STRUCTURE OF MATERIALS The Key to its Properties A Multiscale Perspective

Size: px
Start display at page:

Download "STRUCTURE OF MATERIALS The Key to its Properties A Multiscale Perspective"

Transcription

1 STRUCTURE OF MATERIALS The Key to its Properties A Multiscale Perspective Anandh Subramaniam Materials and Metallurgical Engineering INDIAN INSTITUTE OF TECHNOLOGY KANPUR Kanpur anandh@iitk.ac.in Jan 2009

2 Properties of Materials The Scale of Microstructures Crystal Structures + Defects Microstructure OUTLINE With Examples from the Materials World

3 PROPERTIES Structure sensitive E.g. Yield stress, Fracture toughness Structure Insensitive E.g. Density, Elastic Modulus Structure Microstructure

4 What determines the properties? Cannot just be the composition! Few 10s of ppm of Oxygen in Cu can degrade its conductivity Cannot just be the amount of phases present! A small amount of cementite along grain boundaries can cause the material to have poor impact toughness Cannot just be the distribution of phases! Dislocations can severely weaken a crystal Cannot just be the defect structure in the phases present! The presence of surface compressive stress toughens glass [1] Composition Phases & Their Distribution Defect Structure Residual Stress [1] Metals Handbook, Vol.8, 8 th Edition, ASM, 1973

5 Length Scales Involved Nucleus Atom Crystal Microstructure Component Defects Angstroms Dislocation Stress fields Nanometers Microns Unit Cell * Crystalline Defects Microstructure Component Grain Size Centimeters *Simple Unit Cells

6 Crystal Thermo-mechanical Treatments Casting Metal Forming Welding Powder Processing Machining Atom Structure Microstructure Component Electromagnetic Phases + Defects Avoid Stress Concentrators Good Surface Finish Crystalline Quasicrystalline Amorphous Ferromagnetic Ferroelectric Superconducting Structure based Property based Vacancies Dislocations Twins Stacking Faults Grain Boundaries Voids Cracks + Residual Stress Processing determines shape and microstructure of a component

7 Crystal Thermo-mechanical Treatments Casting Metal Forming Welding Powder Processing Machining Atom Structure Microstructure Component Electromagnetic Crystalline Quasicrystalline Amorphous Ferromagnetic Ferroelectric Superconducting Phases + & their distribution Structure based Property based Defects Vacancies Dislocations Twins Stacking Faults Grain Boundaries Voids Cracks Avoid Stress Concentrators Good Surface Finish + Residual Stress Processing determines shape and microstructure of a component

8 METAL SEMI-METAL SEMI-CONDUCTOR INSULATOR BAND STRUCTURE ATOMIC STATE / VISCOSITY GAS SOLID LIQUID LIQUID CRYSTALS STRUCTURE AMORPHOUS QUASICRYSTALS RATIONAL APPROXIMANTS CRYSTALS SIZE NANO-QUASICRYSTALS NANOCRYSTALS

9 Crystal Atom Structure Microstructure Component Electromagnetic Why is BCC Iron the stable form of Iron at room temperature and not the FCC form of Iron? 1 Atm G vs T showing regions of stability of FCC and BCC Iron (Computed using thermo-calc software and database developed at the Royal Institute of Technology, Stockholm) The Structure of Materials, S.M. Allen & E.L. Thomas, John Wiley & Sons, Inc. New York, 1999.

10 This functional definition of microstructure includes all lengthscales Microstructure Phases + Defects Vacancies Dislocations Twins Stacking Faults Grain Boundaries Voids Cracks + Residual Stress

11 Microstructure Phases + Defects + Residual Stress Vacancies Dislocations Twins Stacking Faults Grain Boundaries Voids Cracks

12 Microstructure Phases + Defects + Residual Stress Vacancies Dislocations Twins Stacking Faults Grain Boundaries Voids Cracks Defects (Crystalline) Microstructural Vacancies Dislocations Phase Transformation Voids Cracks Component Stress corrosion cracking + Residual Surface Compressive Stress

