Properties of Dense Ceramic Membranes for Energy Conversion Processes

Size: px
Start display at page:

Download "Properties of Dense Ceramic Membranes for Energy Conversion Processes"

Transcription

1 Properties of Dense Ceramic Membranes for Energy Conversion Processes Michael Schroeder, Young Chang Byun Institute of Physical Chemistry CCT 009, 18-0 May 009, Dresden

2 Coworkers: Young Chang Byun Jianxin Ji Nicolas Gauquelin Funding: Light House Project (finished) Toolbox - Ceramic Membranes for Catalysis 5 academic partners, industrial partners Financial support: German Federal Ministry of Education and Research T H A N K Joint Project MEM-Oxycoal Oxygen Permeable Ceramic Membranes for Coal-fired Power Plants 10 academic partners Financial support: German Federal Ministry of Economics and Industry Y O U HGF-Alliance MEM-BRAIN Gas Separation Membranes for Zero-Emission Power Plants 13 partners Financial support: German Helmholtz Foundation

3 Outline Introduction why dense ceramic membranes? Types of membranes and membrane materials BCFZ - Planar Membranes Oxygen transport: experimental results Modelling of bulk transport and surface exchange BCFZ - Tubular Membranes Oxygen transport: experimental results Modelling of bulk transport and surface exchange Conclusion

4 Dense vs. porous membranes Large flux and good selectivity! Air O Sweep gas Porous Membrane Carbon membranes Polymer membranes T < 100 o C BaFe 1-x-y Co x Zr y O 3-δ Polymer Membranes upper limit Carbon Molsieve Air O - e - membrane Dense MIEC O Oxide membranes 700 < T < 1000 o C Sweep gas Data for polymer membranes: Budd et al., J. Membr. Sci. 35 (008) 851 ; for CMS membranes: Kim et al., J. Membr. Sci. 55 (005) 65

5 Membrane permeation pre-requisites for high fluxes oxygen rich gas phase p oxygen lean gas phase p large driving force high electronic partial conductivity high oxide ion partial conductivity <-> high oxygen vacancy concentration J b ( O )= AT nl σ 0 ion 0 σ ion () a n a g g () n { } = z ion F u V c V 0 partial pressure p dimensionless chemical activities a p g ' h O O O V L p g ''

6 Membrane permeation pre-requisites for high fluxes oxygen rich gas phase p oxygen lean gas phase p large driving force high electronic partial conductivity high oxide ion partial conductivity <-> high oxygen vacancy concentration J b ( O )= AT nl σ 0 ion 0 σ ion () a n a g g () n { } = z ion F u V c V 0 partial pressure p dimensionless chemical activity a a g ' h O O O V L a g ''

7 Membrane permeation pre-requisites for high fluxes oxygen rich gas phase p oxygen lean gas phase p large driving force high electronic partial conductivity high oxide ion partial conductivity -> high oxygen vacancy concentration fast surface kinetics for reduction/incorporation, oxidation/release a g ' a S ' a S '' h a g '' high pressure side: J S ( O )= k 0 eff a g () m a s { ( ) m } 1 O V O h + + O O O reduction/incorporation V

8 Membrane permeation pre-requisites for high fluxes oxygen rich gas phase p oxygen lean gas phase p large driving force high electronic partial conductivity high oxide ion partial conductivity <-> high oxygen vacancy concentration fast surface kinetics for reduction/incorporation, oxidation/release fast transport of gaseous oxygen to/from membrane surface -> large gas flow rates particularly on the feed side 1 a g ' O V O h + + a S ' a S '' h O O O reduction/incorporation V a g ''

9 Membrane materials perovskite MIEC oxide/metal composites doped ion conductors J(O ) / m 3 m - h -1 = J(O ) / mol cm - s -1 oxide/oxide composite Sunarso et al., J. Mem. Sci. (008)

10 McIntosh et al., Solid State Ionics (006) Deviation from stoichiometry Ba 0.5 Sr 0.5 Co 0.8 Fe 0. O 3-δ BaCo 1-x Fe x Zr y O 3-δ Y.C. Byun, PhD Thesis (009) T / K oxygen vacancy fraction > 0% depends on temperature and p(o )

11 Ba(Co x Fe y Zr z )O 3-δ - Oxygen Permeation - feed flow rate: 300 ml/min, p' g = 0.1 bar - sweep flow rate: ml/min, p'' g variabel Defect and transport modelling yields - oxide ion partial conductivity σ 0 ion - surface exchange coefficent k 0 eff assumption: no gas phase transport limitation 173 K

12 Variation of the membrane thickness L critical thickness L c may be calculated from ratio of σ ion and k eff L c 0,004 cm (40 μm) thick membrane: L >> L c j(o ) L -1 -> bulk transport limited permeation thin membrane: L << L c j(o ) f(l) -> surface exchange limited permeation

13 Shaping of ceramic hollow fibers Green fiber Polymer solution Oxide powder Slurry Sintered fiber Green fiber Ceramic hollow fiber Spinneret Sintering Membranes prepared by: Fraunhofer Institut Grenzflächen und Bioverfahrenstechnik (Stuttgart, Germany)

14 1 J(O ) /J(O ) ref 0.5 without pores with pores 0 Sweep gas flow rate cm 3 /min Ar O - Air V s,i a s, j b,i (O ) j b1,i (O ) i a bubble,i additional gas/solid interfaces i-1 i i+1 V f,i a f,i

15 Local oxygen activities along the tubular membrane - co-current mode V(Ar) = 100 cm 3 /min a a g ( O ) S Oxygen activity a S a g argon x a ( ) g ( O ) as O 0.05 a S a g air x / cm x

16 Local oxygen activities along the tubular membrane - counter-current mode a a g ( O ) S Oxygen activity a S a g. V(Ar) = 100 cm 3 /min a S a g argon x a g ( O ) as O air ( ) x / cm x

17 Comparison of co-current and counter-current mode V(Ar) / cm 3 min co-current. V(Ar) / cm 3 min counter-current J(O ) / cm 3 min -1 J(O ) /J(O ) ref Longitudinal position x x /cm / cm J(O ) / cm 3 min -1 J(O ) /J(O ) ref K (co) 1073K (counter) 113K (co) 113K (counter) 1173K (co) 1173K (counter) Sweep Ar flow gas flow rate rate cm 3 /min cm 3-1 /min

18 Conclusions Oxygen transport through thick planar and thin hollow fiber membranes of Ba(Co x Fe y Zr z )O 3-δ was investigated by permeation experiments. The oxygen permeation fluxes of planar membranes were sucessfully modelled by a defect and transport model. The modelling results indicate that: -in thicker planar membranes, oxygen transport is predominantly bulk limited. -in thin tubular membranes, oxygen transport is substantially limited by the surface reactions. Microstructure (e.g. pores) affects the permeation flux Sluggish internal interfaces diminish the flux Tubular membrane in counter-current mode yields slightly higher permeation fluxes when compared to co-current mode.

19 End

20 Flux performance Reactivity Thermal expansion Compatibility mechanical Surface poisoning Chemical expansion process Stability chemical thermal cycling

Ceramic Membranes for Oxyfuel Power Plants

Ceramic Membranes for Oxyfuel Power Plants Mitglied der Helmholtz-Gemeinschaft Ceramic Membranes for Oxyfuel Power Plants May 19, 2009 Michael Betz, Stefan Baumann, Wilhelm A. Meulenberg Forschungszentrum Jülich GmbH Institute for Energy Research

More information

Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC

Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC Mitglied der Helmholtz-Gemeinschaft Oxygen Transport Membrane Modules for Oxyfuel Applications developed in GREEN-CC AMPEA Workshop Materials for membranes in energy applications: gas separation membranes,

More information

High Temperature Membrane Technology for Oxygen Production

High Temperature Membrane Technology for Oxygen Production High Temperature Membrane Technology for Oxygen Production Prof. Dr.-Ing. M. Modigell Dipl.-Ing. S. Engels Oxyfuel-Process air CO 2 flue gas steam ASU O 2 N 2 O 2 + flue gas coal water OXYCOAL-AC Process

More information

How can MIEC Membranes Facilitate Hydrogen Production from Water Thermolysis?

How can MIEC Membranes Facilitate Hydrogen Production from Water Thermolysis? How can MIEC Membranes Facilitate Hydrogen Production from Water Thermolysis? Xiao-Yu Wu heat Advisor: Professor Ahmed F. Ghoniem April 29 2015 MIEC: Mixed Ionic-Electronic Conductive Massachusetts Institute

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

THE DEVELOPMENT OF GAS TIGHT THIN FILMS OF (La,Sr)(Ga,Fe)O 3. , (La,Sr)(Co,Fe)O 3 AND La 2 FOR OXYGEN SEPARATION. NiO 4 INTRODUCTION

THE DEVELOPMENT OF GAS TIGHT THIN FILMS OF (La,Sr)(Ga,Fe)O 3. , (La,Sr)(Co,Fe)O 3 AND La 2 FOR OXYGEN SEPARATION. NiO 4 INTRODUCTION THE DEVELOPMENT OF GAS TIGHT THIN FILMS OF (La,Sr)(Ga,Fe), (La,Sr)(Co,Fe) AND La 2 FOR OXYGEN SEPARATION R. Muydinov, M. Novojilov, O. Gorbenko, I. Korsakov, A. Kaul Moscow State University, Russia S.

More information

Overview on 1 st and 2 nd generation coal-fired membrane power plants (with and without turbo machinery in the membrane environment)

Overview on 1 st and 2 nd generation coal-fired membrane power plants (with and without turbo machinery in the membrane environment) Mitglied der Helmholtz-Gemeinschaft Fourth International Conference on Clean Coal Technologies CCT2009 - Dresden, Germany 18-21 May 2009 - Overview on 1 st and 2 nd generation coal-fired membrane power

More information

Energy Procedia. Viability of mixed conducting membranes for oxygen production and oxyfuel processes in power production

Energy Procedia. Viability of mixed conducting membranes for oxygen production and oxyfuel processes in power production Available online at www.sciencedirect.com Energy Procedia 00 1 (2009) (2008) 455 459 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Viability of mixed conducting

More information

Module Design for MIEC Membranes. in OXYCOAL-AC

Module Design for MIEC Membranes. in OXYCOAL-AC CCT 2009 Module Design for MIEC Membranes in E.M. Pfaff*, M. Zwick, S. Dabbarh, C. Broeckmann Institute for Materials Applications in Mechanical Engineering 1 Module design in Agenda 1. Introduction 2.

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity

Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity SUPPLEMENTARY INFORMATION Articles DOI: 10.1038/s41560-017-0002-2 In the format provided by the authors and unedited. Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride

More information

SAFE Oxygen and Hydrogen Innovative Separation Techniques for Pre- and Oxy-combustion Capture

SAFE Oxygen and Hydrogen Innovative Separation Techniques for Pre- and Oxy-combustion Capture SAFE 2009 Oxygen and Hydrogen Innovative Separation Techniques for Pre- and Oxy-combustion Capture Contents Introduction (power cycles with CO 2 capture) H 2 separation membrane integration in power cycles

More information

Composite Ni Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3 membrane for hydrogen separation

Composite Ni Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3 membrane for hydrogen separation Journal of Power Sources 159 (2006) 1291 1295 Composite Ni Ba(Zr 0.1 Ce 0.7 Y 0.2 )O 3 membrane for hydrogen separation Chendong Zuo a,b, T.H. Lee b, S.E. Dorris b, U. Balachandran b, Meilin Liu a, a School

More information

WP2: Gas-solid reactions

WP2: Gas-solid reactions WP2: Gas-solid reactions Ian S. Metcalfe Professor of Chemical Engineering Newcastle University i.metcalfe@ncl.ac.uk 26 January 2017 WP2: Gas-solid interfaces: Membranes for gas separation and solid oxide

More information

Oxygen Transport Membranes

Oxygen Transport Membranes Oxygen Transport Membranes BIGCO2 Achievements Paul Inge Dahl, Marie-Laure Fontaine, Florian Ahouanto, Christelle Denonville, Thijs Peters, Yngve Larring, Ove Paulsen, Partow P. Henriksen, Rune Bredesen

More information

Chapter 5: Atom and Ion Movements in Materials

Chapter 5: Atom and Ion Movements in Materials Slide 1 Chapter 5: Atom and Ion Movements in Materials 5-1 Slide 2 Learning Objectives 1. Applications of diffusion 2. Stability of atoms and ions 3. Mechanisms for diffusion 4. Activation energy for diffusion

More information

MIXED-CONDUCTORS FOR ELECTRIC POWER APPLICATIONS*

MIXED-CONDUCTORS FOR ELECTRIC POWER APPLICATIONS* MIXED-CONDUCTORS FOR ELECTRIC POWER APPLICATIONS* U. (Balu) Balachandran Argonne, IL 60439, U.S.A. Email: balu@anl.gov * Work supported by the U.S. Department of Energy. Argonne National Laboratory Office

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells Sivaprakash Sengodan 1, Sihyuk Choi 1, Areum Jun 1, Tae Ho Shin 2, Young-Wan Ju

More information

Interfacial resistances of Ni BCY mixed-conducting membranes for hydrogen separation

Interfacial resistances of Ni BCY mixed-conducting membranes for hydrogen separation Solid State Ionics 159 (2003) 121 134 www.elsevier.com/locate/ssi Interfacial resistances of Ni BCY mixed-conducting membranes for hydrogen separation Gong Zhang a,b,1, Stephen E. Dorris b, *, Uthamalingam

More information

Investigation of Co doped Ce 0.8 Sm 0.2 O 2 Ba 0.95 La 0.05 Zr 0.1 Fe 0.9 x Co x O 3 Dual phase Oxygen Transport Membranes

Investigation of Co doped Ce 0.8 Sm 0.2 O 2 Ba 0.95 La 0.05 Zr 0.1 Fe 0.9 x Co x O 3 Dual phase Oxygen Transport Membranes Investigation of Co doped Ce 0.8 Sm 0.2 O 2 Ba 0.95 La 0.05 Zr 0.1 Fe 0.9 x Co x O 3 Dual phase Oxygen Transport Membranes Pengfei WANG 1,a, Hongwei CHENG 1,2,b*, Yuanzhi WANG 1, Xionggang LU 1,2,c*, Xingli

More information

Proton-Conducting Dense Ceramic Membranes for Hydrogen Separation. Technical Progress Report. (Annual) 09/01/01 08/30/02

Proton-Conducting Dense Ceramic Membranes for Hydrogen Separation. Technical Progress Report. (Annual) 09/01/01 08/30/02 Proton-Conducting Dense Ceramic Membranes for Hydrogen Separation Technical Progress Report (Annual) 09/01/01 08/30/02 Jerry Y.S. Lin November 2002 DE-FG26-00NT40818 Department of Chemical Engineering

More information

Applications of hydrogen permeable membranes in ammonia synthesis and decomposition

Applications of hydrogen permeable membranes in ammonia synthesis and decomposition Applications of hydrogen permeable membranes in ammonia synthesis and decomposition September 19, 2016 Sean-Thomas B. Lundin, Thomas F. Fuerst, Jason C. Ganley, Colin A. Wolden, J. Douglas Way Chemical

More information

Change in stoichiometry

Change in stoichiometry Measurement of Gas Sensor Performance Gas sensing materials: 1. Sputtered ZnO film (150 nm (Massachusetts Institute of Technology) 2. Sputtered SnO 2 film (60 nm) (Fraunhofer Institute of Physical Measurement

More information

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides (La 0.8 Sr 0.2 )(Mn 1-y Fe y )O 3±δ Oxides for ITSOFC Cathode Materials? Electrical and Ionic Transport Properties M. Petitjean (1), G. Caboche (1), E. Siebert (2), L. Dessemond (2), L.-C. Dufour (1) (1)

More information

Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee

Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee School of Materials Science and Engineering Gyeongsang National University, Jinju, Republic of Korea 2 Research

More information

Porous Alumina Tubular Supported Ultra-thin Pd Membrane. Dan Edson, PhD MetaMateria Partners Columbus, OH

Porous Alumina Tubular Supported Ultra-thin Pd Membrane. Dan Edson, PhD MetaMateria Partners Columbus, OH Porous Alumina Tubular Supported Ultra-thin Pd Membrane Dan Edson, PhD MetaMateria Partners Columbus, OH Acknowledgements DOE for 1 year of funding for hydrogen work EMTEC, Dayton, OH - Program administration

More information

Electrolytes: Stabilized Zirconia

Electrolytes: Stabilized Zirconia Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Stabilized Zirconia Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Bibliography

More information

FUEL CELL CHARGE TRANSPORT

FUEL CELL CHARGE TRANSPORT FUEL CELL CHARGE TRANSPORT M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they

More information

MEthane activation via integrated MEmbrane REactors MEMERE

MEthane activation via integrated MEmbrane REactors MEMERE MEthane activation via integrated MEmbrane REactors MEMERE Fausto Gallucci, Solomon Wassie, Jose Medrano This project has received funding from the European Union s Horizon 2020 research and innovation

More information

Transport and surface properties of Sr 0.25 Bi 0.5 FeO 3 d mixed conductor

Transport and surface properties of Sr 0.25 Bi 0.5 FeO 3 d mixed conductor Solid State Ionics 149 (2002) 299 307 www.elsevier.com/locate/ssi Transport and surface properties of Sr 0.25 Bi 0.5 FeO 3 d mixed conductor Xinyu Lu, Meilin Liu* School of Materials Science and Engineering,

More information

Asymmetric Lanthanum Doped Ceria Membrane with Proton Conductive and Hydrogen Separation Capability for Solid Oxide Fuel Cell

Asymmetric Lanthanum Doped Ceria Membrane with Proton Conductive and Hydrogen Separation Capability for Solid Oxide Fuel Cell Article Asymmetric Lanthanum Doped Ceria Membrane with Proton Conductive and Hydrogen Separation Capability for Solid Oxide Fuel Cell Warit Ua-amnueychai 1,a, Keishi Asada 2, and Katsunori Hanamura 2,b

More information

Advanced materials for SOFCs

Advanced materials for SOFCs Advanced materials for SOFCs Yoed Tsur Department of Chemical Engineering Technion Outline Intro: why SOFCs are important? Types of SOFCs Hybrid SOFC-something for power generation: NG utilization Materials

More information

DEVELOPMENT OF A DYNAMIC MODEL OF A PALLADIUM MEMBRANE REACTOR FOR WATER GAS SHIFT

DEVELOPMENT OF A DYNAMIC MODEL OF A PALLADIUM MEMBRANE REACTOR FOR WATER GAS SHIFT DEVELOPMENT OF A DYNAMIC MODEL OF A PALLADIUM MEMBRANE REACTOR FOR WATER GAS SHIFT Angelo Rossi, Giacomo Lamonaca, STRUTTURA INFORMATICA, Florence (IT), Pietro Pinacci, Francesca Drago, RSE, Milan, (IT)

More information

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Ionic Conductivity and Solid Electrolytes II: Materials and Applications Ionic Conductivity and Solid Electrolytes II: Materials and Applications Chemistry 754 Solid State Chemistry Lecture #27 June 4, 2003 References A. Manthiram & J. Kim Low Temperature Synthesis of Insertion

More information

SOLID OXIDE FUEL CELLS (SOFC)

SOLID OXIDE FUEL CELLS (SOFC) SOLID OXIDE FUEL CELLS (SOFC) Customized Solutions Innovation in Environmental Technology and Power Generation Product Overview SOFC SOFC Products Electrolyte Supported Cells Kerafol offers SOFCs with

More information

Composite Mixed Ion-Electron Conducting (MIEC) Membranes for Hydrogen Generation and Separation

Composite Mixed Ion-Electron Conducting (MIEC) Membranes for Hydrogen Generation and Separation Composite Mixed Ion-Electron Conducting (MIEC) Membranes or ydrogen Generation and Separation aibing Wang, Srianth Gopalan, and Uday B. al Division o Materials Science and Engineering & Department o Mechanical

More information

OTM - An Advanced Oxygen Technology for IGCC

OTM - An Advanced Oxygen Technology for IGCC OTM - An Advanced Oxygen Technology for IGCC Ravi Prasad, Jack Chen, Bart van Hassel, John Sirman, James White, Eric Shreiber, Joe Corpus, Joshua Harnanto San Francisco, Oct 30, 2002 Gasification Technologies

More information

Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells

Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41560-017-0085-9 In the format provided by the authors and unedited. Exceptional power density and stability at intermediate temperatures in

More information

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa*, G. Schiller, K. A.

More information

S.E.M. STUDY OF SOME SUBSTITUTED BARIUM COBALTATE DENSE CERAMIC MEMBRANES

S.E.M. STUDY OF SOME SUBSTITUTED BARIUM COBALTATE DENSE CERAMIC MEMBRANES S.E.M. STUDY OF SOME SUBSTITUTED BARIUM COBALTATE DENSE CERAMIC MEMBRANES H. Storch, Georgeta Velciu Camelia Grigore and Maria Diaconescu abstract: Ba(Bi 0,1 Co 0,2Fe 0,7) O 3-δ and Ba 0,5 Sr 0,5 (Co 0,8

More information

FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS CENTER OF COMPETENCE POWDER TECHNOLOGY

FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS CENTER OF COMPETENCE POWDER TECHNOLOGY FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS CENTER OF COMPETENCE POWDER TECHNOLOGY PRODUCT DESIGN READY-TO-PRESS-POWDER (PREMIX) POWDER FOR THERMAL CLADDING AND SPRAYING FUNCTIONAL POWDERS

More information

High temperature membrane catalyst systems for a WGS membrane reactor

High temperature membrane catalyst systems for a WGS membrane reactor High temperature membrane catalyst systems for a WGS membrane reactor E. Forster, A. Heymann, D. van Holt, M.E. Ivanova, S. Baumann, W.A. Meulenberg, M. Müller Institute of Energy and Climate Research

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High Electrochemical Activity of the Oxide Phase in Model Ceria- and Ceria-Ni Composite Anodes William C. Chueh 1,, Yong Hao, WooChul Jung, Sossina M. Haile Materials Science, California Institute of Technology,

More information

Gas to Liquids: Natural Gas Conversion to Aromatic Fuels. and Chemicals in a Hydrogen-Permeable Ceramic Hollow. Fiber Membrane Reactor

Gas to Liquids: Natural Gas Conversion to Aromatic Fuels. and Chemicals in a Hydrogen-Permeable Ceramic Hollow. Fiber Membrane Reactor Supporting Information for Gas to Liquids: Natural Gas Conversion to Aromatic Fuels and Chemicals in a Hydrogen-Permeable Ceramic Hollow Fiber Membrane Reactor Jian Xue, 1 Yan Chen, 2 Yanying Wei, 1,2

More information

Effects of polymer binders on separation performance of the perovskite-type 4- bore hollow fiber membranes. Separation and Purification Technology

Effects of polymer binders on separation performance of the perovskite-type 4- bore hollow fiber membranes. Separation and Purification Technology Accepted Manuscript Effects of polymer binders on separation performance of the perovskite-type 4- bore hollow fiber membranes Zhe Song, Zhicheng Zhang, Guangru Zhang, Zhengkun Liu, Jiawei Zhu, Wanqin

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Supplementary Figure 1 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature.

Supplementary Figure 1 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature. Supplementary Figure 1 X-ray photoelectron spectroscopy profile of Nb and Ta of SCNT at room temperature. Supplementary Figure 2 Factors that may affect the area specific resistance of SCNT cathode. (a)

More information

Study of transition metal oxide doped LaGaO 3 as electrode materials for LSGM-based solid oxide fuel cells

Study of transition metal oxide doped LaGaO 3 as electrode materials for LSGM-based solid oxide fuel cells J Solid State Electrochem (1998) 3: 7±14 Ó Springer-Verlag 1998 ORIGINAL PAPER Fanglin Chen á Meilin Liu Study of transition metal oxide doped LaGaO 3 as electrode materials for LSGM-based solid oxide

More information

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as EXERCISES KJM5120 Chapter 5; Diffusion 1. Random (self) diffusion a) The self-diffusion coefficient of a metal with cubic structure can be expressed as 1 n D = s 6 t 2 where n/t represents the jump frequency

More information

A1104 Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodes

A1104 Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodes A1104 Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodes Omar Pecho 1,2 Lorenz Holzer 1, Zhèn Yáng 2, Julia Martynczuk

More information

Advances in Materials Research for CCT

Advances in Materials Research for CCT Advances in Materials Research for CCT Lorenz Singheiser JARA ENERGY Institute of Energy Research at Forschungszentrum Jülich GmbH CCT 2009 May 18 20 2009 Dresden 2. Juni 2009 Folie 1 ntent Materials and

More information

Continuous Monitoring of Oxygen Chemical Potential at the Surface of Growing Oxide Scales during High Temperature Oxidation of Metals

Continuous Monitoring of Oxygen Chemical Potential at the Surface of Growing Oxide Scales during High Temperature Oxidation of Metals Materials Transactions, Vol. 49, No. 3 (2008) pp. 629 to 636 #2008 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Continuous Monitoring of Oxygen Chemical Potential at the Surface of Growing Oxide

More information

Evaluation of Cathode Materials for Low Temperature ( C) Solid Oxide Fuel Cells

Evaluation of Cathode Materials for Low Temperature ( C) Solid Oxide Fuel Cells University of Connecticut DigitalCommons@UConn Master's Theses University of Connecticut Graduate School 9-6-2011 Evaluation of Cathode Materials for Low Temperature (500-700C) Solid Oxide Fuel Cells Alexander

More information

Hydrogen Production by Water Dissociation Using Ceramic Membranes

Hydrogen Production by Water Dissociation Using Ceramic Membranes ANL-10/13 Hydrogen Production by Water Dissociation Using Ceramic Membranes Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago

More information

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering R. Costa *, R. Spotorno, Z. Ilhan, A. Ansar German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring

More information

New morphological Ba0.5Sr0.5Co0.8Fe0.2O3## hollow fibre membranes with high oxygen permeation fluxes

New morphological Ba0.5Sr0.5Co0.8Fe0.2O3## hollow fibre membranes with high oxygen permeation fluxes New morphological Ba0.5Sr0.5Co0.8Fe0.2O3## hollow fibre membranes with high oxygen permeation fluxes Author Han, Dezhi, Tan, Xiaoyao, Yan, Zifeng, Li, Qin, Liu, Shaomin Published 2013 Journal Title Ceramics

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2011 69451 Weinheim, Germany CO 2 -Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation** Huixia Luo, Konstantin Efimov, Heqing Jiang, Armin Feldhoff, Haihui

More information

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells Werner Sitte Chair of Physical Chemistry, University of Leoben, Austria IEA Workshop Advanced Fuel Cells, TU Graz,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Reactive stability of promising scalable doped ceria

More information

Improving the Performance of Ceramic Barrier Layers used in Packaging Materials

Improving the Performance of Ceramic Barrier Layers used in Packaging Materials Improving the Performance of Ceramic Barrier Layers used in Packaging Materials Roland Trassl Senior Manager Advanced Development Applied Materials WEB Coating GmbH AIMCAL Tampa, Florida, USA 18 th October,

More information

Oxygen Permeability through Internal Oxidation Zone in Fe Cr Alloys under Dry and Humid Conditions at 973 and K

Oxygen Permeability through Internal Oxidation Zone in Fe Cr Alloys under Dry and Humid Conditions at 973 and K , pp. 259 263 Oxygen Permeability through Internal Oxidation Zone in Fe Cr Alloys under Dry and Humid Conditions at 973 and 1 073 K Asep Ridwan SETIAWAN, 1) Mohd HANAFI BIN ANI, 2) Mitsutoshi UEDA, 2)

More information

Interfaces: Corrosion in Pb-alloy cooled nuclear reactors and advanced mitigation measures

Interfaces: Corrosion in Pb-alloy cooled nuclear reactors and advanced mitigation measures Interfaces: Corrosion in Pb-alloy cooled nuclear reactors and advanced mitigation measures and G. Müller KIT KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

Ceramics for Energy Storage and Conversion. Dr. Doreen Edwards Dean of Engineering Prof. of Materials Science & Engineering

Ceramics for Energy Storage and Conversion. Dr. Doreen Edwards Dean of Engineering Prof. of Materials Science & Engineering Ceramics for Energy Storage and Conversion Dr. Doreen Edwards Dean of Engineering Prof. of Materials Science & Engineering Ceramic and Glass Materials are Critical to Energy Storage and Conversion Devices

More information

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Elisa Mercadelli (1), A.Gondolini (1), G. Constantin (2,3), L. Dessemond (2,3), V. Yurkiv (4), R. Costa (4) and A. Sanson

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

Paolo Chiesa. Politecnico di Milano. Tom Kreutz*, Bob Williams. Princeton University

Paolo Chiesa. Politecnico di Milano. Tom Kreutz*, Bob Williams. Princeton University Analysis of Hydrogen and Co-Product Electricity Production from Coal with Near Zero Pollutant and CO 2 Emissions using an Inorganic Hydrogen Separation Membrane Reactor Paolo Chiesa Politecnico di Milano

More information

O 4. coating on the oxidation behavior of Fe-20Cr ferritic stainless steels for SOFC interconnects

O 4. coating on the oxidation behavior of Fe-20Cr ferritic stainless steels for SOFC interconnects IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS The influence of Titanium alloying and Co 3 O 4 coating on the oxidation behavior of Fe-20Cr ferritic stainless steels for SOFC

More information

A Ceramic Membrane Reactor for Methane Combustion Processes Pingying Zeng Kang Wang Ryan Leon Falkenstein-Smith Jeongmin Ahn

A Ceramic Membrane Reactor for Methane Combustion Processes Pingying Zeng Kang Wang Ryan Leon Falkenstein-Smith Jeongmin Ahn Paper 070MI-0058 Topic: Microcombustion and New Combustion Devices 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

Synthesis and characterization of perovskite materials for production of mixed ionic and electronic conduction membranes

Synthesis and characterization of perovskite materials for production of mixed ionic and electronic conduction membranes GRADUATE PROGRAM IN CHEMICAL ENGINEERING Daniel Dornellas Athayde Synthesis and characterization of perovskite materials for production of mixed ionic and electronic conduction membranes Supervisor: Prof.

More information

MICROWAVE DIELECTRIC PROPERTIES OF Ba 0.75 Sr 0.25 (Nd x Bi 1-x ) 2 Ti 4 O 12 SOLID SOLUTION

MICROWAVE DIELECTRIC PROPERTIES OF Ba 0.75 Sr 0.25 (Nd x Bi 1-x ) 2 Ti 4 O 12 SOLID SOLUTION Original papers MICROWAVE DIELECTRIC PROPERTIES OF Ba 0.75 Sr 0.25 (Nd x Bi 1-x ) 2 Ti 4 O 12 SOLID SOLUTION Long Mingzhu, ZHuang WENDONG*, # Tang Bin, Yu Shengquan, Zhou Xiaohua, Zhang Shuren State Key

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low Temperature Solid Oxide Fuel Cells

Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low Temperature Solid Oxide Fuel Cells GCEP Research Symposium Stanford University October 2,2009 Metal Oxide Nanotubes and Photo-Excitation Effects: New Approaches for Low Temperature Solid Oxide Fuel Cells Paul C. McIntyre 1,2 & Shriram Ramanathan

More information

ELEC 7364 Lecture Notes Summer Si Oxidation. by STELLA W. PANG. from The University of Michigan, Ann Arbor, MI, USA

ELEC 7364 Lecture Notes Summer Si Oxidation. by STELLA W. PANG. from The University of Michigan, Ann Arbor, MI, USA ELEC 7364 Lecture Notes Summer 2008 Si Oxidation by STELLA W. PANG from The University of Michigan, Ann Arbor, MI, USA Visiting Professor at The University of Hong Kong The University of Michigan Visiting

More information

1 Introduction. 2 Basic Technology

1 Introduction. 2 Basic Technology Innovative Clear Barrier Technology for the Packaging Industry Nicolas Schiller 1, Steffen Straach, Steffen Günther Fraunhofer FEP, Germany Alexandra L. Quiceno G., Antonio García Contreras BIOFILM, Columbia

More information

EFFECTS OF SINTERING TEMPERATURE ON THE PERFORMANCE OF SrSc 0.1 Co 0.9 O 3-δ OXYGEN SEMIPERMEABLE MEMBRANE

EFFECTS OF SINTERING TEMPERATURE ON THE PERFORMANCE OF SrSc 0.1 Co 0.9 O 3-δ OXYGEN SEMIPERMEABLE MEMBRANE Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 32, No. 03, pp. 757-765, July - September, 2015 dx.doi.org/10.1590/0104-6632.20150323s00003269 EFFECTS

More information

Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes

Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes Characterization of Nanoscale Electrolytes for Solid Oxide Fuel Cell Membranes Cynthia N. Ginestra 1 Michael Shandalov 1 Ann F. Marshall 1 Changhyun Ko 2 Shriram Ramanathan 2 Paul C. McIntyre 1 1 Department

More information

UNIVERSITY OF CALIFORNIA IRVINE, CA OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER

UNIVERSITY OF CALIFORNIA IRVINE, CA OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER NATIONAL FUEL CELL RESEARCH CENTER (NFCRC) UNIVERSITY OF CALIFORNIA IRVINE, CA 92697-3550 http://www.nfcrc.uci.edu OUTLINE (1) NATIONAL FUEL CELL RESEARCH CENTER (2) FUEL CELL RESEARCH CHALLENGES NATIONAL

More information

SP5 Publishable Summary Report

SP5 Publishable Summary Report SP5 Publishable Summary Report Based on the Del. 5.3.11.: Developments of the high temperature oxygen generation technology outside ENCAP in EU and USA Authors: Robert Eckl, Frank Fitch This report should

More information

Technological Aspects of Metal Nanopowders

Technological Aspects of Metal Nanopowders PHYSICS and CHEMISTRY of NANOMATERIALS, lecture 6 Alexander A. Gromov gromov@tpu.ru Chair of Silicates and Nanomaterials, Faculty of Chemical Technology, Tomsk Polytechnic University, RUSSIA Technological

More information

Gas B CH4. Chemical vapour infiltration. Reactive melt infiltration. Carbide. Powders. Layers. Final sample & fibre preform. Pack cementation &CVI

Gas B CH4. Chemical vapour infiltration. Reactive melt infiltration. Carbide. Powders. Layers. Final sample & fibre preform. Pack cementation &CVI a Gas b A B CH4 H2 Chemical vapour infiltration Reactive melt infiltration d NIP preform c CH4 H2 Carbide sample Carbide Layers Powders Final sample & fibre preform Pack cementation &CVI Supplementary

More information

A Robust Mixed-Conducting Multichannel Hollow Fiber. Membrane Reactor

A Robust Mixed-Conducting Multichannel Hollow Fiber. Membrane Reactor Separations: Materials, Devices and Processes DOI 10.1002/aic.14835 A Robust Mixed-Conducting Multichannel Hollow Fiber Membrane Reactor Jiawei Zhu, Shaobin Guo, Gongping Liu, Zhengkun Liu, Zhicheng Zhang,

More information

Absorption of SO 2 using PVDF hollow fiber membranes with PEG as an additive

Absorption of SO 2 using PVDF hollow fiber membranes with PEG as an additive Korean J. Chem. Eng., 4(4), 693-697 (007) SHORT COMMUNICATION Absorption of SO using PVDF hollow fiber membranes with PEG as an additive Hyun-Hee Park, Chun-Won Lim, Hang-Dai Jo, Won-Kil Choi and Hyung-Keun

More information

OXIDATIVE COUPLING OF METHANE IN A CATALYTIC MEMBRANE REACTOR: MEMBRANE DEVELOPMENT AND REACTOR DESIGN

OXIDATIVE COUPLING OF METHANE IN A CATALYTIC MEMBRANE REACTOR: MEMBRANE DEVELOPMENT AND REACTOR DESIGN OXIDATIVE COUPLING OF METHANE IN A CATALYTIC MEMBRANE REACTOR: AITOR CRUELLAS LABELLA 1, VESNA MIDDELKOOP 2, MARTIN VAN SINT ANNALAND 1, FAUSTO GALLUCCI 1 MEMBRANE DEVELOPMENT AND REACTOR DESIGN 1 Eindhoven

More information

Influence of Rare Earths on the Sintering of Zirconia-Yttria. Experimental

Influence of Rare Earths on the Sintering of Zirconia-Yttria. Experimental Materials Research, Vol. 2, No. 3, 211-217, 1999. 1999 Influence of Rare Earths on the Sintering of Zirconia-Yttria I.C. Canova a, D.P.F. de Souza a#, N.R. Costa a, M.F. de Souza b a Departamento de Engenharia

More information

Metallic membranes for N2 separation & postcombustion CO2 capture improvement

Metallic membranes for N2 separation & postcombustion CO2 capture improvement Engineering Conferences International ECI Digital Archives CO2 Summit II: Technologies and Opportunities Proceedings Spring 4-13-2016 Metallic membranes for N2 separation & postcombustion CO2 capture improvement

More information

Proton Ceramic Steam Electrolysers

Proton Ceramic Steam Electrolysers Proton Ceramic Steam Electrolysers Einar Vøllestad 1, R. Strandbakke 1, Dustin Beeaff 2 and T. Norby 1 1 University of Oslo, Department of Chemistry, 2 CoorsTek Membrane Sciences AS Theoretical considerations

More information

Experimental O 3. Results and discussion

Experimental O 3. Results and discussion Introduction Surface coatings to protect against oxidation extend the service temperature and the service life of basic metals. The commercially used coating systems can be divided into three main groups:

More information

Development of Pd Cu Membranes for Hydrogen Separation

Development of Pd Cu Membranes for Hydrogen Separation Development of Pd Cu Membranes for Hydrogen Separation Shahrouz Nayebossadri, John Speight, David Book School of Metallurgy & Materials University of Birmingham www.hydrogen.bham.ac.uk The Hydrogen & Fuel

More information

Dehydration of Organic Solutions by a Recirculated Air Sweep Pervaporation Process Using Anion-Exchange Hollow Fibers

Dehydration of Organic Solutions by a Recirculated Air Sweep Pervaporation Process Using Anion-Exchange Hollow Fibers 62 Journal of Membrane and Separation Technology, 2016, 5, 62-68 Dehydration of Organic Solutions by a Recirculated Air Sweep Pervaporation Process Using Anion-Exchange Hollow Fibers Emanuel Korngold *,

More information

Oxygen Transport Membrane Reactors for Oxy- Fuel Combustion and Carbon Capture Purposes

Oxygen Transport Membrane Reactors for Oxy- Fuel Combustion and Carbon Capture Purposes Syracuse University SURFACE Dissertations - ALL SURFACE December 2017 Oxygen Transport Membrane Reactors for Oxy- Fuel Combustion and Carbon Capture Purposes Ryan Falkenstein-Smith Syracuse University

More information

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage Fuel Cell & Hydrogen Technologies JP SP2: Catalyst and Electrodes Borovetz, Bulgaria June 2 nd and 3 rd 2014 The need for localized electrochemical measurements and the promise of Controlled Atmosphere

More information

Hydrogen transport through thin layer Pd alloy membranes: kinetics and gas permeation studies

Hydrogen transport through thin layer Pd alloy membranes: kinetics and gas permeation studies ECNM06085 Hydrogen transport through thin layer Pd alloy membranes: kinetics and gas permeation studies Y.C van Delft, L.A. Correia, J.P. Overbeek, B. Bongers and P.P.A.C. Pex Presented at the 9th International

More information

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT Ceramic Microchannel Devices for Thermal Management C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT The Right Size for The Right Physics centi milli micro 2 Multiscale Structure

More information

Cascaded Membrane Processes for Post-Combustion CO 2 Capture

Cascaded Membrane Processes for Post-Combustion CO 2 Capture Mitglied der Helmholtz-Gemeinschaft Cascaded Membrane Processes for Post-Combustion CO 2 Capture Li Zhao, Ernst Riensche, Michael Weber, Detlef Stolten 5. Juli 2011 IEK-3, Forschungszentrum Jülich, Germany

More information

HiPIMS deposition of dense Palladium-Silver films for hydrogen separation

HiPIMS deposition of dense Palladium-Silver films for hydrogen separation HiPIMS deposition of dense Palladium-Silver films for hydrogen separation S. Fasolin, S. Barison, S. Boldrini, F. Montagner, M. Romano, A. Ferrario, M. Fabrizio, L. Armelao CNR-ICMATE, Corso Stati uniti

More information

PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION

PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION PHYSICAL PROPERTIES OF La 0.9 Sr 0.1 Cr 1-X Ni X O 3-δ (X = 0-0.6) SYNTHESIZED VIA CITRATE GEL COMBUSTION Anuchit Ruangvittayanon * and Sutin Kuharuangrong Received: Sept 29, 2009; Revised: Nov 17, 2009;

More information

A Controlled Sintering Process for More Permeable Ceramic Hollow Fibre Membranes

A Controlled Sintering Process for More Permeable Ceramic Hollow Fibre Membranes A Controlled Sintering Process for More Permeable Ceramic Hollow Fibre Membranes Zhentao Wu, Rami Faiz, Tao Li, Benjamin F.K. Kingsbury, K. Li * Department of Chemical Engineering, Imperial College London,

More information

Synthesis and hydrogen permeation properties of membranes based on dense SrCe 0.95 Yb 0.05 O 3 a thin films

Synthesis and hydrogen permeation properties of membranes based on dense SrCe 0.95 Yb 0.05 O 3 a thin films Solid State Ionics 48 (2002) 71 81 www.elsevier.com/locate/ssi Synthesis and hydrogen permeation properties of membranes based on dense SrCe 0.95 Yb 0.05 O 3 a thin films Satoshi Hamakawa 1, Lin Li, Anwu

More information

SOFC Cathodes, Supports and Contact Layers. Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK

SOFC Cathodes, Supports and Contact Layers. Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK SOFC Cathodes, Supports and Contact Layers Alan Atkinson Department of Materials Imperial College London SW7 2AZ, UK alan.atkinson@imperial.ac.uk Contents for cathodes Requirements for application in SOFCs

More information