1 Elastic Deformation

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

Chapter 7: Plastic deformation, Strengthening and Recrystallisation of Metals

Chapter 7: Plastic deformation, Strengthening and Recrystallisation of Metals Chapter 7: Plastic deformation, Strengthening and Recrystallisation of Metals What do I need to know? The Mechanism of Plastic formation in single and polycrystalline metals The slip mechanism The slip

More information

Chapter 7: Dislocations and strengthening mechanisms

Chapter 7: Dislocations and strengthening mechanisms Chapter 7: Dislocations and strengthening mechanisms Introduction Basic concepts Characteristics of dislocations Slip systems Slip in single crystals Plastic deformation of polycrystalline materials Plastically

More information

Problems to the lecture Physical Metallurgy ( Materialkunde ) Chapter 6: Mechanical Properties

Problems to the lecture Physical Metallurgy ( Materialkunde ) Chapter 6: Mechanical Properties Institut für Metallkunde und Metallphysik Direktor: Prof. Dr. rer. nat. Günter Gottstein RWTH Aachen, D-52056 Aachen Internet: http://www.imm.rwth-aachen.de E-mail: imm@imm.rwth-aachen.de Tel.: +49 241

More information

Texture and properties - II

Texture and properties - II Texture and properties - II Texture and Hall-Petch strength The Hall-Petch equation 0 k d - ½ where, 0 = k = d = lattice frictional stress locking parameter average grain size modifies for textured polycrystals

More information

THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION

THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION The Rev. texture Adv. Mater. strengthening Sci. 31 (2012) effect 157-162 in a magnesium alloy processed by severe plastic deformation 157 THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED

More information

A Crystal Plasticity Model of Fatigue of Dissimilar Magnesium Alloy Bi-Crystals

A Crystal Plasticity Model of Fatigue of Dissimilar Magnesium Alloy Bi-Crystals A Crystal Plasticity Model of Fatigue of Dissimilar Magnesium Alloy Bi-Crystals By Simon Knight A thesis submitted to the Department of Mechanical and Materials Engineering in conformity with the requirements

More information

Origins of Strength and Ductility in Mg Y Alloys. Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 701 Graduate Seminar 18 th December,2012

Origins of Strength and Ductility in Mg Y Alloys. Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 701 Graduate Seminar 18 th December,2012 Origins of Strength and Ductility in Mg Y Alloys Xiaohui Jia ( Supervisor: Dr.Marek Niewczas ) 71 Graduate Seminar 18 th December,212 Outline 2 Introduction Background Slip systems and twin types in Magnesium

More information

Dependence of flow strength and deformation mechanisms in common wrought and die cast magnesium alloys on orientation, strain rate and temperature

Dependence of flow strength and deformation mechanisms in common wrought and die cast magnesium alloys on orientation, strain rate and temperature Available online at www.sciencedirect.com ScienceDirect Journal of Magnesium and Alloys 1 (2013) 275e282 www.elsevier.com/journals/journal-of-magnesium-and-alloys/2213-9567 Full length article Dependence

More information

Yielding of Light-Weight Materials

Yielding of Light-Weight Materials Yielding of Light-Weight Materials Part I: Introduction to Plasticity W. Brocks Christian Albrecht University Material Mechanics Structural Light-Weight Materials Aluminium alloys Density 2,7 g/cm 3 Application

More information

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED AlMgSi ALLOY PROCESSED BY ECAP AND IT S THERMAL STABILITY.

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED AlMgSi ALLOY PROCESSED BY ECAP AND IT S THERMAL STABILITY. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED AlMgSi ALLOY PROCESSED BY ECAP AND IT S THERMAL STABILITY. Kovářík Tomáš a Zrník Jozef b a ZČU, Univerzitní 22, 306 14 Plzeň, ČR, kt3@seznam.cz

More information

Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy

Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy Materials Transactions, Vol. 44, No. 11 (2003) pp. 2276 to 2281 #2003 The Japan Institute of Metals Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy Y. N. Wang 1;2 and J.

More information

Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures

Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures Multiscale models of metal plasticity Part II: Crystal plasticity to subgrain microstructures M. Ortiz California Institute of Technology MULTIMAT closing meeting Bonn, Germany, September 12, 2008 Dislocation

More information

The Deformation Behavior of Rare-earth Containing Mg Alloys

The Deformation Behavior of Rare-earth Containing Mg Alloys The Deformation Behavior of Rare-earth Containing Mg Alloys Ajith Chakkedath 1, C.J. Boehlert 1,2, Z. Chen 1, M.T. Perez-Prado 2, J. Llorca 2, J. Bohlen 3, S. Yi 3, and D. Letzig 3. 1 Michigan State University,

More information

Effect of Alloying Elements and Extrusion Speed on Plastic Deformation of Mg Alloys Investigated by the AE Technique

Effect of Alloying Elements and Extrusion Speed on Plastic Deformation of Mg Alloys Investigated by the AE Technique WDS'9 Proceedings of Contributed Papers, Part III, 113 117, 9. ISBN 978-8-7378-13-3 MATFYZPRESS Effect of Alloying Elements and Extrusion Speed on Plastic Deformation of Mg Alloys Investigated by the AE

More information

The Mechanical Behavior of AZ31B in Compression Not Aligned with the Basal Texture

The Mechanical Behavior of AZ31B in Compression Not Aligned with the Basal Texture ARL-RP-0622 FEB 2018 US Army Research Laboratory The Mechanical Behavior of AZ31B in Compression Not Aligned with the Basal Texture by Christopher S Meredith Paper presented at: the International Conference

More information

Influence of Grain Size on Elongation at Elevated Temperatures in AZ31 Mg Alloy

Influence of Grain Size on Elongation at Elevated Temperatures in AZ31 Mg Alloy Materials Transactions, Vol. 44, No. 4 (2003) pp. 490 to 495 Special Issue on Platform Science and Technologyfor Advanced Magnesium Alloys, II #2003 The Japan Institute of Metals Influence of Grain Size

More information

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10 Lectures 9 and 10 Chapter 7: Dislocations & Strengthening Mechanisms Dislocations & Materials Classes Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloud

More information

Strengthening Mechanisms

Strengthening Mechanisms ME 254: Materials Engineering Chapter 7: Dislocations and Strengthening Mechanisms 1 st Semester 1435-1436 (Fall 2014) Dr. Hamad F. Alharbi, harbihf@ksu.edu.sa November 18, 2014 Outline DISLOCATIONS AND

More information

Analyses on Compression Twins in Magnesium

Analyses on Compression Twins in Magnesium aterials Transactions, Vol. 49, No. 4 (2008) pp. 710 to 714 #2008 The Japan Institute of etals Analyses on Compression Twins in agnesium L. eng 1, P. Yang 1; *, Q. Xie 1 and W. ao 1;2 1 School of aterials

More information

Activation of deformation mechanism

Activation of deformation mechanism Activation of deformation mechanism The deformation mechanism activates when a critical amount of mechanical stress imposed to the crystal The dislocation glide through the slip systems when the required

More information

EFFECT OF GRAIN BOUNDARY MISORIENTATION ON THE ASYMMETRY, ANISOTROPY, AND NUCLEATION STRESSES OF {10 2} TWINNING AND NON-BASAL SLIP IN MAGNESIUM

EFFECT OF GRAIN BOUNDARY MISORIENTATION ON THE ASYMMETRY, ANISOTROPY, AND NUCLEATION STRESSES OF {10 2} TWINNING AND NON-BASAL SLIP IN MAGNESIUM Mg2012: 9th International Conference on Magnesium Alloys and their Applications W.J. Poole and K.U. Kainer EFFECT OF GRAIN BOUNDARY MISORIENTATION ON THE ASYMMETRY, ANISOTROPY, AND NUCLEATION STRESSES

More information

DEFORMATION AND FRACTURE LAB COURSE. The Bauschinger Effect

DEFORMATION AND FRACTURE LAB COURSE. The Bauschinger Effect Lab Course on Deformation and Fracture Bauschinger Effect 1 DEFORMATION AND FRACTURE LAB COURSE Autumn semester 2014 The Bauschinger Effect Gabriella Tarantino text by A Rossoll (translated from French

More information

Wrought Aluminum I - Metallurgy

Wrought Aluminum I - Metallurgy Wrought Aluminum I - Metallurgy Northbrook, IL www.imetllc.com Copyright 2015 Industrial Metallurgists, LLC Course learning objectives Explain the composition and strength differences between the alloy

More information

Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, Prague 2, Czech Republic

Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, Prague 2, Czech Republic EFFECT OF EQUAL CHANNEL ANGULAR PRESSING ON TWIN-ROLL CAST AZ31 MAGNESIUM STRIP ZIMINA Mariia 1, POKOVÁ Michaela 1, BOHLEN Jan 2, KURZ Geritt 2, LETZIG Dietmar 2, CIESLAR Miroslav 1 1 Charles University

More information

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige Chapter 7 Dislocations and Strengthening Mechanisms Dr. Feras Fraige Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and

More information

PLASTIC DEFORMATION AND CONSTITUTIVE MODELING OF MAGNESIUM-BASED NANOCOMPOSITES CHEN YANG A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

PLASTIC DEFORMATION AND CONSTITUTIVE MODELING OF MAGNESIUM-BASED NANOCOMPOSITES CHEN YANG A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PLASTIC DEFORMATION AND CONSTITUTIVE MODELING OF MAGNESIUM-BASED NANOCOMPOSITES CHEN YANG (B.Eng., Sichuan University M.Eng., Sichuan University M.Eng. National University of Singapore) A THESIS SUBMITTED

More information

Movement of edge and screw dislocations

Movement of edge and screw dislocations Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)

More information

A discrete dislocation plasticity analysis of grain-size strengthening

A discrete dislocation plasticity analysis of grain-size strengthening Materials Science and Engineering A 400 401 (2005) 186 190 A discrete dislocation plasticity analysis of grain-size strengthening D.S. Balint a,, V.S. Deshpande a, A. Needleman b, E. Van der Giessen c

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 7 Strain Hardening and Annealing

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 7 Strain Hardening and Annealing The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 7 Strain Hardening and Annealing 1 Objectives of Chapter 7 To learn how the strength of metals and alloys is

More information

Plastic Anisotropy in Recrystallized and Unrecrystallized Extruded Aluminium Profiles

Plastic Anisotropy in Recrystallized and Unrecrystallized Extruded Aluminium Profiles Proceedings of the 9 th International Conference on Aluminium Alloys (24) 14 Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd Plastic Anisotropy in Recrystallized

More information

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS Why are dislocations observed primarily in metals CHAPTER 8: and alloys? DEFORMATION AND STRENGTHENING MECHANISMS How are strength and dislocation motion related? How do we manipulate properties? Strengthening

More information

Chapter 8: Strain Hardening and Annealing

Chapter 8: Strain Hardening and Annealing Slide 1 Chapter 8: Strain Hardening and Annealing 8-1 Slide 2 Learning Objectives 1. Relationship of cold working to the stress-strain curve 2. Strain-hardening mechanisms 3. Properties versus percent

More information

Chapter 9: Dislocations & Strengthening Mechanisms. Why are the number of dislocations present greatest in metals?

Chapter 9: Dislocations & Strengthening Mechanisms. Why are the number of dislocations present greatest in metals? Chapter 9: Dislocations & Strengthening Mechanisms ISSUES TO ADDRESS... Why are the number of dislocations present greatest in metals? How are strength and dislocation motion related? Why does heating

More information

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY

MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY TEQIP Workshop on HRXRD, IIT Kanpur, 05 Feb 2016 MICROSTRUCTURAL INVESTIGATION OF SPD PROCESSED MATERIALS CASE STUDY K.S. Suresh Department of Metallurgical and Materials Engineering Indian Institute of

More information

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure Materials Transactions, Vol. 47, No. 4 (2006) pp. 959 to 965 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, III #2006 The Japan Institute of Light Metals Microstructure

More information

Ultra-Fine Grain Development in an AZ31 Magnesium Alloy during Multi-Directional Forging under Decreasing Temperature Conditions* 1

Ultra-Fine Grain Development in an AZ31 Magnesium Alloy during Multi-Directional Forging under Decreasing Temperature Conditions* 1 Materials Transactions, Vol. 46, No. 7 (2005) pp. 1646 to 1650 #2005 The Japan Institute of Light Metals Ultra-Fine Grain Development in an Magnesium Alloy during Multi-Directional Forging under Decreasing

More information

Evolution of texture in an ultrafine and nano grained magnesium alloy

Evolution of texture in an ultrafine and nano grained magnesium alloy Journal of Ultrafine Grained and Nanostructured Materials Vol.48, No.1, June 2015, pp.11-16 Evolution of texture in an ultrafine and nano grained magnesium alloy S.M. Fatemi 1* and Abbas Zarei-Hanzki 2

More information

First-principles study of solute strengthening of twinning dislocations in Mg alloys. Abstract

First-principles study of solute strengthening of twinning dislocations in Mg alloys. Abstract First-principles study of solute strengthening of twinning dislocations in Mg alloys M. Ghazisaeidi Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio,43210, USA L.

More information

PhD project: Effect of Aluminum on deformation mechanisms and ductility in Ti-alloys

PhD project: Effect of Aluminum on deformation mechanisms and ductility in Ti-alloys PhD project: Effect of Aluminum on deformation mechanisms and ductility in Ti-alloys Light Metals Division Strategy meeting 12 th December 213 Dipl. Ing. Arnas Fitzner Michael Preuss, Joao Quinta da Fonseca,

More information

4-Crystal Defects & Strengthening

4-Crystal Defects & Strengthening 4-Crystal Defects & Strengthening A perfect crystal, with every atom of the same type in the correct position, does not exist. The crystalline defects are not always bad! Adding alloying elements to a

More information

Influence of Crystal Orientations on the Bendability of an Al-Mg-Si Alloy

Influence of Crystal Orientations on the Bendability of an Al-Mg-Si Alloy Materials Transactions, Vol. 51, No. 4 (2010) pp. 614 to 619 Special Issue on Crystallographic Orientation Distribution and Related Properties in Advanced Materials II #2010 The Japan Institute of Light

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation

Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation International Journal of Innovations in Materials Science and Engineering (IMSE), VOL. 1, NO. 3 108 Influence of Texture on the Plastic Anisotropy of Mg Alloy Determined by Experimental and Numerical Investigation

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates*

Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates* Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates* I. Ulacia 1, S. Yi 2, M.T. Pérez-Prado 3, N.V. Dudamell 3, F. Gálvez 4, D. Letzig 2 and I. Hurtado 1 1 Mondragon Goi Eskola Politeknikoa,

More information

Effects of Ca on Tensile Properties and Stretch Formability at Room Temperature in Mg-Zn and Mg-Al Alloys

Effects of Ca on Tensile Properties and Stretch Formability at Room Temperature in Mg-Zn and Mg-Al Alloys Materials Transactions, Vol. 52, No. 7 (211) pp. 1477 to 1482 #211 The Japan Institute of Metals Effects of Ca on Tensile Properties and Stretch Formability at Room Temperature in Mg-Zn and Mg-Al Alloys

More information

Three stages: Annealing Textures. 1. Recovery 2. Recrystallisation most significant texture changes 3. Grain Growth

Three stages: Annealing Textures. 1. Recovery 2. Recrystallisation most significant texture changes 3. Grain Growth Three stages: Annealing Textures 1. Recovery 2. Recrystallisation most significant texture changes 3. Grain Growth Cold worked 85% Cold worked 85% + stress relieved at 300 C for 1 hr Cold worked 85% +

More information

Texture development during cold and warm rolled samples of AZ31B magnesium alloy

Texture development during cold and warm rolled samples of AZ31B magnesium alloy Texture development during cold and warm rolled samples of AZ31B magnesium alloy Litzy L. Choquechambi Catorceno1;Luis Flavio Gaspar Herculano1; Hamilton Ferreira Gomes de Abreu 1 1UFC (Federal University

More information

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS Chapter 8: Deformation & Strengthening Mechanisms School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 8-1 ISSUES TO ADDRESS Why are the number of dislocations

More information

INFLUENCE OF MICROSTRUCTURE ON TENSILE PROPERTIES OF MAGNESIUM ALLOY AZ91

INFLUENCE OF MICROSTRUCTURE ON TENSILE PROPERTIES OF MAGNESIUM ALLOY AZ91 INFLUENCE OF MICROSTRUCTURE ON TENSILE PROPERTIES OF MAGNESIUM ALLOY AZ91 ŠTĚPÁNEK Roman 1, PANTĚLEJEV Libor 1, MAN Ondřej 2 1 Institute of Materials Science and Engineering, NETME centre, Brno University

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture II. Stable Plastic Deformation S s y For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation III. Unstable

More information

Single vs Polycrystals

Single vs Polycrystals WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals

More information

Thin Products < 75 mm 7055-T7751. Strength (MPa) 500. Thick Products mm Year First Used in Aircraft

Thin Products < 75 mm 7055-T7751. Strength (MPa) 500. Thick Products mm Year First Used in Aircraft Strength and (Extrinsic) Corrosion Resistance Improvements in New 7XXX-Series Alloys - Relative to 7075-T651 All Alloys Still Need Corrosion Protection Schemes 700 650 600 Corrosion Resistance Low Medium

More information

Heat Treatment of Aluminum Alloy 7449

Heat Treatment of Aluminum Alloy 7449 Heat Treatment of Aluminum Alloy 7449 Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, and Ala M. Rayes Abstract Aluminum alloy has an extensive range of industrial application due to

More information

High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline Phase Particles

High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline Phase Particles Materials Transactions, Vol. 49, No. 9 (2008) pp. 1947 to 1952 #2008 The Japan Institute of Metals High Strength and Fracture Toughness Balances in Extruded Mg-Zn-RE Alloys by Dispersion of Quasicrystalline

More information

Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation Downloaded from orbit.dtu.dk on: Dec 13, 218 Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation Winther, Grethe; You, Ze Sheng; Lu, Lei Publication date: 212 Link back to DTU

More information

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 54 CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 3.1 HIGH STRENGTH ALUMINIUM ALLOY In the proposed work, 7075 Al alloy (high strength) has been identified, as a material for the studies on

More information

Iron Based Transforming Single Crystals Huseyin Sehitoglu, C. Efstathiou, H. J. Maier, Y. Chumlyakov

Iron Based Transforming Single Crystals Huseyin Sehitoglu, C. Efstathiou, H. J. Maier, Y. Chumlyakov Iron Based Transforming Single Crystals Huseyin Sehitoglu, C. Efstathiou, H. J. Maier, Y. Chumlyakov University of Illinois, Department of Mechanical and Industrial Engineering, Urbana, IL 61801 Presented

More information

Grain size constraints on twin expansion in hexagonal close packed crystals

Grain size constraints on twin expansion in hexagonal close packed crystals Grain size constraints on twin expansion in hexagonal close packed crystals M. Arul Kumar 1 *, I.J. Beyerlein 2, C. N. Tomé 1 1 Materials Science and Technology Division, Los Alamos National Laboratory,

More information

Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears

Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears Scripta Materialia 54 (26) 1391 1395 www.actamat-journals.com Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears W.J. Kim *, Y.K. Sa Department of Materials

More information

Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy T651 using the PPR Potential-Based Cohesive Zone Model

Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy T651 using the PPR Potential-Based Cohesive Zone Model Grain Boundary Decohesion and Particle- Matrix Debonding in Aluminum Alloy 7075- T651 using the PPR Potential-Based Cohesive Zone Model Albert Cerrone 1, Drs. Gerd Heber 2, Paul Wawrzynek 1, Glaucio Paulino

More information

THE INFLUENCE OF ECAP ON MECHANICAL PROPERTIES OF A TWIN-ROLL CAST. Al-Mn-Fe-Si-Zr ALLOY. Přemysl Málek, Michaela Poková and Miroslav Cieslar

THE INFLUENCE OF ECAP ON MECHANICAL PROPERTIES OF A TWIN-ROLL CAST. Al-Mn-Fe-Si-Zr ALLOY. Přemysl Málek, Michaela Poková and Miroslav Cieslar THE INFLUENCE OF ECAP ON MECHANICAL PROPERTIES OF A TWIN-ROLL CAST Al-Mn-Fe-Si-Zr ALLOY Přemysl Málek, Michaela Poková and Miroslav Cieslar Department of Physics of Materials, Faculty of Mathematics and

More information

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression Materials Transactions, Vol., No. (00) pp. 6 to 67 #00 The Japan Institute of Light Metals {00} Texture Map of AA8 Aluminum Alloy for High Temperature Uniaxial Compression Hyeon-Mook Jeong*, Kazuto Okayasu

More information

Mechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy

Mechanical Behavior of an Ultrafine/Nano Grained Magnesium Alloy Journal of Ultrafine Grained and Nanostructured Materials https://jufgnsm.ut.ac.ir Vol. 50, No.1, June 2017, pp. 6-15 Print ISSN: 2423-6845 Online ISSN: 2423-6837 DOI: 10.7508/jufgnsm.2017.01.02 Mechanical

More information

sensitivity in a Mg-Al-Zn alloy at moderate temperatures

sensitivity in a Mg-Al-Zn alloy at moderate temperatures Influence of the grain size on the strain rate sensitivity in a Mg-Al-Zn alloy at moderate temperatures J. A. del Valle and O. A. Ruano Dept. of Physical Metallurgy, Centro Nacional de Investigaciones

More information

Titanium and titanium alloys. Josef Stráský

Titanium and titanium alloys. Josef Stráský Titanium and titanium alloys Josef Stráský Lecture 2: Fundamentals of Ti alloys Polymorphism Alpha phase Beta phase Pure titanium Titanium alloys alloys alloys alloys Phase transformation β α phase Hardening

More information

Plastic Deformation and Strengthening Mechanisms in Crystalline Materials

Plastic Deformation and Strengthening Mechanisms in Crystalline Materials Plastic Deformation and Strengthening Mechanisms in Crystalline Materials Updated 6 October, 2011 Slip in Polycrystalline Materials and all you ll ever need to know about it in MSE250 and life (unless

More information

Recrystallization textures in metals and alloys

Recrystallization textures in metals and alloys Recrystallization textures in metals and alloys Uniaxial deformation Aluminium wire F.C.C. Metals and alloys FCC wires retain deformation texture ([111]+[100]) upon recrystallisation Composition / Purity

More information

MT 348 Outline No MECHANICAL PROPERTIES

MT 348 Outline No MECHANICAL PROPERTIES MT 348 Outline No. 1 2009 MECHANICAL PROPERTIES I. Introduction A. Stresses and Strains, Normal and Shear Loading B. Elastic Behavior II. Stresses and Metal Failure A. ʺPrincipal Stressʺ Concept B. Plastic

More information

The Effect of Plastic Deformation and Magnesium Content on the Mechanical Properties of 6063 Aluminium Alloys

The Effect of Plastic Deformation and Magnesium Content on the Mechanical Properties of 6063 Aluminium Alloys Journal of Minerals & Materials Characterization & Engineering, Vol. 9, No.6, pp.539-546, 2010 jmmce.org Printed in the USA. All rights reserved The Effect of Plastic Deformation and Magnesium Content

More information

Identification and validation of CRSS values for Ti 6 Al 4 V alloy

Identification and validation of CRSS values for Ti 6 Al 4 V alloy Identification and validation of CRSS values for Ti 6 Al 4 V alloy W Hammami, G. Gilles, V. Tuninetti, L. Duchêne, AM Habraken L. Delannay UCL Louvain La Neuve Be S. Bouvier Labo Robertval Compiègne Fr

More information

Microstructures and mechanical properties of Mg Zn Zr Dy wrought magnesium alloys

Microstructures and mechanical properties of Mg Zn Zr Dy wrought magnesium alloys Bull. Mater. Sci., Vol. 36, No. 3, June 2013, pp. 437 445. c Indian Academy of Sciences. Microstructures and mechanical properties of Mg Zn Zr Dy wrought magnesium alloys Z H HUANG,,, WJQI, K H ZHENG,

More information

Neutron Irradiation Effects on Grain-refined W and W-alloys

Neutron Irradiation Effects on Grain-refined W and W-alloys 25th IAEA Fusion Energy Conference 13 18 October 2014 Saint Petersburg, Russian Federation MPT/1-4 Neutron Irradiation Effects on Grain-refined W and W-alloys A. Hasegawa a, M. Fukuda a, T. Tanno a,b,

More information

Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy

Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy J. Mater. Sci. Technol., 2011, 27(1), 29-34. Influence of Grain Size and Texture on the Yield Asymmetry of Mg-3Al-1Zn Alloy S.M. Yin 1), C.H. Wang 1), Y.D. Diao 1), S.D. Wu 2) and S.X. Li 2) 1) Shenyang

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

Cyclic deformation behavior of high-purity titanium single crystals: Part II. Microstructure and mechanism

Cyclic deformation behavior of high-purity titanium single crystals: Part II. Microstructure and mechanism Iowa State University From the SelectedWorks of Xiaoli Tan February, 1998 Cyclic deformation behavior of high-purity titanium single crystals: Part II. Microstructure and mechanism Xiaoli Tan, Florida

More information

MEEN Nanoscale Issues in Manufacturing

MEEN Nanoscale Issues in Manufacturing MEEN 489-500 Nanoscale Issues in Manufacturing Equal Channel Angular Extrusion (ECAE) Lecture 1 : Bulk Nanostructured Materials 1-ECAE 1 Bulk Nanostructured Materials Theme 2: Fabrication of bulk materials

More information

Online publication date: 12 May 2010

Online publication date: 12 May 2010 This article was downloaded by: [Los Alamos National Laboratory] On: 15 June 2010 Access details: Access Details: [subscription number 918146894] Publisher Taylor & Francis Informa Ltd Registered in England

More information

MICROSTRUCTURE DEVELOPMENT OF Ca-DOPED Mg Zn ALLOY DURING HOT DEFORMATION

MICROSTRUCTURE DEVELOPMENT OF Ca-DOPED Mg Zn ALLOY DURING HOT DEFORMATION MICROSTRUCTURE DEVELOPMENT OF Ca-DOPED Mg Zn ALLOY DURING HOT DEFORMATION Monika HRADILOVÁ a,b, Frank MONTHEILLET c, Anna FRACZKIEWICZ c, Christophe DESRAYAUD c, Pavel LEJČEK b a Department of Metals and

More information

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988)

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) CREEP CREEP Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) Review If failure is considered as change in desired performance*- which could involve changes in properties and/or

More information

A rare-earth free magnesium alloy with improved intrinsic ductility

A rare-earth free magnesium alloy with improved intrinsic ductility www.nature.com/scientificreports Received: 15 March 2017 Accepted: 9 August 2017 Published: xx xx xxxx OPEN A rare-earth free magnesium alloy with improved intrinsic ductility S. Sandlöbes 1,3, M. Friák

More information