13 CRYSTAL STRUCTURES

14 Crystal = Lattice (Where to repeat) + Motif (What to repeat) + = Unit cell of BCC lattice Crystal = Space group (how to repeat) + Asymmetric unit (Motif : what to repeat)

15 Progressive lowering of symmetry amongst the 7 crystal systems Increasing symmetry Cubic Hexagonal Tetragonal Trigonal Orthorhombic Monoclinic Triclinic Arrow marks lead from supergroups to subgroups

16 1. Cubic Crystals a = b= c = = = 90º Simple Cubic (P) Body Centred Cubic (I) BCC Face Centred Cubic (F) - FCC [2] Point groups 23, 43m, m3, 432, 4 m 3 2 m Vapor grown NiO crystal Tetrakaidecahedron (Truncated Octahedron) Pyrite Cube [1] [1] Garnet Dodecahedron [1] Fluorite Octahedron [1] [2] L.E. Muir, Interfacial Phenomenon in Metals, Addison-Wesley Publ. co.

17 Crystals and Properties (The symmetry of) Any physical property of a crystal has at least the symmetry of the crystal Crystals are anisotropic with respect to most properties The growth shape of a (well grown) crystal has the internal symmetry of the crystal Polycrystalline materials or aggregates of crystals may have isotropic properties (due to averaging of may randomly oriented grains) The properties of a crystal can be drastically altered in the presence of defects (starting with crystal defects)

18 CLASSIFICATION OF DEFECTS BASED ON DIMENSIONALITY 0D (Point defects) 1D (Line defects) 2D (Surface / Interface) 3D (Volume defects) Vacancy Dislocation Surface Twins Impurity Disclination Interphase boundary Precipitate Frenkel defect Dispiration Grain boundary Faulted region Schottky defect Twin boundary Stacking faults Voids / Cracks Thermal vibration Anti-phase boundaries

19 0D (Point defects)

20 Non-ionic crystals Vacancy Impurity Interstitial Substitutional 0D (Point defects) Ionic crystals Frenkel defect Schottky defect Other ~ Imperfect point-like regions in the crystal about the size of 1-2 atomic diameters

21 Vacancy Missing atom from an atomic site Atoms around the vacancy displaced Tensile stress field produced in the vicinity Tensile Stress Fields

22 Impurity Interstitial Substitutional Relative size Compressive Stress Fields Compressive stress fields SUBSTITUTIONAL IMPURITY Foreign atom replacing the parent atom in the crystal E.g. Cu sitting in the lattice site of FCC-Ni INTERSTITIAL IMPURITY Foreign atom sitting in the void of a crystal E.g. C sitting in the octahedral void in HT FCC-Fe Tensile Stress Fields

23 Interstitial C sitting in the octahedral void in HT FCC-Fe r Octahedral void / r FCC atom = r Fe-FCC = 1.29 Å r Octahedral void = x 1.29 = 0.53 Å r C = 0.71 Å Compressive strains around the C atom Solubility limited to 2 wt% (9.3 at%) Interstitial C sitting in the octahedral void in LT BCC-Fe r Tetrahedral void / r BCC atom = 0.29 r C = 0.71 Å r Fe-BCC = Å r Tetrahedral void = 0.29 x = Å But C sits in smaller octahedral void- displaces fewer atoms Severe compressive strains around the C atom Solubility limited to wt% (0.037 at%)

24 Equilibrium Concentration of Vacancies Formation of a vacancy leads to missing bonds and distortion of the lattice The potential energy (Enthalpy) of the system increases Work required for the formaion of a point defect Enthalpy of formation ( H f ) [kj/mol or ev/defect] Though it costs energy to form a vacancy its formation leads to increase in configurational entropy above zero Kelvin there is an equilibrium number of vacancies G = H T S SConfig kln( ) Crystal Kr Cd Pb Zn Mg Al Ag Cu Ni kj / mol ev / vacancy

25 G (perfect crystal) T (ºC) n/n G (Gibbs free energy) G min Equilibrium concentration H f x x x x 10 3 = 1 ev/vacancy = 0.16 x J/vacancy n (number of vacancies) Certain equilibrium number of vacancies are preferred at T > 0K Vacancies play a role in: Diffusion Climb Electrical conductivity Creep etc.

26 1D (Line defects)

27 The shear modulus of metals is in the range GPa m G 2 The theoretical shear stress will be in the range 3 30 GPa Actual shear stress is MPa I.e. (Shear stress) theoretical > 100 * (Shear stress) experimental!!!! DISLOCATIONS Dislocations weaken the crystal

28 DISLOCATIONS EDGE MIXED SCREW Usually dislocations have a mixed character and Edge and Screw dislocations are the ideal extremes

29 Conservative (Glide) Motion of dislocations On the slip plane Motion of Edge dislocation Non-conservative (Climb) Motion of dislocation to the slip plane For edge dislocation: as b t they define a plane the slip plane Climb involves addition or subtraction of a row of atoms below the half plane +ve climb = climb up removal of a plane of atoms ve climb = climb down addition of a plane of atoms

30 Mixed dislocations b t b Pure screw Pure Edge

31 Role of Dislocations Slip Fracture Fatigue Creep Diffusion (Pipe) Structural Creep mechanisms in crystalline materials Cross-slip Dislocation climb Vacancy diffusion Grain boundary sliding Incoherent Twin Grain boundary (low angle) Semicoherent Interfaces Disc of vacancies ~ edge dislocation

32 2D (Surface / Interface)

33 Grain Boundary The grain boundary region may be distorted with atoms belonging to neither crystal The thickness may be of the order of few atomic diameters The crystal orientation changes abruptly at the grain boundary In an low angle boundary the orientation difference is < 10º In the low angle boundary the distortion is not so drastic as the high-angle boundary can be described as an array of dislocations Grain boundary energy is responsible for grain growth on heating ~ (>0.5T m ) Large grains grow at the expense of smaller ones The average no. of nearest neighbours for an atom in the grain boundary of a close packed crystal is 11

34 Type of boundary Energy (J/m 2 ) Grain boundary between BCC crystals 0.89 Grain boundary between FCC crystals 0.85 Interface between BCC and FCC crystals 0.63 Grain boundaries in SrTiO 3

35 Twin Boundary The atomic arrangement on one side of the twin boundary is related to the other side by a symmetry operation (usually a mirror) Mirror twin boundaries usually occur in pairs such that the orientation difference introduced by one is restored by the other The region between the regions is called the twinned region Annealing twins (formed during recrystallization) Twin [1] Annealing twins in Austenitic Stainless Steel Deformation twins (formed during plastic deformation) [1] Transformations in Metals, Paul G. Shewmon,McGraw-Hill Book Company, New York, 1969.

36 Twin boundary in Fe doped SrTiO 3 bicrystals (artificially prepared) High-resolution micrograph Mirror related variants Twin plane [1] S. Hutt, O. Kienzle, F. Ernst and M. Rühle, Z Metallkd, 92 (2001) 2

37 Grain size and strength y k i d Hall-Petch Relation y Yield stress i Stress to move a dislocation in single crystal k Locking parameter (measure of the relative hardening contribution of grain boundaries) d Grain diameter

38 Defects: Further Enquiry

39 DEFECTS Based on origin Random Structural Vacancies Dislocations Ledges The role played by a random defect is very different from the role played by a structural defect in various phenomenon

40 Low Angle Grain Boundaries b 2 2h

41 ~8º TILT BOUNDARY IN SrTiO 3 POLYCRYSTAL No visible Grain Boundary Å Dislocation structures at the Grain boundary Fourier filtered image

42 DEFECTS Based on position Random Ordered Vacancies Stacking Faults Ordered defects become part of the structure and hence affect the basic symmetry of the structure

43 Crystal with vacancies Vacancy ordering E.g. V 6 C 5, V 8 C 7

44 Effect of Atomic Level Residual Stress Yield Point Phenomenon y (Å) x (Å) (GPa) Interaction of the stress fields of dislocations with Interstitial atoms

45 3D (Volume defects) & MICROSTRUCTURES

46 Bright field TEM micrograph of an Al- 3.3% Cu alloy, aged at room temperature for 100 days, showing the GP-I zones. HAADF micrographs of the GP zones: (a) Intercalated monatomic Cu layers several nm in width are clearly resolved, (b) a GP-zone two Cu layers thick can chemically be identified. T.J. Konno, K. Hiraga and M. Kawasaki, Scripta mater. 44 (2001)

47 b Precipitate particle b Hardening effect Increase in surface area due to particle shearing Part of the dislocation line segment (inside the precipitate) could face a higher PN stress

48 Pinning effect of the precipitate Can act like a Frank-Reed source ~ Gb 2r

49 Controlling microstructures: Examples

50 Fe-Cementite diagram Eutectic L + Fe 3 C Peritectic L ºC L + L Fe 3 C ºC Eutectoid + Fe 3 C T + Fe 3 C Austenite ( ) FCC 723ºC Ferrite ( ) BCC Cementite (Fe 3 C) Orthorhombic [1] Fe Fe 3 C 6.7 %C [1] rruff.geo.arizona.edu/doclib/zk/vol74/zk74_534.pdf

51 Time- Temperature-Transformation (TTT) Curves Isothermal Transformation Eutectoid steel (0.8%C) Eutectoid temperature Austenite Pearlite Coarse Fine 500 Pearlite + Bainite Metals Handbook, Vol.8, 8 th edition, ASM, Metals Park, Ohio T 400 [2] Bainite M s Austenite 348 C [1] 100 M f Martensite t (s) [2] Introduction to Physical Metallurgy, S.H. Avner, McGraw-Hill Book Company, 1974 [2] 278 C [1] Physical Metallurgy for Engineers, D S Clark and W R Varney, Affiliated EastWest Press Pvt. Ltd., New Delhi, 1962 [1]

52 Time- Temperature-Transformation (TTT) Curves Isothermal Transformation Eutectoid temperature Austenite + Fe 3 C Eutectoid steel (0.8%C) Pearlite Pearlite + Bainite T Bainite M s M f Martensite t (s)

53 Different cooling treatments Eutectoid steel (0.8%C) M = Martensite 600 P = Pearlite 500 T 400 Water quench Normalizing Full anneal Oil quench M M + P Fine P Coarse P t (s)

54 Hardness (R c ) % Carbon Harness of Martensite as a function of Carbon content Properties of 0.8% C steel Constituent Hardness (R c ) Tensile strength (MN / m 2 ) Coarse pearlite Fine pearlite Bainite Martensite 65 - Martensite tempered at 250 o C

55 Cooling C 1 C 2 C 3 + Fe 3 C + + Fe 3 C T Fe 0.02 %C Eutectoid + Fe 3 C 0.8 Pro-eutectoid Cementite Pearlite 1.4%C [1] [1] Materials Science and Engineering, W.D.Callister, Wiley India (P) Ltd., 2007.

56 3.4%C, 0.7% Si, 0.6% Mn White CI 0% Heat Treatment Fe3C 2.5% C, 1.0% Si, 0.55% Mn Graphite Nodules Malleable CI 12% Ferrite (White) Grey CI 0.5% Change Composition 3.4% C,1.8% Si, 0.5% Mn Nodular CI Graphite (black) 10 m Fully Malleabilized Ductile 18% 3.4% C, 0.1% P, 0.4% Mn,1.0% Ni, 0.06% Mg Graphite nodules L ( Fe3C) FeC 3 ( FeC 3 ) Ledeburite Pearlite 10 m Ferritic Matrix Ferrite

57 Anisotropy in Material Properties: an example Texture can reintroduce anisotropy in material properties Cubic Crystal (3 Elastic Moduli) Texture Polycrystal Rolling/ Anisotropic Isotropic Extrusion Anisotropic E 12 E 11 1 E 44 2 E11 E12 Moly Permalloy: 4% Mo, 79% Ni, 17% Fe Cold Worked Elongated [1] Textured samples Equiaxed Annealed [1] [1] Metals Handbook, Vol.8, 8 th Edition, ASM, 1973

58 CONCLUSION To understand the properties of materials the structure at many different lengthscales must be viewed

59

60 Ionic Crystals Overall electrical neutrality has to be maintained Frenkel defect Cation (being smaller get displaced to interstitial voids E.g. AgI, CaF 2

61 Schottky defect Pair of anion and cation vacancies E.g. Alkali halides

62 Other defects due to charge balance If Cd 2+ replaces Na + one cation vacancy is created Defects due to off stiochiometry ZnO heated in Zn vapour Zn y O (y >1) The excess cations occupy interstitial voids The electrons (2e ) released stay associated to the interstitial cation

63 FeO heated in oxygen atmosphere Fe x O (x <1) Vacant cation sites are present Charge is compensated by conversion of ferrous to ferric ion: Fe 2+ Fe 3+ + e For every vacancy (of Fe cation) two ferrous ions are converted to ferric ions provides the 2 electrons required by excess oxygen

64 Progressive lowering of symmetry amongst the 7 crystal systems Increasing symmetry Cubic 48 Hexagonal 24 Tetragonal 16 Trigonal 12 Orthorhombic 8 Monoclinic 4 Triclinic 2 Arrow marks lead from supergroups to subgroups Superscript to the crystal system is the order of the lattice point group

65 A semimetal is a material with a small overlap in the energy of the conduction band and valence bands. However, the bottom of the conduction band is typically situated in a different part of momentum space (at a different k- vector) than the top of the valence band. One could say that a semimetal is a semiconductor with a negative indirect bandgap, although they are seldom described in those terms. Schematically, the figure shows A) a semiconductor with a direct gap (like e.g. CuInSe 2 ), B) a semiconductor with an indirect gap (like Si) and C) a semimetal (like Sn or graphite). The figure is schematic, showing only the lowest-energy conduction band and the highest-energy valence band in one dimension of momentum space (or k-space). In typical solids, k-space is three dimensional, and there are an infinite number of bands. Unlike a regular metal, semimetals have charge carriers of both types (holes and electrons), so that one could also argue that they should be called 'double-metals' rather than semimetals. However, the charge carriers typically occur in much smaller numbers than in a real metal. In this respect they resemble degenerate semiconductors more closely. This explains why the electrical properties of semimetals are partway between those of metals and semiconductors. As semimetals have fewer charge carriers than metals, they typically have lower electrical and thermal conductivities. They also have small effective masses for both holes and electrons because the overlap in energy is usually the result of the fact that both energy bands are broad. In addition they typically show high diamagnetic susceptibilities and high lattice dielectric constants. The classic semimetallic elements are arsenic, antimony, and bismuth. These are also considered metalloids but the concepts are not synonymous. Semimetals, in contrast to metalloids, can also be compounds, such as HgTe, and tin and graphite are typically not considered metalloids. Graphite and hexagonal boronnitride (BN) are an interesting comparison. The materials have essentially the same layered structure and are isoelectronic, which means that their band structure should be rather similar. However, BN is a white semiconductor and graphite a black semimetal, because the relative position of the bands in the energy direction is somewhat different. In one case the bandgap is positive (like case B in the figure), explaining why BN is a semiconductor. In the other case the conduction band lies sufficiently lower to overlap with the valence band in energy, rendering the value for the bandgap negative (see C).

66

POINT DEFECTS IN CRYSTALS

POINT DEFECTS IN CRYSTALS POINT DEFECTS IN CRYSTALS Overview Vacancies & their Clusters Interstitials Defects in Ionic Crytals Frenkel defect Shottky defect Part of MATERIALS SCIENCE & ENGINEERING A Learner s Guide AN INTRODUCTORY

More information

MT 348 Outline No MECHANICAL PROPERTIES

MT 348 Outline No MECHANICAL PROPERTIES MT 348 Outline No. 1 2009 MECHANICAL PROPERTIES I. Introduction A. Stresses and Strains, Normal and Shear Loading B. Elastic Behavior II. Stresses and Metal Failure A. ʺPrincipal Stressʺ Concept B. Plastic

More information

Continuous Cooling Diagrams

Continuous Cooling Diagrams Continuous Cooling Diagrams Isothermal transformation (TTT) diagrams are obtained by rapidly quenching to a given temperature and then measuring the volume fraction of the various constituents that form

More information

Introduction to Materials Science

Introduction to Materials Science EPMA Powder Metallurgy Summer School 27 June 1 July 2016 Valencia, Spain Introduction to Materials Science Prof. Alberto Molinari University of Trento, Italy Some of the figures used in this presentation

More information

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they?

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they? Making Solid Stuff Primary Bonds Summary What are they? Results from atomic bonding So the atoms bond together! Order in materials No long range order to atoms Gases little or no interaction between components

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number:

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Instructions: Answer all questions and show your work. You will not receive partial credit unless you show your work.

More information

Defect in crystals. Primer in Materials Science Spring

Defect in crystals. Primer in Materials Science Spring Defect in crystals Primer in Materials Science Spring 2017 11.05.2017 1 Introduction The arrangement of the atoms in all materials contains imperfections which have profound effect on the behavior of the

More information

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr)

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr) 1 st Semester 1431/1432 3 rd Mid-Term Exam (1 hr) Question 1 a) Answer the following: 1. Do all metals have the same slip system? Why or why not? 2. For each of edge, screw and mixed dislocations, cite

More information

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K)

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Crystal Defects Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Real crystal - all crystals have some imperfections - defects, most atoms are

More information

Imperfections, Defects and Diffusion

Imperfections, Defects and Diffusion Imperfections, Defects and Diffusion Lattice Defects Week5 Material Sciences and Engineering MatE271 1 Goals for the Unit I. Recognize various imperfections in crystals (Chapter 4) - Point imperfections

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

Single vs Polycrystals

Single vs Polycrystals WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals

More information

Lecture # 11 References:

Lecture # 11 References: Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC Dr.Haydar Al-Ethari

More information

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IMPERFECTIONSFOR BENEFIT Sub-topics 1 Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IDEAL STRENGTH Ideally, the strength of a material is the force necessary

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

Imperfections in the Atomic and Ionic Arrangements

Imperfections in the Atomic and Ionic Arrangements Objectives Introduce the three basic types of imperfections: point defects, line defects (or dislocations), and surface defects. Explore the nature and effects of different types of defects. Outline Point

More information

Chapter 8. Deformation and Strengthening Mechanisms

Chapter 8. Deformation and Strengthening Mechanisms Chapter 8 Deformation and Strengthening Mechanisms Chapter 8 Deformation Deformation and Strengthening Issues to Address... Why are dislocations observed primarily in metals and alloys? How are strength

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Ferrite - BCC Martensite - BCT Fe 3 C (cementite)- orthorhombic Austenite - FCC Chapter 10 Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Why do we study

More information

Each carbon atom causes a tetragonal distortion since the principal

Each carbon atom causes a tetragonal distortion since the principal Ferrous alloys Fig. 1: Iron-carbon equilibrium phase diagram martensite start temperature or M S. The fraction of martensite increases with the undercooling below M S. The martensite in steels is supersaturated

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

Strengthening Mechanisms

Strengthening Mechanisms Strengthening Mechanisms The ability of a metal/ alloy to plastically deform depends on the ability of dislocations to move. Strengthening techniques rely on restricting dislocation motion to render a

More information

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model. { Stacking atoms together Crystal Structure Stacking Oranges Packing atoms together Long Range Order Crystalline materials... atoms pack in periodic, 3D arrays typical of: -metals -many ceramics -some

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

Strengthening Mechanisms

Strengthening Mechanisms ME 254: Materials Engineering Chapter 7: Dislocations and Strengthening Mechanisms 1 st Semester 1435-1436 (Fall 2014) Dr. Hamad F. Alharbi, harbihf@ksu.edu.sa November 18, 2014 Outline DISLOCATIONS AND

More information

(a) Would you expect the element P to be a donor or an acceptor defect in Si?

(a) Would you expect the element P to be a donor or an acceptor defect in Si? MSE 200A Survey of Materials Science Fall, 2008 Problem Set No. 2 Problem 1: At high temperature Fe has the fcc structure (called austenite or γ-iron). Would you expect to find C atoms in the octahedral

More information

Equilibria in Materials

Equilibria in Materials 2009 fall Advanced Physical Metallurgy Phase Equilibria in Materials 09.01.2009 Eun Soo Park Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Text: A. PRINCE,

More information

Engineering 45 Midterm 02

Engineering 45 Midterm 02 UNIVERSITY OF ALIFORNIA ollege of Engineering Department of Materials Science & Engineering Professor R. Gronsky Fall Semester, 5 Engineering 45 Midterm SOLUTIONS INSTRUTIONS LATTIE seating... Please be

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 3. Imperfections in Solids Learning objectives:

More information

Ph.D. Admission 20XX-XX Semester X

Ph.D. Admission 20XX-XX Semester X Ph.D. Admission 20XX-XX Semester X Written Examination Materials Science & Engineering Department, IIT Kanpur Date of Examination: XX XXXX 20XX Timing: XX:XX XX:XX XX Application# Please read these instructions

More information

14ME406/ME 226. Material science &Metallurgy. Hall Ticket Number: Fourth Semester. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

14ME406/ME 226. Material science &Metallurgy. Hall Ticket Number: Fourth Semester. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION Hall Ticket Number: 14ME406/ME 226 April, 2017 Fourth Semester Time: Three Hours Answer Question No.1 compulsorily. Answer ONE question from each unit. II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION

More information

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) 1 Structural Imperfections A perfect crystal has the lowest internal energy E Above absolute zero

More information

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids

Dept.of BME Materials Science Dr.Jenan S.Kashan 1st semester 2nd level. Imperfections in Solids Why are defects important? Imperfections in Solids Defects have a profound impact on the various properties of materials: Production of advanced semiconductor devices require not only a rather perfect

More information

Movement of edge and screw dislocations

Movement of edge and screw dislocations Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy

Schematic representation of the development of microstructure. during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy Schematic representation of the development of microstructure during the equilibrium solidification of a 35 wt% Ni-65 wt% Cu alloy At 1300 ºC (point a) the alloy is in the liquid condition This continues

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

Module 10. Crystal Defects in Metals I. Lecture 10. Crystal Defects in Metals I

Module 10. Crystal Defects in Metals I. Lecture 10. Crystal Defects in Metals I Module 10 Crystal Defects in Metals I Lecture 10 Crystal Defects in Metals I 1 NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials Engineering Introduction Keywords:

More information

Question Grade Maximum Grade Total 100

Question Grade Maximum Grade Total 100 The Islamic University of Gaza Industrial Engineering Department Engineering Materials, EIND 3301 Final Exam Instructor: Dr. Mohammad Abuhaiba, P.E. Exam date: 31/12/2013 Final Exam (Open Book) Fall 2013

More information

The University of Jordan School of Engineering Chemical Engineering Department

The University of Jordan School of Engineering Chemical Engineering Department The University of Jordan School of Engineering Chemical Engineering Department 0905351 Engineering Materials Science Second Semester 2016/2017 Course Catalog 3 Credit hours.all engineering structures and

More information

Module-6. Dislocations and Strengthening Mechanisms

Module-6. Dislocations and Strengthening Mechanisms Module-6 Dislocations and Strengthening Mechanisms Contents 1) Dislocations & Plastic deformation and Mechanisms of plastic deformation in metals 2) Strengthening mechanisms in metals 3) Recovery, Recrystallization

More information

J = D C A C B x A x B + D C A C. = x A kg /m 2

J = D C A C B x A x B + D C A C. = x A kg /m 2 1. (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. (a) With vacancy diffusion, atomic

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

Strengthening Mechanisms. