Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells

Size: px
Start display at page:

Download "Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells"

Transcription

1 Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells P.M. (Paul) Sommeling, Martin Späth, Jan Kroon, Ronald Kinderman, John van Roosmalen ECN Solar Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands, tel , fax , ABSTRACT: The Dye-sensitized nanocrystaline TiO 2 solar cell (nc-dsc) developed by Grätzel [1] has the potential to reach low costs in future outdoor power applications. In addition, due to its expected ease of production and possibilities to adjust its appearance, the potential for application is very broad. When plastic foil is used as a substrate for the nc-dsc the production and application possibilities are even bigger. Polymer foils are easier to handle in processing steps such as cutting of larger entities into smaller individual modules. Moreover the processing of foil into complete flexible solar cells could be realized by means of a continuous roll to roll proces. This implies that for the flexible nc-dsc a higher throughput in production could be realized. Also special applications requiring a certain flexibility of the solar cell, such as smart cards, come into play. In this paper the differences in cell performance and -stability between glass based nc-dsc's and polymer foil based nc-dsc's are studied. The ITO coating on the polymer foil appears to be a critical factor with respect to the photoelectrode stability. TiO 2 sintered at low temperatures (150 C) does not influence the cell stability in a negative way. Keywords:TiO 2-1: Plastic - 2: Stability INTRODUCTION A new type of solar cell based on dye-sensitized nanocrystalline titanium dioxide has been developed by M. Grätzel and coworkers [1,2]. Remarkably high quantum efficiencies have been reported for this type of solar cell (a so called nc-dsc), with overall conversion efficiencies up to 11 % [3]. This fact, in combination with the expected relatively easy and low cost manufacturing makes this new technology an interesting alternative for existing solar cell technologies. Realisation of stable efficiencies in the order of 10 % in production, however, requires a lot of effort on the research and development side. For this reason, the first application of this type of solar cell will probably be one in which only a low power output is required, since this is easier to achieve. Less stringent efficiency requirements leave room for increased flexibility in the manufacturing process of these cells, i.e. the requirements that are put on the materials used are less severe. This results in lower manufacturing costs and more flexibility in materials choice, opening the way for alternative production processes. One alternative concept for the nc-dsc is based on the introduction of polymer foils as a substrate instead of glass. This opens the way to attractive roll to roll production processes and special applications in which flexibility of the solar cell is to some extent required. Moreover processing and handling of polymer foil devices in general is easier than for the glass version especially when it comes to cutting of glass or drilling of holes in glass substrates. The aim of this study is to investigate the critical parameters regarding the stability of the nc-dsc's on polymer foil in comparison to the glass version. A prototype of a flexible DSC was already demonstrated in 1998 and is shown in Fig.1. The aim of this paper is to study the stability and performance of nc-dsc's on polymer foils in comprison to nc-dsc's on glass. Figure 1: A 4 cell module of a flexible nc-dsc 2 WORKING PRINCIPLE nc-dsc s are based on a wide bandgap semiconductor, usually TiO 2, which is sensitized for visible light by a monolayer of adsorbed dye. The most frequently used dye is, for reasons of best efficiencies, cis-(ncs) 2 bis(4,4 - dicarboxy-2,2 bipyridine)-ruthenium(ii). The photoelectrode in such a device consists of a nanoporous TiO 2 film (approx. 10µm thick) deposited on a layer of transparant conducting oxide (TCO, usually SnO 2 :F) on glass (Fig.2). The counter electrode also consists of TCO coated glass on which a small amount of platinum catalyst is deposited.

2 Figure 2: Working principle of a nc-dsc. In a complete cell, photo- and counter electrode are clamped together and the space between the electrodes and the voids between the TiO 2 particles are filled with an electrolyte. This electrolyte consists of an organic solvent containing a redox couple, usually iodide/triiodide (I - /I 3 - ). A dye monolayer on a flat surface absorbs less than 1 % of the incoming light (one sun conditions). To obtain reasonable efficiencies comparable to established solar cell technologies, in the nc-dsc the surface area is enlarged by a factor of 1000, by using nanoparticles of TiO 2 with a diameter of approximately nm. The working principle of the nc-dsc is based on excitation of the dye followed by fast electron injection into the conduction band of the TiO 2, leaving an oxidized dye molecule on the TiO 2 surface. Injected electrons percolate through the TiO 2 and are fed into the external circuit. At the counter electrode, triiodide is reduced to iodide by metallic platinum under uptake of electrons from the external circuit: I e - --> 3I - counter electrode TiO 2 Iodide is transported through the electrolyte towards the photoelectrode, where it reduces the oxidized dye. The dye molecule is then ready for the next excitation/oxidation/ reduction cycle. 3. MANUFACTURING OF nc-dsc's e - S photoelectrode I 3 - e - I 3 - S* glass TCO TCO glass 3.1 Manufacturing of nc-dsc s on glass In this section the basic manufacturing technology for nc-dsc s on glass substrates is described. The first process step consists of the preparation of the photo electrode by deposition of a layer of nanocrystalline titanium dioxide onto the SnO 2 :F coated glass substrate. On an industrial scale this can be realized by means of screen printing of an ink, containing a TiO 2 colloidal suspension. This layer is dried and sintered in a furnace at C to eliminate organic residues of the screen print medium and to establish electrical contact between the TiO 2 particles. After cooling down of the photoelectrode, it is stained by emerging the electrode in a solution of organic dye for a S + light 3I - 3I - Pt dye certain period of time. After drying the stained photoelectrode is assembled with the platinized counter electrode and a thermoplastic thin film in between (not on the active cell surface). The two electrodes are sealed together by heating up to 150 C and applying pressure. The cell is completed by filling with electrolyte through small prefabricated holes in the counter electrode. The electrolyte is spread in the very small space between the electrodes (approx. 10μm) by capillary forces. Finally, the holes are sealed with a thermoplastic film and cover glasses. 3.2 nc-dsc's on polymer foil When a polymer foil is used as a substrate for nc- DCS's instead of glass, the production process is different. Polymer foils allow roll to roll production which is a means to achieve high throughput. Moreover, alternative sealing technology can be used. ECN has developed a method for the filling of a nc-dsc with electrolyte without the use of a filling hole, which is required in the full glass version [4]. This strongly facilitates the manufacturing of nc-dsc's. Some of the drawbacks of polymer foils are the fact that polymers do not resist high temperatures and that these materials are permeable for water and oxygen. This has immediate consequences for the solar cell processing parameters and for the performance and stability. The main consequences of using a polymer foil substrate instead of glass are the following: 1. TCO SnO 2 :F cannot be applied to polymer foils because of high processing temperatures; room temperature sputtered indium tin oxide (ITO) can be used instead. 2. Sintering of TiO 2. In the glass based manufacturing process TiO 2 is screenprinted using a paste which contains substantial amounts of organic additives that have to be burned out at 450 C. This procedure cannot be used for the manufacturing of the polymer foil solar cell, because organic residues cannot be removed effectively at temperatures as low as 150 C. Aqueous TiO 2 paste without organic surfactants should be used. Sintering temperatures as low as 150 C are sufficient to produce mechanically stable TiO 2 films. 3. Platinum. Platinum cannot be deposited using a thermal platinization process with a platinum salt as precursor. Instead, Pt can be deposited using a galvanic process or by room temperature sputtering. 4. Polymer foils are not gastight, oxygen and water vapor can permeate through the polymer into the solar cell. 4. EXPERIMENTAL METHODS 4.1 Cell preparation Photo electrodes have been prepared both on glass substrates and on polymer foil, i.e. polyethyleneterephtalate (PET), by means of doctor blading [2]. The titanium dioxide paste used in this process has been developed for sintering at lower temperatures (150 C) but has also been applied to the electrodes on glass substrates which have

3 been sintered at 450 C. Titanium dioxide pastes were based on in house synthesized colloid. The latter material was synthesized by hydrolysis of an organic titanium precursor according to the procedure described in literature [1]. The colloid was processed to produce a titanium dioxide paste that can be deposited onto glass or polymer foil substrates. Several sintering temperatures have been applied to the photoelectrodes: 150 C for the polymer foil electrodes, 150 C and 450 C for the glass electrodes. After sintering for 30 minutes the photoelectrodes have been immersed overnight in a solution of 3*10-4 M cis- (NCS) 2 bis(4,4 -dicarboxy-2,2 bipyridine)-ruthenium(ii) in ethanol. Counter electrodes have been prepared by deposition of a thin layer of a 150 mm solution of H 2 PtCl 6 in isopropanol and subsequent heating at 450 C for 30 minutes. Temperature sensitive polymer foil counter electrodes have been made by a galvanic platinisation process. Cell assembly has been carried out according to the procedure described in section 3.1. The electrolyte composition was as follows: 0.5 M LiI, 0.05 M I 2 and 0.4 M tertiair-butylpyridine in methoxypropionitrile. 4.2 Characterization and stability testing Cells have been characterized using fluorescent tube lamps with a light intensity of lux to mimic indoor artificial light conditions. IV characteristics have been determined with a Keithley 2400 source meter. Ageing has been carried out using a sulfur lamp. The irradiation intensity was approximately 2 sun. Cells have been under continuous illumination and IV characteristics of individual cells have been monitored with time. Light intensities have been measured using a lux meter (Licor 188B integrating quantum radiometer). 5. RESULTS AND DISCUSSION The items mentioned in section 3.2 will influence the efficiency and the stablity of the solar cells. Cell efficiency: TiO 2 sintered at 150 C results in less performing nc-dsc's than TiO 2 sintered at 450 C, though comparable efficiencies have been found for low temperature and high temperature sintering of TiO 2 in another study, with sintering times up to 48 h [5]. The open circuit voltage and fill factor are unaffected but the short circuit current is decreased to about half its value for TiO 2 sintered at 450 C. However, the polymer foil nc-dsc's exhibit a performance which is still enough to power indoor applications such as watches, calculators or smart cards. A typical IV characteristic of a nc- DSC on ITO-PET is given in figure 3. I (ua) V (V) Figure 3: IV characteristic of a nc-dsc on PET at 250 lux At an illumination intensity of 250 lux, typical for indoor conditions, the following cell parameters have been determined: Voc: 0.48 V, Isc: 15μA/cm 2, FF: 67 %. Taking into account that the average power demand of a calculator is 10 μw, a 5 cm 2 sized polymer foil nc-dsc is able to produce this power down to a light intensity of 100 lux. It is possible to apply polymer foils which resist high temperature treatment. These materials however are temperature-stable because of the high content of polyaromatic systems which are more or less intensely colored. This filters out an important part of the light and results in lower power output. Cell stability: In practice the power output of a nc-dsc on (ITO) coated polyethelenterephtalate (PET) foil decreases with time. Though cell stability is not yet established and subject of study for all nc-dsc's, the decrease in performance of the nc- DSC on ITO-PET foil is substantially faster than on SnO 2 :Fglass. The following factors could play a role: 1. Instead of SnO 2 :F, sputtered ITO is used as a TCO. This specific material has not been applied earlier in nc-dsc's. The suitability of the material for application as a substrate for nc-dsc's is uncertain. 2. Effects of low temperature sintering on cell stability could be related to insufficient contact between TiO 2 particles, causing the nanoporous film to fall apart. 3. The ITO/polymer foil itself could influence the solar cell. Plasticizers or stabilizers could leach out of the polymer foil into the electrolyte or undesirable components could leach out of the ITO. These kinds of compounds could interfere with the delicate cell chemistry. Second, oxygen and water vapor can permeate through the polymer influencing the cell stability in a negative way. the latter problem could be avoided by application of barrier coatings to the polymer foil. 4. Galvanically deposited platinum on the counter electrode could degrade during cell operation. Efficiency and stability of nc-dsc's have been studied under continuous illumination by monitoring IV characteristics with time. Both glass and PET substrates have been applied, also combined in one nc-dsc, and TiO 2 films have been sintered at several temperatures. Table I gives an overview of the relevant manufacturing conditions for the nc-dsc's that have been tested.

4 Table I: Cell no. Photoelectr. Counter electr. sinter T ( C) 1 glass polymer glass polymer glass glass glass glass polymer polymer 150 Figures 4,5 and 6 represent the Jsc, Voc and FF with time for the various nc-dsc's, all measured under illumination of 2000 lux. The cells have been aged under illumination of approximately 2 sun. Figure 4: Short cicuit current vs time Figure 6: Fill factor vs time From these results the following conclusions can be drawn: 1. low temperature sintering of TiO 2 results in lower initial peformance but this performance is stable. The degradation of the polymer foil cells cannot be attributed to the low sinter temperature of the TiO The fact that the ITO-PET is in contact with the electrolyte of the cell and serves as a sealing on one side does not affect the cell stability. From this it can be derived that possible leaching of disturbing compounds from the ITO-PET does not play a role. More importantly, also permeation of water and oxygen does not seem to play a major role in degradation of the polymer nc-dsc's. 3. The application of galvanically deposited platinum on ITO as a catalyst does not affect the cell stability in a negative way. At this stage it can be concluded that the instability of the nc- DSC's on polymer foil is related to the photoelectrode exclusively. This could be due to the composition of the TiO 2 paste, which is strongly acidic. The sputtered ITO on PET is proven to be sensitive towards acidic media. However experiments using alkaline TiO 2 paste resulted in the same degradation behaviour. Polymer foil cells have been dissembled after degradation. It appeared that the TiO 2 film peeled off of the foil. Moreover the ITO coating of the photoelectrode had been subject to degradation; in several cases parts of the ITO coating had disappeared completely. This leads to the conclusion that the properties of the transparant conducting oxide in combination with a polymer foil are of crucial importance when it comes to manufacturing nc- DSC's on polymer foil. 6 CONCLUDING REMARKS Figure 5: Open circuit voltage vs time From figures 4-6 it can be derived that nc-dsc's with polymer photo-electrodes degraded within the time period of the measurements (3.5 months). As a reference nc-dsc's on SnO 2 :F coated glass have been used. The reference cells have been stable within the time period of testing. Interestingly the full glass cells containing 150 C sintered TiO 2 have been remarkably stable as well as hybrid cells, composed of a glass photo-electrode and an ITO-PET counter electrode. nc-dsc cells on polymer foil substrates can meet the demands required by calculators, watches etc. under typical indoor conditions. From the point of view of production technology and special applications, flexible solar cells are an attractive alternative to the existing rigid systems. The currently used substrate PET foil is a good candidate from the point of view of light transmission, though the sputtered ITO coating causes stability problems in the solar cells. The sintering of TiO 2 at temperatures as low as 150 C does not seem to have a negative influence on the

5 stability of the nc-dsc. This is an important advantage in cell production processes. The permeation of water through the polymer foil does not seem to be a factor influencing cell stability. REFERENCES [1] B.O Regan and M. Grätzel, Nature 353 (1991) 737 [2] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry- Baker, E. Müller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc. 115 (1993) 6382 [3] M.A. Green, K. Emery, K. Bücher, D.L. King and S. Igari, Prog. Photovoltaics: Res. Appl. 6 (1998) [4] Int. Pat. Method for manufacturing a liquid -containing photovoltaic element and element manufactured according to this method, A.C. Tip, M. Späth and P.M. Sommeling, appl. No PCT/NL99/00370 [5] F. Pichot, S. Ferrere, R.J. Pitts, B.A. Gregg, J. of the Electrochem. Society, 146 (11) (1999) Acknowledgements This work has been carried out with financial support from the ECN Cooperation Funding Programme.

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers supplementary material Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and

More information

Course schedule. Universität Karlsruhe (TH)

Course schedule. Universität Karlsruhe (TH) Course schedule 1 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals 3. Solar cell working principles / pn-junction solar cell 4. Silicon solar cells 5. Copper-Indiumdiselenide

More information

Effect of TiO 2 -electrode properties on the efficiency of nanocrystalline dye-sensitized solar cells (nc-dsc)

Effect of TiO 2 -electrode properties on the efficiency of nanocrystalline dye-sensitized solar cells (nc-dsc) Effect of TiO 2 -electrode properties on the efficiency of nanocrystalline dye-sensitized solar cells (nc-dsc) J. Wienke, J.M. Kroon, P.M. Sommeling, R. Kinderman, M. Späth, J.A.M. van Roosmalen, W.C.

More information

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells Kyung Hee Park, Chonnam National University, Electric Eng., Gwangju, Kr Kyung Jun Hwang,

More information

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R.

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R. Supplementary Information. Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells Jennifer M. Pringle,* Vanessa Armel and Douglas R. MacFarlane Experimental. 3,4-ethylenedioxythiophene

More information

Low-Temperature Sintering of TiO 2 Colloids: Application to Flexible Dye-Sensitized Solar Cells

Low-Temperature Sintering of TiO 2 Colloids: Application to Flexible Dye-Sensitized Solar Cells 5626 Langmuir 2000, 16, 5626-5630 Low-Temperature Sintering of TiO 2 Colloids: Application to Flexible Dye-Sensitized Solar Cells François Pichot, J. Roland Pitts, and Brian A. Gregg* National Renewable

More information

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

Titanium oxide Films Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application

Titanium oxide Films Prepared by Sputtering, Sol Gel and Dip Coating Methods for Photovoltaic Application Available online at www.sciencedirect.com Energy Procedia 34 (2013 ) 589 596 10th Eco-Energy and Materials Science and Engineering (EMSES2012) Titanium oxide Films Prepared by Sputtering, Sol Gel and Dip

More information

Solar energy has the potential to fulfill an important part of the sustainable energy demand of future generations.

Solar energy has the potential to fulfill an important part of the sustainable energy demand of future generations. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS Prog. Photovolt: Res. Appl. 2003; 11:207 220 (DOI: 10.1002/pip.481) Applications Applications Reproducible Manufacturing of Dye-Sensitized Solar Cells

More information

Influence of nanostructured TiO 2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells

Influence of nanostructured TiO 2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells JNS 2 (2012) 327-332 Influence of nanostructured TiO 2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells M. Malekshahi Byranvand 1 *, A. Nemati Kharat 1,

More information

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE VALUE OF EFFICIENCY & ENERGY GAP FOR DIFFERENT DYE SOLAR CELLS Nserdin A. Ragab* 1, Sawsan Ahmed Elhouri Ahmed 2, Ahmed Hassan Alfaki 3, Abdalsakhi

More information

Publication VI American Scientific Publishers. Preprinted by permission of American Scientific Publishers.

Publication VI American Scientific Publishers. Preprinted by permission of American Scientific Publishers. Publication VI Minna Toivola, Timo Peltola, Kati Miettunen, Janne Halme, and Peter Lund. 2010. Thin film nano solar cells from device optimization to upscaling. Journal of Nanoscience and Nanotechnology,

More information

Dye-Sensitized Solar Cell Sealant

Dye-Sensitized Solar Cell Sealant ThreeBond Technical News Issued January 1, 214 83 Dye-Sensitized Solar Cell Sealant Introduction Renewable energy development is currently underway all across the world in an effort to ensure sufficient

More information

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells Supplementary Material (ESI for Chemical Communications This journal is (c The Royal Society of Chemistry 2011 Supplementary Material (ESI for Chemical Communications Cubic CeO 2 Nanoparticles as Mirror-like

More information

A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS

A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS Chalcogenide Letters Vol. 7, No. 8, August 2010, p. 515-519 A NEW COUNTER ELECTRODE BASED ON COPPER SHEET FOR FLEXIBLE DYE SENSITIZED SOLAR CELLS M. H. BAZARGAN, M. MALEKSHAHI BYRANVAND a*, A. NEMATI KHARAT

More information

J. Bandara and H. C. Weerasinghe. Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka I. INTRODUCTION

J. Bandara and H. C. Weerasinghe. Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka I. INTRODUCTION J. Bandara and H. C. Weerasinghe Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka Abstract A dye sensitized solid-state solar cell (DSSC) was fabricated consisting of a dense TiO 2 (D)

More information

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Fabrication and testing of DSSC M. Mazalan*, M. Mohd Noh, Y.Wahab, M. N. Norizan, I. S. Mohamad Advanced Multidisciplinary

More information

IMPROVING THE EFFICIENCY AND THE LONG TERM STABILITY OF A DYE SENSITIZED SOLAR CELL. Delta State University Abraka 2 Department of Chemistry,

IMPROVING THE EFFICIENCY AND THE LONG TERM STABILITY OF A DYE SENSITIZED SOLAR CELL. Delta State University Abraka 2 Department of Chemistry, IMPROVING THE EFFICIENCY AND THE LONG TERM STABILITY OF A DYE SENSITIZED SOLAR CELL 1 Ezeh, M.I; 2 Dare, E.O; 3 Eyekpegha, O.F 1,3 Department of Physics, Delta State University Abraka 2 Department of Chemistry,

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Nanomaterials Course - June 28, 2006 Energy & Global Warming M.I. Hoffert et al., Nature,, 1998, 395,, p 881 Energy Implications of Future

More information

Aluminium-doped zinc oxide thin lm contacts for use in dye-sensitized solar cells

Aluminium-doped zinc oxide thin lm contacts for use in dye-sensitized solar cells Loughborough University Institutional Repository Aluminium-doped zinc oxide thin lm contacts for use in dye-sensitized solar cells This item was submitted to Loughborough University's Institutional Repository

More information

Supporting Information

Supporting Information Supporting Information Distance Dependence of Plamson-Enhanced Photocurrent in Dye-Sensitized Solar Cells Stacey D. Standridge, George C. Schatz, and Joseph T. Hupp Department of Chemistry, Northwestern

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

BUILT DYE-SENSITIZED SOLAR CELLS- A CONFIRMATORY TEST OF A MATHEMATICAL MODEL

BUILT DYE-SENSITIZED SOLAR CELLS- A CONFIRMATORY TEST OF A MATHEMATICAL MODEL BUILT DYE-SENSITIZED SOLAR CELLS- A CONFIRMATORY TEST OF A MATHEMATICAL MODEL Efurumibe, E.L. 1*, Asiegbu, A.D. 2 and Onuu, M.U. 3 1 Physics Department, College of Natural and Physical Sciences, Michael

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

TiO 2 particles - Fundamentals and Applications as photocatalyst

TiO 2 particles - Fundamentals and Applications as photocatalyst TiO 2 particles - Fundamentals and Applications as photocatalyst Most information taken from TiO2 photocatalysis Fundamentals and Applications by Akira Fujishima, Dr. Kazuhito Hashimoto, and Dr. Toshiya

More information

PHOTOVOLTAIC CELLS

PHOTOVOLTAIC CELLS www.ljuhv.com PHOTOVOLTAIC CELLS How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free from their bond. Due to

More information

Development of TiO 2 Nanoparticle-Based Solar Cells

Development of TiO 2 Nanoparticle-Based Solar Cells Development of TiO 2 Nanoparticle-Based Solar Cells Joseph Minutillo, Brandon Lundgren, Jason Lane, and Dr. Justyna Widera 9/07-11/08 Department of Chemistry, Adelphi University, Garden City, N.Y., 11530

More information

Solar Cells. Jong Hak Kim Chemical & Biomolecular Engineering Yonsei University

Solar Cells. Jong Hak Kim Chemical & Biomolecular Engineering Yonsei University Solar ells Jong Hak Kim hemical & Biomolecular Engineering Yonsei University omparison of Solar ells 반도체태양전지장점 고효율 (30% 이상 ) 태양전지제조가능 단점 고효율태양전지제조시원료비용및제조비용부담이매우큼고순도를요하는공정이므로제조공정이복잡하고어려움환경에유해한물질발생 광감응염료태양전지장점

More information

Effect of Surface Treatment of Nanostructured- TiO 2 on the Efficiency of Dye-Sensitized Solar Cell Based on Iron Pthalocyanine

Effect of Surface Treatment of Nanostructured- TiO 2 on the Efficiency of Dye-Sensitized Solar Cell Based on Iron Pthalocyanine Effect of Surface Treatment of Nanostructured- TiO 2 on the Efficiency of Dye-Sensitized Solar Cell Based on Iron Pthalocyanine Dhiraj Saxena, Manmeeta, Mridul Kumar Mathur, G.D.Sharma and M.S.Roy Abstract

More information

Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters

Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters Journal of Physics: Conference Series PAPER OPEN ACCESS Synthesis of solar cells sensitized using natural photosynthetic pigments & study for the cell performance under different synthesis parameters To

More information

Laser treatment of gravure-printed ITO films on PET

Laser treatment of gravure-printed ITO films on PET Laser treatment of gravure-printed ITO films on PET Howard V Snelling, Anton A Serkov, Jack Eden, Rob J Farley Physics, School of Mathematical and Physical Sciences, University of Hull, HU6 7RX, UK Presentation

More information

Supporting information for. Insights into the Liquid State of Organo-Lead Halide. Perovskites and Their New Roles. in Dye-sensitized Solar Cells

Supporting information for. Insights into the Liquid State of Organo-Lead Halide. Perovskites and Their New Roles. in Dye-sensitized Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting information for Insights into the Liquid State of Organo-Lead

More information

Characterization of Dye-Sensitized Solar Cell (DSSC) Based on Chlorophyll Dye

Characterization of Dye-Sensitized Solar Cell (DSSC) Based on Chlorophyll Dye International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 1 (2015) pp. 193-205 Research India Publications http://www.ripublication.com Characterization of Dye-Sensitized Solar

More information

Co-sensitization of microporous TiO 2 electrodes with dye molecules and quantum-sized semiconductor particles

Co-sensitization of microporous TiO 2 electrodes with dye molecules and quantum-sized semiconductor particles Colloids and Surfaces A: Physicochemical and Engineering Aspects 175 (2000) 135 140 www.elsevier.nl/locate/colsurfa Co-sensitization of microporous TiO 2 electrodes with dye molecules and quantum-sized

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

COMMENT UTILISER DES NANOPARTICULES D OR POUR PRODUIRE DE L ÉNERGIE?

COMMENT UTILISER DES NANOPARTICULES D OR POUR PRODUIRE DE L ÉNERGIE? COMMENT UTILISER DES NANOPARTICULES D OR POUR PRODUIRE DE L ÉNERGIE? Julien Barrier, Simon Lottier, Baptiste Michon INTRODUCTION Light CB e e 2 e D*/D + i Pt 2 Coated Electrode Magnified 1,000 x Load Magnified

More information

Miettunen, Kati & Halme, Janne & Lund, Peter Metallic and plastic dye solar cells

Miettunen, Kati & Halme, Janne & Lund, Peter Metallic and plastic dye solar cells Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Miettunen, Kati

More information

Dye Sysentized Solar Cell (Dyssc)

Dye Sysentized Solar Cell (Dyssc) RESEARCH ARTICLE OPEN ACCESS Dye Sysentized Solar Cell (Dyssc) A. Dileep, Dr. M. Damodar Reddy. M. Tech, Department of Electrical and Electronics Engineering, S.V. University college of Engineering, Andhra

More information

Low Temperature Atomic Layer Deposition for Flexible Dye Sensitized Solar Cells

Low Temperature Atomic Layer Deposition for Flexible Dye Sensitized Solar Cells ALD4PV workshop 20-03-2014 Low Temperature Atomic Layer Deposition for Flexible Dye Sensitized Solar Cells V. Zardetto, D. Garcia-Alonso, A.J.M. Mackus, M.A. Verheijen, T. Brown*, W.M.M. Kessels, M. Creatore

More information

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg and A.N. Tiwari* Thin Films Physics Group, Laboratory for Solid State Physics, Swiss Federal Institute

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

Zinc oxide-doped indium oxide (IZO): an amorphous transparent conducting oxide for use in tandem solar cells

Zinc oxide-doped indium oxide (IZO): an amorphous transparent conducting oxide for use in tandem solar cells Loughborough University Institutional Repository Zinc oxide-doped indium oxide (IZO): an amorphous transparent conducting oxide for use in tandem solar cells This item was submitted to Loughborough University's

More information

The Improvement in Energy Efficiency Based on Nano-structure Materials

The Improvement in Energy Efficiency Based on Nano-structure Materials International Workshop on 1iGO Science and Technology 2010 The Improvement in Energy Efficiency Based on Nanostructure Materials Chien Chon Chen Department of Energy and Resources, National United University,

More information

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China Supporting Information A New Type of BiPO 4 Oxy-acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University,

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

A Comparative Performance Study of Plasmon-induced Charge Separation of 2, 2 O 3, and Photocell Thin-films

A Comparative Performance Study of Plasmon-induced Charge Separation of 2, 2 O 3, and Photocell Thin-films Available Online Publications J. Sci. Res. 5 (2), 245-254 (2013) JOURNAL OF SCIENTIFIC RESEARCH www.banglajol.info/index.php/jsr A Comparative Performance Study of Plasmon-induced Charge Separation of

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

Study on Titanium Dioxide Nanocrystals with Specific Crystal Facet on Surface for High Performance Photocatalyst and Dye-Sensitized Solar Cells

Study on Titanium Dioxide Nanocrystals with Specific Crystal Facet on Surface for High Performance Photocatalyst and Dye-Sensitized Solar Cells Study on Titanium Dioxide Nanocrystals with Specific Crystal Facet on Surface for High Performance Photocatalyst and Dye-Sensitized Solar Cells Changdong Chen Kagawa University Japan December 2014 Contents

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

Barix Multilayers: a Water and Oxygen Barrier for Flexible Organic Electronics. Robert Jan Visser

Barix Multilayers: a Water and Oxygen Barrier for Flexible Organic Electronics. Robert Jan Visser Barix Multilayers: a Water and Oxygen Barrier for Flexible Organic Electronics Robert Jan Visser Organic Electronics Is the Future of Electronics Organic? MIT Stanford UC Berkeley Nano Forum Vitex Systems,

More information

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Osamu Yoshikawa*, Akinobu Hayakawa, Takuya Fujieda, Kaku Uehara, SusumuYoshikawa Institute of Advanced Energy Kyoto University Introduction

More information

Simple fabrication of highly ordered AAO nanotubes

Simple fabrication of highly ordered AAO nanotubes Journal of Optoelectronic and Biomedical Materials Volume 1, Issue 1, March 2009, p. 79-84 Simple fabrication of highly ordered AAO nanotubes N. Taşaltin a, S. Öztürk a, H. Yüzer b, Z. Z. Öztürk a,b* a

More information

Supporting Information

Supporting Information Supporting Information Title: Platinum Particles Supported On Titanium Nitride: An Efficient Electrode Material for the Oxidation of Methanol in Alkaline Media Authors: M. M. Ottakam Thotiyl, T. Ravikumar

More information

Woven Electrodes for Optoelectronic Devices. Peter Chabrecek. Sefar AG, 9425 Thal, Switzerland

Woven Electrodes for Optoelectronic Devices. Peter Chabrecek. Sefar AG, 9425 Thal, Switzerland Peter Chabrecek Sefar AG, 9425 Thal, Switzerland Actual SEFAR business Sefar's core skills is the manufacture and market of fabrics with precise mesh openings for screen printing and filtration processes

More information

Thin Film Coating on Particles and Its Application to SO 2 and NO Removal by Plasma Process

Thin Film Coating on Particles and Its Application to SO 2 and NO Removal by Plasma Process 2012 International Conference on Future Environment and Energy IPCBEE vol.28(2012) (2012)IACSIT Press, Singapoore Thin Film Coating on Particles and Its Application to SO 2 and NO Removal by Plasma Process

More information

Photocatalyst self-cleaning nano-coating

Photocatalyst self-cleaning nano-coating Photocatalyst self-cleaning nano-coating About us Sunlight Eco-tech Limited is a company that provides customers with energy conversion systems and solutions to improve energy efficiency. We offer clean

More information

High Quality Metallic Grid Preparation on Transparent Conductive Oxide (TCO) Coated Substrates

High Quality Metallic Grid Preparation on Transparent Conductive Oxide (TCO) Coated Substrates High Quality Metallic Grid Preparation on Transparent Conductive Oxide (TCO) Coated Substrates Larissa Grinis and Arie Zaban Institute of Nanotechnology & Advanced Materials, Bar- Ilan University Ramat

More information

for Dye Sensitized Solar Cells.

for Dye Sensitized Solar Cells. Supporting Information Copper Phenanthroline as Fast and High Performance Redox Mediator for Dye Sensitized Solar Cells. Marina Freitag *, Fabrizio Giordano #, Wenxing Yang, Meysam Pazoki, Yan Hao, Burkhard

More information

Four main parts: 1. Nanolayer 2. Dye 3. Electrolyte 4. 2 electrodes

Four main parts: 1. Nanolayer 2. Dye 3. Electrolyte 4. 2 electrodes Four main parts: 1. Nanolayer 2. Dye 3. Electrolyte 4. 2 electrodes دانستنی های ضزوری: Materials: 1. (2) F-SnO 2 glass slides 2. Iodine and Potassium Iodide 3. Mortar/Pestle 4. Air Gun 5. Surfactant (Triton

More information

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED Y. H. Lin and C. Y. Liu Department of Chemical Engineering and Materials Engineering, National Central University, Jhongli,

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Vacuum Coating Process Issues for Photovoltaic Devices

Vacuum Coating Process Issues for Photovoltaic Devices Vacuum Coating Process Issues for Photovoltaic Devices James R. Sheats Lost Arrow Consulting Palo Alto, CA sheats@lostarrowc.com * AIMCAL Fall Conference (Vacuum Web Coating), Charleston, S.C. 25 October

More information

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics, Electronic Supplementary Information Highly efficient core shell CuInS 2 /Mn doped CdS quantum dots sensitized solar cells Jianheng Luo, a Huiyun Wei, a Qingli Huang, a Xing Hu, a Haofei Zhao, b Richeng

More information

Lecture 7 Metal Oxide Semiconductors

Lecture 7 Metal Oxide Semiconductors Lecture 7 Metal Oxide Semiconductors 1/73 Announcements Homework 1/4: I will return it next Tuesday (October 16 th ). Homework 2/4: Will be online on later today. Due Thursday October 18 th at the start

More information

IMRE/ETPL Flagship Project

IMRE/ETPL Flagship Project IMRE/ETPL Flagship Project Nanoparticulate Barrier Films & Gas Permeation Measurement Techniques for Thin Film Solar & Display Application Problems Senthil Ramadas Institute of Materials Research & Engineering

More information

Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin Film with Carbon Nanotubes for Dye-Sensitized Solar Cells

Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin Film with Carbon Nanotubes for Dye-Sensitized Solar Cells Materials Transactions, Vol. 52, No. 10 (2011) pp. 1977 to 1982 #2011 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Preparation and Characterization of Anthocyanin Dye and Counter Electrode Thin

More information

Application in High-Performance Lithium-

Application in High-Performance Lithium- Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium- Sulfur (Li-S) Batteries Jiepeng Rong,Mingyuan

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Improving the Photocatalytic and Photoelectrochemical Activities of Mesoporous Single Crystal Rutile TiO 2 for Water Splitting Wei Jiao, Ying Peng Xie, Run Ze Chen,

More information

Fabrication Of Dye Sensitized Solar Cell Using Various Counter Electrode Thickness

Fabrication Of Dye Sensitized Solar Cell Using Various Counter Electrode Thickness Fabrication Of Dye Sensitized Solar Cell Using Various Counter Electrode Thickness N.Gomesh 1, A.H.Ibrahim 1, R.Syafinar 1, M.Irwanto 1, M.R.Mamat 1, Y.M Irwan 1, U.Hashim 2, N.Mariun 3 1 Centre of Excellence

More information

Enhancement of the Photoelectric Performance of Dye-sensitized Solar Cells by Sol-gel Modified TiO 2 Films

Enhancement of the Photoelectric Performance of Dye-sensitized Solar Cells by Sol-gel Modified TiO 2 Films J. Mater. Sci. Technol., 2011, 27(8), 764-768. Enhancement of the Photoelectric Performance of Dye-sensitized Solar Cells by Sol-gel Modified TiO 2 Films Yunfeng Zhao 1), Xiaojie Li 3), Qiuping Li 2) and

More information

TiO 2. Dye Sensitized Solar Cells Cathode Using Recycle Battery. Journal of Physics: Conference Series. Related content

TiO 2. Dye Sensitized Solar Cells Cathode Using Recycle Battery. Journal of Physics: Conference Series. Related content Journal of Physics: Conference Series TiO 2 Dye Sensitized Solar Cells Cathode Using Recycle Battery To cite this article: I Daut et al 2013 J. Phys.: Conf. Ser. 423 012055 View the article online for

More information

CHARACTERISTICS OF DYE-SENSITIZED SOLAR CELLS USING MUCUNA FLAGELLIPES AND ZEAMAIZE COMB NATURAL DYES

CHARACTERISTICS OF DYE-SENSITIZED SOLAR CELLS USING MUCUNA FLAGELLIPES AND ZEAMAIZE COMB NATURAL DYES Fundamental J. Modern Physics, Vol., Issue 1, 011, Pages 7-13 This paper is available online at http://www.frdint.com/ CHARACTERISTICS OF DYE-SENSITIZED SOLAR CELLS USING MUCUNA FLAGELLIPES AND ZEAMAIZE

More information

Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte

Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte Vanessa Armel,* Jennifer M. Pringle, Pawel Wagner, Maria Forsyth, David Officer and Douglas R. MacFarlane Materials and methods

More information

EUROPEAN COMMISSION SEVENTH FRAMEWORK PROGRAMME THEME ENERGY-NMP (Joint Call) ENERGY NMP

EUROPEAN COMMISSION SEVENTH FRAMEWORK PROGRAMME THEME ENERGY-NMP (Joint Call) ENERGY NMP EUROPEAN COMMISSION SEVENTH FRAMEWORK PROGRAMME THEME ENERGY-NMP (Joint Call) ENERGY.2011.2.1-2 NMP.2011.1.2-1 GA No. 283501 Accelerated development and prototyping of nano-technologybased high-efficiency

More information

Organic Photonics Displays, Lighting & Photovoltaics. Electrochemistry for Energy. 25th. June 2008 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Organic Photonics Displays, Lighting & Photovoltaics. Electrochemistry for Energy. 25th. June 2008 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Laboratoire de la photonique et des interfaces - EPFL Lausanne Electrochemistry for Energy Organic Photonics Displays, Lighting & Photovoltaics 25th. June 2008

More information

TiO 2 Nanorods Prepared from Anodic Aluminum Oxide Template and Their Applications in Dye- Sensitized Solar Cells

TiO 2 Nanorods Prepared from Anodic Aluminum Oxide Template and Their Applications in Dye- Sensitized Solar Cells International Letters of Chemistry, Physics and Astronomy Online: 2015-01-26 ISSN: 2299-3843, Vol. 46, pp 30-36 doi:10.18052/www.scipress.com/ilcpa.46.30 2015 SciPress Ltd., Switzerland TiO 2 Nanorods

More information

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC

NanoMarkets. Markets for Indium-Based Materials in Photovoltaics Nano-405. Published September NanoMarkets, LC Markets for Indium-Based Materials in Photovoltaics Nano-405 Published September 2011 NanoMarkets, LC NanoMarkets, LC PO Box 3840 Glen Allen, VA 23058 Tel: 804-360-2967 Web: Chapter One: Introduction 1.1

More information

Influence of Different Solvents on the Formation of Uniform Titanium Dioxide (TiO 2 ) Thin Film by Sol-gel

Influence of Different Solvents on the Formation of Uniform Titanium Dioxide (TiO 2 ) Thin Film by Sol-gel Applied Mechanics and Materials Submitted: 2014-08-14 ISSN: 1662-7482, Vols. 773-774, pp 667-671 Accepted: 2014-12-22 doi:10.4028/www.scientific.net/amm.773-774.667 Online: 2015-07-15 2015 Trans Tech Publications,

More information

Dye-sensitized solar cell based on TiO 2. /MnO 2 composite film as working electrode. Journal of Physics: Conference Series.

Dye-sensitized solar cell based on TiO 2. /MnO 2 composite film as working electrode. Journal of Physics: Conference Series. Journal of Physics: Conference Series PAPER OPEN ACCESS Dye-sensitized solar cell based on TiO 2 /MnO 2 composite film as working electrode To cite this article: A Prasetio et al 2017 J. Phys.: Conf. Ser.

More information

Supplementary Figure 1 Evolution in the measured contact angles for potassium iodide (KI) droplets with various ionic concentrations on an N3

Supplementary Figure 1 Evolution in the measured contact angles for potassium iodide (KI) droplets with various ionic concentrations on an N3 Supplementary Figure 1 Evolution in the measured contact angles for potassium iodide (KI) droplets with various ionic concentrations on an N3 dye-sensitized TiO 2 surface as a function of illumination

More information

Research Article Electrochemical Deposition of Te and Se on Flat TiO 2 for Solar Cell Application

Research Article Electrochemical Deposition of Te and Se on Flat TiO 2 for Solar Cell Application International Photoenergy, Article ID 93538, 5 pages http://dx.doi.org/10.1155/01/93538 Research Article Electrochemical Deposition of Te and on Flat TiO for Solar Cell Application igo Ito, 1 Noriyuki

More information

HIGH LIGHT-TO-ENERGY CONVERSION EFFICIENCY FOR NANOCRYSTALLINE TiO 2 FILMS MADE BY SPUTTER DEPOSITION

HIGH LIGHT-TO-ENERGY CONVERSION EFFICIENCY FOR NANOCRYSTALLINE TiO 2 FILMS MADE BY SPUTTER DEPOSITION HIGH LIGHT-TO-ENERGY CONVERSION EFFICIENCY FOR NANOCRYSTALLINE TiO 2 FILMS MADE BY SPUTTER DEPOSITION Mónica M. Gómez, Jun Lu, Eva Olsson, Claes G. Granqvist Department of Materials Science, The Ångström

More information

NANOTECHNOLOGY FOR POWERFUL SOLAR ENERGY

NANOTECHNOLOGY FOR POWERFUL SOLAR ENERGY International Journal of Advanced Biotechnology and Research ISSN 0976-2612, Vol 2, Issue 1, 2011, pp 208-212 http://www.bipublication.com NANOTECHNOLOGY FOR POWERFUL SOLAR ENERGY *Mahesh V. Jadhav, A.

More information

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source

More information

Structure, Design and Fabrication of a Novel Conducting Polypyrrole- Based Photovoltaic Cell and Storage Device

Structure, Design and Fabrication of a Novel Conducting Polypyrrole- Based Photovoltaic Cell and Storage Device Structure, Design and Fabrication of a Novel Conducting Polypyrrole- Based Photovoltaic Cell and Storage Device Maria Carla Manzano 1, *, Enrique Manzano 1, Chiara Rosario Julia Lanuza 1, and Reuben Quiroga

More information

AIMCAL Fall Technical Conference & 19th International Conference on Vacuum Web Coating

AIMCAL Fall Technical Conference & 19th International Conference on Vacuum Web Coating AIMCAL Fall Technical Conference & 19th International Conference on Vacuum Web Coating A.G. Talma, R. Schlatmann, J.W.G. Mahy Akzo Nobel Chemicals bv, P.O. Box 9300, 6800 SB Arnhem, The Netherlands. Phone

More information

Nanotechnologies. National Institute for Materials Science (NIMS)

Nanotechnologies. National Institute for Materials Science (NIMS) Dye-Sensitized Solar Cells with Nanotechnologies Liyuan Han Advanced Photovoltaics Center National Institute for Materials Science (NIMS) Expectations to PV market 12,000 World mark ket scale (MW) 10,000

More information

Supporting Information

Supporting Information Supporting Information Amorphous Metal Oxide Blocking Layers for Highly Efficient Low Temperature Brookite TiO 2 -based Perovskite Solar Cells Atsushi Kogo,*, Yoshitaka Sanehira, Youhei Numata, Masashi

More information

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light

light Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Development of Highly Efficiency, Ultra-light Development of Highly Efficiency, Ultra-light light Weight, Radiation-Resistant, Resistant, High-Specific Specific- Power CdTe Thin-Film Solar Cells using Quantum Dots Neelkanth G. Dhere Florida Solar

More information

Production of PV cells

Production of PV cells Production of PV cells MWp 1400 1200 Average market growth 1981-2003: 32% 2004: 67% 1000 800 600 400 200 0 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 rest 1.0 1.0 1.0 2.0 4.0

More information

M98-A10 Photoadaptive Fibers for Textile Materials

M98-A10 Photoadaptive Fibers for Textile Materials Photoadaptive Fibers for Textile Materials Investigators:G. Mills, L. Slaten, R. Broughton (Auburn) Students: G. A. Gaddy, K. Malone (graduate), D. Taylor (undergraduate) Goals The aim of this project

More information

Comparative studies on Dye Sensitized Solar Cells with nanostructured TiO 2 films prepared in room or in high temperature.

Comparative studies on Dye Sensitized Solar Cells with nanostructured TiO 2 films prepared in room or in high temperature. Comparative studies on Dye Sensitized Solar Cells with nanostructured TiO films prepared in room or in high temperature. Elias Stathatos and Dionysios D. Dionysiou Abstract Dye-sensitized solar cells (DSSC)

More information

Access to the published version may require subscription. Published with permission from: Elsevier

Access to the published version may require subscription. Published with permission from: Elsevier http://uu.diva-portal.org This is an author produced version of a paper published in Journal of Electroanalytical Chemistry. This paper has been peer-reviewed but does not include the final publisher proof-corrections

More information

PROCIS Product identification, pilot plant design and market potential evaluation for copper indium disulphide (CuInS 2 ) on copper tape substrates

PROCIS Product identification, pilot plant design and market potential evaluation for copper indium disulphide (CuInS 2 ) on copper tape substrates PROCIS Product identification, pilot plant design and market potential evaluation for copper indium disulphide (CuInS 2 ) on copper tape substrates Jeannette Wienke Netherlands Energy Research Foundation

More information

VISION INNOVATE INSPIRE DELIVER

VISION INNOVATE INSPIRE DELIVER INSPIRE Vision About NovaCentrix Photonic Curing INNOVATE History Applications DELIVER Our Products SimPulse Conductive Inks NanoPowders VISION NovaCentrix partners with you to take ideas from inspiration

More information

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Introduction Solar Energy A.Uses of Solar Energy o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Surbhi; Neumann, Oara; Nordlander, Peter; and Urban, Alexander.

More information

AIMCAL R2R Conference

AIMCAL R2R Conference Contents Introduction Markets OLED Structures Technology Fabrication Process Evaluation (Microstructure & etc) Summary Introduction [Merit of Rigid OLED Display] Cheap product cost Mass production Free

More information