Casting Materials. Prof. Juhani Orkas

Size: px
Start display at page:

Download "Casting Materials. Prof. Juhani Orkas"

Transcription

1 Casting Materials Prof. Juhani Orkas

2 Overview Iron based Grey iron Nodular iron White iron Cast steel Nonferrous cast materials Aluminium alloy Magnesium alloy Titanium alloy Copper alloy Nickel-base alloy

3 Iron-carbon diagram Cast iron C > 2,06 % Grey cast iron Stable system Fe-C Iron-graphite Si, Ti, Al White cast iron Metastable system Fe-Fe 3 C Iron-cementite Mn, Cr, Mo

4 Classification of iron based materials Iron based materials Grey cast iron White cast iron Cast steel Lamellar graphite iron Vermicular graphite iron Spheroidal graphite iron Alloyed cast iron Malleable iron Chilled iron GS GJL GJV GJS ADI Whiteheart melleable iron Blackheart malleable iron GJN GJMW GJMB

5 Cast iron Carbon cut out as Graphite Grey color at the fracture surface Silicon Graphite stabilizing Compressive strength higher than tensile strength (~2:1) No bond between Iron and Carbon Good machinability Carbon interrupts the metal micro-structure Carbon lubricates the cutting tools Designation system: GJ(Symbol) - R m

6 Wikipedia: Datei:GGV-GGG.jpg Cast iron - Overview Lamellar graphite iron (GJL) Pressure and wear-resistant Corrosion-resistant Good damping characteristics Low tensile strength and elongation at fracture Low costs Vermicular graphite iron (GJV) Between GJL and GJS Low thermal expansion Spheroidal graphite iron (GJS) Ductile High tensile strength and elongation at fracture

7 Cast iron - Overview Un-etched photomicrograph SEM image

8 Lamellar graphite iron GJL Ferritic-pearlitic structure R m 400 MPa Poor toughness Good compressive strength Cooling conditions affects microstructure Tensile strength depends on wall-thickness Higher strength in thin walls Very good damping capacity (Vibration) GJL : GJS : Steel 1 : 1,8 : 4,3 Notch-sensitive High tension gradient at graphite flakes Good friction properties Very good pouring properties EN GJL-250

9 Surface hardening Thermophysical hardening Martensitic hardening HRC Ledeburitic hardening Better wear resistance Thermochemical hardening

10 Lamellar graphite iron GJL Bed for machine tools EN GJL-250 /-300 Up to 12,8 m Gearbox for a printing machine EN GJL-250

11 Spheroidal graphite iron GJS Add magnesium or cerium Spheriodal graphite Ferritic-pearlitic structure R m 800 MPa Moderate toughness Less Notch-sensitive than GJL Average tension gradient at graphite spheres Moderate damping capacity For mechanical stresses parts EN GJS-400 EN GJS-700

12 Spheroidal graphite iron GJS High C- and Si-level Low strength and Brinell hardness High elongation at fracture

13 Spheroidal graphite iron GJS Cylinder block for marine diesel engine EN GJS U 9 x 2.84 x 3.35 m kg Rotor hub (1.5MW) EN GJS U-LT x 2.7 x 2.1 m kg

14 Austempered ductile iron ADI Multi-step heat treatment of GJS Bainitic-similar structure Acicular ferrite and carbon-enriched austenite (without carbide precipitation!) R m 1400 MPa Steely characteristics Very good wear resistance Even greater with added hard carbides (CADI) Lower specific weigh than steel (~10%) Comparable mechanical properties ADI 800/ EN GJS-800-8

15 Austempered ductile iron ADI Relative weight Relative costs

16 Multi-step heat treatment ADI Austenizing Heating above AC1 temperature ( C) Completely austenitic microstructure Quenching Avoid formation of perlite Austempering Salt / oil bath or oven ( C) Isothermal transformation Ferrite needles and austenite (Ausferrite) Too short holding metastable residual austenite Too long holding: real bainite (ferrite with carbide precipitation)

17 Multi-step heat treatment ADI Austenitised at 950 C, Austenitised at 950 C, austempered at 400 C for 53 min austempered at 250 C for 50 min low strength at higher elongation high strength with high hardness at fracture and high wear resistance but imited ductility

18 Austempered ductile iron ADI enguss.htm ADI crankshaft TVR sportscar ADI gears Hymi Kymmene Engineering, Finland

19 Vermicular graphite iron GJV Deliberately insufficent treatment to build Spheriodal graphite Three-dimensional worms Properties between GJL and GJS Ferritic-pearlitic structure R m 600 MPa Especial suitable for thermal and mechanical stressed parts EN GJV-400

20 Vermicular graphite iron GJV Advantages to GJL Better tensile strength and elongation at fracture Higher fracture toughness Properties are less dependent on wall thickness Advantages to GJS Lower coefficient of thermal expansion Higher heat conductivity Lower modulus of elasticity Better thermoshock resistance and lower tendency to distortion Better damping capacity Better pouring properties

21 Vermicular graphite iron GJV Audi V12 TDI crankcase EN GJV PS / Nm More rigid and fatigue-resistant Thinner walls and less weigh MAN TG-A cylinder block EN GJV PS

22 Austenitic cast iron materials GJSA > 20% nickel (Ni-Resist) Austenitic structure Extremely corrosion resistant Sea water & alkaline media High heat resistance Adjustable thermal coefficient of expansion Nickel contend Max at ~20% Min at ~35% Laminar and spheroidal graphite possible Non-magnetizable Good running properties EN GJSA-XNiCr20-2

23 Austenitic cast iron materials GJSA x Cylinder block for LNG 35% Nickel Huge temperature difference between suction and pressure valve Housing of turbocharger K16 BorgWarner Temperatures around 1000 C

24 White cast iron Google Books: Gefüge Der Gusseisenlegierungen White cast iron Malleable iron Chilled iron Whiteheart melleable iron Blackheart malleable iron GJN GJMW GJMB

25 Google Books: Gefüge Der Gusseisenlegierungen White cast iron x Carbide stabilizing elements (Mn, S) Graphite-free solidified Fe 3 C Perlit and ledeburit (hypoeutectic) White color at the fracture surface Hard and brittle Less applications Intermediate product in steel production Heat treatment for malleable iron Cementite decompose to temper carbon (equiaxed nodular graphite) Temper carbon interrupts matrix less then carbon in grey iron Better mechanical properties

26 Whiteheart malleable cast iron GJMW Malleablizing in oxygen containing atmosphere 60 to 120 h at 1000 C Cementite decompose to Fe and C Fe 3 C 3Fe + C Carbon diffuses outwards Converts in the surface to CO and CO 2 C + O 2 CO 2 Decarburization depends on wallthickness Max. 8mm for complete decarburization Residual carbon as Temper carbon

27 Functionally graded Surface Graphite-free, ferritic structrue High ductility Excellent machinability Suitability for welding Suitability for surface treatment Transition Ferritic-perlitic structrue with temper carbon Core Perlitic structure with temper carbon High stiffness

28 Weldability Residual carbon content < 0.3% at weld area No preparation and postprocessing All welding methods No hardness increaseing Suitable for connecting complex casted parts with semi-finished products

29 Cold forming

30 Blackheart malleable cast iron GJMB Malleablizing in neutral atmosphere Inert gas 1 st level of graphitization approx. 20 h at C Cementite decompose to Fe and C Fe 3 C 3Fe + C Temper carbon in a austenitic matrix 2 nd level of graphitization Cooling to C Eutectoid transformation γ α + C Carbon from austenite diffused to existing temper carbon Cooling rate affects the final matrix

31 Matrix of GJMB Ferritic structure Slow cooling to C Stable eutectoid transformation Temper carbon evenly distributed Perlitic structure Fast cooling Metastable solidification to perlite Martensitic structure Very fast cooling Suppressed diffusion Martensite Mixed structure

32 Chilled iron GJN x High S and Mn or rapid cooling Surface White iron Graphite-free cementite Ledeburiteutecticum Up to 20 mm Extreme hard and wear resistant Core Grey iron Perlitic structure with laminar graphite

33 Chilled iron GJN Extrealmy wear-resistant Rolls Milling disks Ore crusher Crawler elements Armor plates

34 Cast steel GS Advantages Mechanical properties of steel together with the castability Malleable Wide range of materials Adjusable strengt properties Heat treatment necessary Disadvantages Higher melting point > 1400 C High demands on technology Bad mould-filling capacity More viscouse than cast iron hypoeutectic High shrinkage ~2% Castings without heat treatment unusable Brittle Coarse grain Dendritic

35 Cast steel GS Pelton wheel High strengt Shunting switch G-X120Mn12

36 Classification of nonferrous cast materials Nonferrous cast materials Light metal cast Heavy metal cast Precious metal cast Aluminum casting Magnesium casting Titanium casting Copper casting Pewter casting Lead casting Zinc casting Gold casting Silver casting Platinum casting G-Al G-Mg G-Ti G-Cu G-Sn G-Pb G-Zn G-Au G-Ag G-Pt

37 Aluminum alloy Suitable for complex thin-walled parts High dimensional accuracy Low weight with high rigidity Good strength-weight ratio Smooth surfaces and edges Good machinability High thermal conductivity Good electrical conductivity Corrosion and weathering resistance Several surface treatments possible

38 Aluminum alloy designation system

39 Aluminum alloy

40 Aluminum alloy xxx Casting alloys Most common 4xxx For die casting 4xxx 5xxx 7xxx For gravity die casting 2xxx 4xxx 5xxx 7xxx

41 Aluminum alloy Al Si (4xxx) Near eutectic (12% Si) Low melting point (576 C) Good fluidity Less shrinkage High strength Hypereutectoid (up to 25% Si) Used as piston alloy Worse fluidity Primary solidification of Si Higher wear resistance due to Si crystals Lower coefficient of expansion

42 Aluminum alloy Hypoeutectic Eutectic Hypereutectic

43 Aluminum alloy - Treatments F Without treatment O Solution annealed Dead soft, low strength T Heat treated H Strain hardened i.e. for non age hardening alloys

44 Precipitation hardening Before Treatment Precipitates along grain boundaries Solution Heat Treatment Heat above solvus temperature Dissolve any precipitates Alloying elements in solid solution Quench No time to diffuse Supersaturated solid solution

45 Precipitation hardening Hardening Below solvus temperature Alloying elements diffuses to coherent precipitate clusters Increases strength and hardness Natural ageing Room temperatur Stops after several hours Artificial ageing Precipitation heat treatment Higher hardness then with natural ageing

46 Precipitation hardening Overageing First partially coherent precipitations Later incoherent precipitations Reduced tensile strength Remember for designing parts with a higher operation temperature! AlCu 2014-T6

47 Precipitation hardening Differential housing from KSM Castings GmbH Cast-on rivets Connect housing cover with housing bell Clinch rivets directly after quench Artificial ageing for final strength and hardness

48 Aluminum alloy Daimler valve body AlSi9Cu3 Wall-thickness: 2-6mm Drafts: 1 (valve core 5 ) BMW integral cross member EN AC - AlMg5Si2Mn Weldable without pre-treatment

49 Magnesium alloy Lightest of all structural metals ~ 1800 kg/m 3 Excellent strength-weight ratio Hexagonal lattice High strength High electrical and thermal conductivity Without Al and Zn Brittle Notch-sensitive Excellent machinability Good damping coefficient Better vibration reduction than Al or GJx

50 Roos, Maile: Werkstoffkunde für Ingenieure Magnesium alloy Al and Zn Avoid problems with brittleness and notch-sensitivity Mg Increases corrosion resistance Ce and Th Increases high temperature strength Zr Grain refinement Increases strength and formability

51 Magnesium alloy designation system Two letters for the major alloying elements Two digits for the approximate percentage of the elements May an additional letter for the different alloy modifications Example: AZ91C Approx. 9% Al; approx. 1% Zn; the 3th modification

52 xx Titanium alloy Very high tensile strength and toughness even at extreme temperatures Light weight Properties depending on phase α phase α+β phase β phase Extreme corrosion resistance Very dense TiO2 layer Biocompatibility Expensive

53 Titanium alloy α phase Good fracture toughness Good creep resistance Not heat-treatable α+β phase High mechanical strength Up to 1000 MPa Heat-treatable Ti6Al4V (50% of world usage) β phase Heat-treatable Very high strength up to 1400 MPa

54 xx Copper alloy Properties Corrosion resistance Good bearing qualities Attractive appearance Bronze CuSn Brass CuZn Red brass (gunmetal) CuZnSn Aluminium bronze CuAl CuSn11 (50:1) CuAl20 (500:1)

55 Bronze (CuSn) Up to 20% Sn 9 12% for casting alloys Nonmagnetic High thermal and electrical conductivity High corrosion resistance Seawater resistance Good wear resistance Good damping coefficient Red brass (CuZnSn) Cheaper due to cheap Zn Similar properties

56 Brass (CuZn) to 45 % Zn Tensile strength up to 750 MPa No cryogenic embrittlement Good corrosion resistance Depends on alloying element Antimicrobial Used at public places Specialbrass CuZn + other element Impeller for a pump CuZn37Mn3Al2PbSi Multi Cone Synchro System Depends on the application

57 Aluminium bronze (CuAl) 9 14% Al High corrosion resistance Seawater resistance Good wear resistance Good cavitation resistance Applications Ship propeller Sliding elements Bearings Chemical industries Gear wheels World largest ship propeller (MMG) CuAl9Ni6Fe5Ma Container ship with 120,000 PS 9,6 m; 131 t

58 Nickel-base alloy Pure nickel Ductile and tough face-centered cube crystal structure up to its melting point High resistance against Corrosion environments High temperatures ( 1100 C) High stresses Base for developing specialized alloys Intermetallic phases very high strength alloys low- and high-temperature

Cast Iron Foundry Practices 1. The family of cast irons

Cast Iron Foundry Practices 1. The family of cast irons MME 345, Lecture 34 Cast Iron Foundry Practices 1. The family of cast irons Ref: [1] Heine, Loper and Rosenthal. Principles of Metal Casting, Tata McGraw-Hill, 1967 [2] S H Avner. Introduction to Physical

More information

Ferrous Alloys. Metal Alloys. Ferrous. Non ferrous. Grey iron. Carbon Low Alloy High Alloy. Nodular iron White iron Malleable iron Alloy cast irons

Ferrous Alloys. Metal Alloys. Ferrous. Non ferrous. Grey iron. Carbon Low Alloy High Alloy. Nodular iron White iron Malleable iron Alloy cast irons Metal Alloys Most engineering metallic materials are alloys. Metals are alloyed to enhance their properties, such as strength, hardness or corrosion resistance, and to create new properties, such as shape

More information

Chapter 11 Part 2. Metals and Alloys

Chapter 11 Part 2. Metals and Alloys Chapter 11 Part 2 Metals and Alloys Nomenclature of Steels Historically, many methods for identifying alloys by their composition have been developed The commonly used schemes in this country are those

More information

MATERIAL TEKNIK (MAT) CAST IRON. Cecep Ruskandi

MATERIAL TEKNIK (MAT) CAST IRON. Cecep Ruskandi MATERIAL TEKNIK (MAT) CAST IRON Cecep Ruskandi Cast Iron Cast iron is a cast ferrous based materials with the carbon content greater than 2% and also contain elements such as Si, Mn,P and S. Cast irons

More information

Mat E 272 Lecture 19: Cast Irons

Mat E 272 Lecture 19: Cast Irons Mat E 272 Lecture 19: Cast Irons November 8, 2001 Introduction: One reason steels and cast iron alloys find such wide-ranging applications and dominate industrial metal production is because of how they

More information

Their widespread use is accounted for by three factors:

Their widespread use is accounted for by three factors: TYPES OF METAL ALLOYS Metal alloys, by virtue of composition, are often grouped into two classes ferrous and nonferrous. Ferrous alloys, those in which iron is the principal constituent, include steels

More information

APPLICATIONS OF Fe-C PHASE DIAGRAM

APPLICATIONS OF Fe-C PHASE DIAGRAM APPLICATIONS OF Fe-C PHASE DIAGRAM KEY POINTS OF Fe-C Diagram Phases: Liquid Fe-Tmin=1148C @ 4.3%C 1394 C

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

FUNDAMENTALS OF METAL ALLOYS, EQUILIBRIUM DIAGRAMS

FUNDAMENTALS OF METAL ALLOYS, EQUILIBRIUM DIAGRAMS FUNDAMENTALS OF METAL ALLOYS, EQUILIBRIUM DIAGRAMS Chapter 5 5.2 What is a Phase? Phase is a form of material having characteristic structure and properties. More precisely: form of material with identifiable

More information

Introduction: Ferrous alloys - Review. Outline. Introduction: Ferrous alloys

Introduction: Ferrous alloys - Review. Outline. Introduction: Ferrous alloys Introduction: Ferrous alloys - Review Outline Introduction - Review - Ferritic SS - Austinitic SS - Matensitic SS - Precipitation Hardenable SS Cast Irons - Gray CI - Ductile CI - White CI - Malleable

More information

Lecture 11: Metallic Alloys

Lecture 11: Metallic Alloys Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia Course A, Metals and Alloys Lecture 11: Metallic Alloys TRIP Steels A phase change can do work; a good example of this is how viruses infect

More information

ME-371/571 ENGINEERING MATERIALS

ME-371/571 ENGINEERING MATERIALS ME-371/571 ENGINEERING MATERIALS Problem Set 2 1. An SAE-AISI 1035 steel alloy is slowly cooled from 950 C to room What is the pro-eutectoid phase, and at what temperature would it first appear? What are

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

J = D C A C B x A x B + D C A C. = x A kg /m 2

J = D C A C B x A x B + D C A C. = x A kg /m 2 1. (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. (a) With vacancy diffusion, atomic

More information

CAST IRON INTRODUCTION. Greater amount of carbon It makes iron brittle Range 2.5 to 4 percent carbon Why it is called cast iron?

CAST IRON INTRODUCTION. Greater amount of carbon It makes iron brittle Range 2.5 to 4 percent carbon Why it is called cast iron? CAST IRON INTRODUCTION Greater amount of carbon It makes iron brittle Range 2.5 to 4 percent carbon Why it is called cast iron? PROPERTIES Low ductility Can not be rolled Not malleable Lower strength than

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Recap Eutectic phase diagram Eutectic phase diagram Eutectic isotherm Invariant point Eutectic Reaction Compositions of components

More information

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy Schematic representation of the development of microstructure during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy At 1300 ºC (point a) the alloy is in the liquid condition This continues

More information

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C).

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). Iron-Carbon Phase Diagram Its defined as:- A map of the temperature at which different phase changes occur on very slow heating and cooling in relation to Carbon content. is Isothermal and continuous cooling

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks

TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks Non-ISO carbide insert blanks for threading, parting, grooving, drilling, reaming and milling applications TOOLMAKER SOLUTIONS Custom-Made Inserts Blanks HYPERION CUSTOM-MADE INSERT BLANKS Hyperion manufacturers

More information

CHAPTER 6. Engineering Alloys 1/1/2016. Production of Iron and Steel Production of pig iron. Iron Carbide Phase Diagram.

CHAPTER 6. Engineering Alloys 1/1/2016. Production of Iron and Steel Production of pig iron. Iron Carbide Phase Diagram. CHAPTER 6 Production of Iron and Steel Production of pig iron Fe 2 O 3 + 3CO 2Fe + 3CO 2 Ore Coke Blast Furnace Pig iron (Liquid) Engineering Alloys 1 2 Steel Making Iron Carbide Phase Diagram Pig iron

More information

Machinability is the ease with which a given material may be worked with a cutting tool

Machinability is the ease with which a given material may be worked with a cutting tool Machinability Machinability is the ease with which a given material may be worked with a cutting tool Machinability ratings (MR) provide and understanding of the severity of a metalworking operation in

More information

Metals are used by industry for either one or combination of the following properties

Metals are used by industry for either one or combination of the following properties Basic Metallurgy Metals are the backbone of the engineering industry being the most important Engineering Materials. In comparison to other engineering materials such as wood, ceramics, fabric and plastics,

More information

of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test

of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test Chapter 11 Applications and Processing of Metal Alloys This is just an extension of the previous chapter Hardenability of Steels: The Jominy Test As usual, everything is standardized! After the Jominy

More information

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Ferrite - BCC Martensite - BCT Fe 3 C (cementite)- orthorhombic Austenite - FCC Chapter 10 Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Why do we study

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... How are metal alloys classified and what are their common applications? What are some of the common fabrication techniques for

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-4 THERMAL PROCESSING OF METALS-2 CONTINUOUS COOLING TRANSFORMATION (CCT) DIAGRAMS: In industrial heat-treating operations, in most cases a steel is not isothermally

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

Stainless Steel (17/4PH&630) Bar

Stainless Steel (17/4PH&630) Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

Stainless Steel Bar

Stainless Steel Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-2 IRON-IRON CARBIDE PHASE DIAGRAM Classification of Metal Alloys Metal Alloys Ferrous Nonferrous Steels

More information

D101 - JOBBER DRILLS - Silver Bullet

D101 - JOBBER DRILLS - Silver Bullet D101 - JOBBER DRILLS - Silver Bullet Sutton Tools Silver Bullet jobber drills are a general purpose drill bit designed for machine and hand held drilling in a wide range of ferrous & non-ferrous materials

More information

Metals III. Anne Mertens

Metals III. Anne Mertens "MECA0139-1: Techniques "MECA0462-2 additives : et Materials 3D printing", Selection", ULg, 03/10/2017 25/10/2016 Metals III Anne Mertens Introduction Outline Summary of previous lectures Case study in

More information

Stainless Steel (17/4PH&630) Bar

Stainless Steel (17/4PH&630) Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

CHAPTER 9: PHASE DIAGRAMS

CHAPTER 9: PHASE DIAGRAMS CHAPTER 9: PHASE DIAGRAMS ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%cu - wt%ni), and --a temperature

More information

Iron Carbon Equilibrium Diagrams

Iron Carbon Equilibrium Diagrams Allotropic Iron, when cooling from a high temperature, displays two special points known as arrest points or critical points. These change points occur at 1390 o C and 910 o C. Above 1390 o C Iron exists

More information

Stainless Steel (17/4PH&630) Bar

Stainless Steel (17/4PH&630) Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

Advances in steel and Al alloy materials High strength (HSS) & Advanced high strength steel (AHSS)

Advances in steel and Al alloy materials High strength (HSS) & Advanced high strength steel (AHSS) Advances in steel and Al alloy materials High strength (HSS) & Advanced high strength steel (AHSS) Low strength steel HSS UHSS Development of new steel grade materials that can withstand more strength

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

ENMAT101A Engineering Materials and Processes Associate Degree of Applied Engineering (Renewable Energy Technologies) Lecture 15 Cast Iron

ENMAT101A Engineering Materials and Processes Associate Degree of Applied Engineering (Renewable Energy Technologies) Lecture 15 Cast Iron ENMAT101A Engineering Materials and Processes Associate Degree of Applied Engineering (Renewable Energy Technologies) Lecture 15 Cast Iron http://www.sicoconrod.net www.highered.tafensw.edu.au Cast Iron

More information

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff Dave Neff OUTLINE Where aluminum comes from Why alloys are useful Alloy designation and nomenclature Specific roles of alloy elements Properties

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

Cast Iron Foundry Practices 3. Metallurgy of grey irons

Cast Iron Foundry Practices 3. Metallurgy of grey irons MME 345, Lecture 36 Cast Iron Foundry Practices 3. Metallurgy of grey irons Ref: Heine, Loper and Rosenthal. Principles of Metal Casting, Tata McGraw-Hill, 19670 Topics to discuss today 1. Graphite morphology

More information

Introduction to Heat Treatment. Introduction

Introduction to Heat Treatment. Introduction MME444 Heat Treatment Sessional Week 01 Introduction to Heat Treatment Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction Can you control the microstructure that formed during cooling of

More information

Cast iron electrodes for highest demands

Cast iron electrodes for highest demands Cast iron electrodes for highest demands UTP 8 UTP 83 FN UTP 86 FN voestalpine Böhler Welding www.voestalpine.com/welding 1 UTP Maintenance Tailor-Made Protectivity TM High-quality industrial-use welding

More information

Metals I. Anne Mertens

Metals I. Anne Mertens "MECA0139-1: Techniques "MECA0462-2 additives : et Materials 3D printing", Selection", ULg, 19/09/2017 25/10/2016 Metals I Anne Mertens Introduction Outline Metallic materials Materials Selection: case

More information

Ferrous Alloys. Steels

Ferrous Alloys. Steels Ferrous Alloys Ferrous alloys those of which iron is the prime constituent are produced in larger quantities than any other metal type. They are especially important as engineering construction materials.

More information

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion.

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion. Glossary of Terms Alloying Elements ALUMINIUM - Al is used to deoxidise steel and control grain size. Grain size control is effected by forming a fine dispersion with nitrogen and oxygen which restricts

More information

Fatigue Crack Paths in Ferritic-Perlitic Ductile Cast Irons

Fatigue Crack Paths in Ferritic-Perlitic Ductile Cast Irons Fatigue Crack Paths in Ferritic-Perlitic Ductile Cast Irons F. Iacoviello and V. Di Cocco Università di Cassino, Di.M.S.A.T., via G. Di Biasio 43, 03043 Cassino (FR) ITALY, iacoviello@unicas.it ABSTRACT.

More information

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini.

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini. 7 Alloy Steels At the end of this lesson students should be able to: Classify alloy steels Explain: effects of alloying elements to steel properties Discuss: composition, microstructure, mechanical properties

More information

Chromium and copper influence on the nodular cast iron with carbides microstructure

Chromium and copper influence on the nodular cast iron with carbides microstructure A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (8973) Volume Issue 4/2 47 54 /4 Chromium and copper

More information

Metallurgy in Production

Metallurgy in Production In the Name of Allah University of Hormozgan Metallurgy in Production First semester 95-96 Mohammad Ali Mirzai 1 Chapter 6 : the iron carbon phase diagram 2 The Iron-Carbon Alloy Classification 3 The Iron-Carbon

More information

High strength low alloy (HSLA).

High strength low alloy (HSLA). 7 Alloy Steels High strength low alloy (HSLA). a type of steel alloy that provides many benefits over regular steel alloys contain a very small percentage of carbon (less than one-tenth of a percent) and

More information

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Study theme outcomes: After studying this chapter, students should or should be able to: - know and understand

More information

4.0 Alloying Elements and Microstructural Phases

4.0 Alloying Elements and Microstructural Phases 4.0 Alloying Elements and Microstructural Phases There is a direct link between microstructure and properties and if the microstructure is altered by heat treatment, fabrication or composition then the

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ALUMINIUM ALLOYS Aluminium and its alloys offer an extremely wide range of capability and applicability, with a unique combination of advantages that make the material of choice

More information

Resource Guide. Section 4: Ni-Resist

Resource Guide. Section 4: Ni-Resist Resource Guide Section 4: Ni-Resist Section 4 Ni-Resist Description of Grades... 4-3 201 (Type 1) Ni-Resist... 4-4 202 (Type 2) Ni-Resist... 4-6 Stock Listings... 4-8 4-2 Ni-Resist Description of Grades

More information

Chapter 9 Phase Diagrams. Dr. Feras Fraige

Chapter 9 Phase Diagrams. Dr. Feras Fraige Chapter 9 Phase Diagrams Dr. Feras Fraige Chapter Outline Definitions and basic concepts Phases and microstructure Binary isomorphous systems (complete solid solubility) Binary eutectic systems (limited

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

Chapter 11: Metal Alloys Applications and Processing

Chapter 11: Metal Alloys Applications and Processing Chapter 11: Metal Alloys Applications and Processing ISSUES TO ADDRESS... How are metal alloys classified and how are they used? What are some of the common fabrication techniques? How do properties vary

More information

COMPARATIVE STUDY OF TENSILE STRENGTH OF DUCTILE IRON ALLOYED WITH AN EQUAL AMOUNT OF COPPER AND NICKEL SEPARATELY

COMPARATIVE STUDY OF TENSILE STRENGTH OF DUCTILE IRON ALLOYED WITH AN EQUAL AMOUNT OF COPPER AND NICKEL SEPARATELY Journal of Engineering and Science Research 1 (2): 127-132, e-issn: RMP Publications, DOI: COMPARATIVE STUDY OF TENSILE STRENGTH OF DUCTILE IRON ALLOYED WITH AN EQUAL AMOUNT OF COPPER AND NICKEL SEPARATELY

More information

Taxonomy of Metals. Materials Selection. Lectures 13. Chapter 11: Metal Alloys Applications and Processing. Properties. Cost. Fabrication.

Taxonomy of Metals. Materials Selection. Lectures 13. Chapter 11: Metal Alloys Applications and Processing. Properties. Cost. Fabrication. Materials Selection Lectures 13 Chapter 11: Metal Alloys Applications and Processing Properties Cost Fabrication Recycling 1 2 Suggested Textbook W.D.Callister, Materials Science and Engineering; an Introduction,

More information

ADI & IDI Austempered Ductile Iron and Perferritic Isothermal Ductile Iron. Industrial Vehicles components

ADI & IDI Austempered Ductile Iron and Perferritic Isothermal Ductile Iron. Industrial Vehicles components ADI & IDI Austempered Ductile Iron and Perferritic Isothermal Ductile Iron Industrial Vehicles components ADI: Austempered Ductile Iron Austempered ductile cast irons are spheroidal graphite cast irons

More information

Spheroidal Graphite (Nodular) Cast Iron:

Spheroidal Graphite (Nodular) Cast Iron: Product Type Grade of Product Sub Grade SG Iron Pearlitic Accicular Adamite Steel Based Alloy Steel Solid Rolls Graphitic IC Rolls DP Rolls SG Core G I Core ACCI Rolls Spheroidal Graphite (Nodular) Cast

More information

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10 PHASE DIAGRAMS IE-114 Materials Science and General Chemistry Lecture-10 Importance of Phase Diagrams There is a strong correlation between microstructure and mechanical properties. Phase diagrams provides

More information

Heat Treatment of Steels

Heat Treatment of Steels Heat Treatment of Steels Heat Treating is the process of heating and cooling a steel to obtain desired properties. Various types of heat treatment processes are used to change the following properties

More information

Titanium and titanium alloys. Josef Stráský

Titanium and titanium alloys. Josef Stráský Titanium and titanium alloys Josef Stráský Lecture 3: Technological aspects of Ti alloys Pure Ti metallurgy, properties and applications α+β alloys microstructures, metallurgy, heat treatment Ti-6Al-4V

More information

Part IB Paper 3: MATERIALS. Examples Paper 3 : Materials Processing - fssued 01 Controlling Microstructure and Properties

Part IB Paper 3: MATERIALS. Examples Paper 3 : Materials Processing - fssued 01 Controlling Microstructure and Properties ENGINEERING TRIPOS Part IB Paper 3: MATERIALS SECOND YEAR Examples Paper 3 : Materials Processing - fssued 01 Controlling Microstructure and Properties -1 NOV 2')13 Straightforward questions are marked

More information

The objective of this document is to specify the chemicals characteristics and properties of the material Steel AISI Carbon Steel.

The objective of this document is to specify the chemicals characteristics and properties of the material Steel AISI Carbon Steel. STEEL AISI - 2 Steel AISI 2. Carbon Steel. Carbon C.8.23 Manganese Mn.3.6 Phosphorus P -.4 Max Sulfur S -.5 Max FM-DO-CO-2 3/3/27 STEEL AISI - 862 Steel AISI 862. Carbon Steel. Carbon C.7.23 Silicon Si

More information

Effects in Ductile Iron

Effects in Ductile Iron Summary of Element Effects in Ductile Iron Rick Gundlach Element Materials Technology Wixom Insert Company Logo Here DIS Annual Meeting, June 7, 2012 Muskegon, Michigan Types of Alloying Elements Substitutional

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

Heat Treatment of Steels : Metallurgical Principle

Heat Treatment of Steels : Metallurgical Principle Heat Treatment of Steels : Metallurgical Principle Outlines: Fe ad Fe-Fe 3 C system Phases and Microstructure Fe-Fe 3 C Phase Diaram General Physical and Mechanical Properties of each Microstructure Usanee

More information

UNIT-II PART- A Heat treatment Annealing annealing temperature Normalizing.

UNIT-II PART- A Heat treatment Annealing annealing temperature Normalizing. UNIT-II PART- A 1. What is "critical cooling rate" in hardening of steels? This critical cooling rate, when included on the continuous transformation diagram, will just miss the nose at which the pearlite

More information

MSE2034 (STALEY) Test #3 Review 4/2/06

MSE2034 (STALEY) Test #3 Review 4/2/06 MSE2034 (STALEY) Test #3 Review 4/2/06 The third test in this course will be a take-home assignment handed out at the end of class Wednesday, April 5, and due by Noon on Friday, April 7. It will be open

More information

The excellent performance of austempered ductile iron

The excellent performance of austempered ductile iron Design and control of chemical compositions for high-performance austempered ductile iron *Gong Wenbang 1, Chen Guodong 1, Luo Li 1, Hao Jing 2 and Zhang Zhonghe 3 (1. Wuhan Textile University, Wuhan 430073,

More information

Material Properties and Phase Diagrams

Material Properties and Phase Diagrams PY2M20 Material Properties and Phase Diagrams Lecture 6 P. Stamenov, PhD School of Physics, TCD PY2M20-6 Microstructures in Eutectic ti Systems: I C o < 2 wt% Sn Result: - at extreme ends - polycrystal

More information

14ME406/ME 226. Material science &Metallurgy. Hall Ticket Number: Fourth Semester. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

14ME406/ME 226. Material science &Metallurgy. Hall Ticket Number: Fourth Semester. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Hall Ticket Number: 14ME406/ME 226 April, 2017 Fourth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

More information

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational. Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.org Contents Preface to the Second Edition of Steels: Processing,

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Case Study: Design of Bainitic Steels

Case Study: Design of Bainitic Steels Materials Science & Metallurgy Part II Course C9, Alloys, H. K. D. H. Bhadeshia Case Study: Design of Bainitic Steels Bainite Summarised Bainite is a non lamellar aggregate of carbides and plate shaped

More information

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY ME8109: Casting And Solidification of Material A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY Department of Mechanical & Industrial Engineering Graduate Program in Mechanical Engineering

More information

Heat Treatment of Steels

Heat Treatment of Steels Heat Treatment of Steels Heat Treating is the process of heating and cooling a steel to obtain desired properties. Various types of heat treatment processes are used to change the following properties

More information

Lecture 5: Heat Treatment of Steel

Lecture 5: Heat Treatment of Steel Lecture 5: Heat Treatment of Steel MMat 380 Lecture outline TTT diagrams (hypo and hyper eutectoid steels) CCT vs TTT diagrams Austenizing Heat Treatments For hypoeutectoid mild steels For hypereutectoid

More information

Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation

Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation 17 MnMoV 6 4 (WB35): Stretched Zone Material Degradation of Nuclear Structures Mitigation by Nondestructive Evaluation

More information

Chapter 7. Stainless Steels. /MS371/ Structure and Properties of Engineering Alloys

Chapter 7. Stainless Steels. /MS371/ Structure and Properties of Engineering Alloys Chapter 7 Stainless Steels Stainless steels at least % Cr in iron is required (max 30% Cr) Cr: to make iron surface by forming a surface oxide film protecting the underlying metal from corrosion Ni: to

More information

Chapter 6. Copper and Copper Alloys. /MS371/ Structure and Properties of Engineering Alloys

Chapter 6. Copper and Copper Alloys. /MS371/ Structure and Properties of Engineering Alloys Chapter 6 Copper and Copper Alloys Overview of copper alloys Main characteristics High electrical, ease of Relative electrical and thermal conductivities (at 20 o C) Overview of copper alloys Cu + Zn (

More information

Microstructure and Mechanical Properties of ADI Depending on Austenitization Methods and Parameters

Microstructure and Mechanical Properties of ADI Depending on Austenitization Methods and Parameters A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 12 Issue 2/2012 19 24 4/2 Microstructure

More information

Cannot be strengthened (precipitation hardening) Strength can be increased only through cold-work Three main groups : 1xxx, 3xxx and 5xxx series

Cannot be strengthened (precipitation hardening) Strength can be increased only through cold-work Three main groups : 1xxx, 3xxx and 5xxx series 1. Aluminium (Al) Extremely useful engineering material o has low density (2.70 g/cm3) o good corrosion resistance in most natural environment o non-toxic : suitable for food containers and packaging o

More information

Chapter 6. Copper and Copper Alloys. /MS371/ Structure and Properties of Engineering Alloys

Chapter 6. Copper and Copper Alloys. /MS371/ Structure and Properties of Engineering Alloys Chapter 6 Copper and Copper Alloys Overview of copper alloys Main characteristics High electrical, ease of Relative electrical and thermal conductivities (at 20 o C) Overview of copper alloys Cu + Zn (

More information

Processes and Equipment; Heat Treatment

Processes and Equipment; Heat Treatment 4 4 6. 3 0 5 A M A N U F A C T U R I N G P R O C E S S E S Chapter 5. Metal-Casting Processes and Equipment; Heat Treatment Sung-Hoon Ahn School of Mechanical and Aerospace Engineering Seoul National University

More information

Binary Phase Diagrams - II

Binary Phase Diagrams - II Binary Phase Diagrams - II Note the alternating one phase / two phase pattern at any given temperature Binary Phase Diagrams - Cu-Al Can you spot the eutectoids? The peritectic points? How many eutectic

More information

The Effects of Heat Treatment on the Mechanical Properties of Camshaft Made of Ductile Cast Iron

The Effects of Heat Treatment on the Mechanical Properties of Camshaft Made of Ductile Cast Iron International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 6, Issue 11 (November 2017), PP. 34-40 The Effects of Heat Treatment on the Mechanical

More information

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July ISSN

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July ISSN International Journal Scientific & Engineering Research Volume 3, Issue 7, July-01 1 EFFECT OF MAGNESIUM ENHANCEMENT ON MECHANICAL PROPERTY AND WEAR BEHAVIOUR OF LM6 ALUMINUM ALLOY R. S. Rana and Rajesh

More information

Marc King. Hiler Industries LaPorte, IN

Marc King. Hiler Industries LaPorte, IN Carbidic Ductile Iron Marc King Metallurgist Hiler Industries LaPorte, IN Why would anybody in their right mind want to add carbides to ductile iron? Ductile Iron is a great engineering material: Great

More information

Solidification and phase transformations in welding

Solidification and phase transformations in welding Solidification and phase transformations in welding Subjects of Interest Part I: Solidification and phase transformations in carbon steel and stainless steel welds Solidification in stainless steel welds

More information

ATI 418 SPL alloy is readily forgeable and has fair machinability and cold formability in the annealed condition.

ATI 418 SPL alloy is readily forgeable and has fair machinability and cold formability in the annealed condition. ATI 418 SPL Stainless Steel (UNS S41800) GENERAL PROPERTIES ATI 418 SPL alloy (Greek Ascoloy) is a corrosion and heat resistant stainless steel similar in many respects to Type 410 but exhibiting improved

More information

3D METALS Discover the variety of Metal Powders The range of our standard metal powders

3D METALS Discover the variety of Metal Powders The range of our standard metal powders 3D METALS Discover the variety of Metal Powders The range of our standard metal powders Non Ferrous, Tool Steel, Stainless Steel and Light Alloys SLM The Industrial Manufacturing Revolution PIONEERS in

More information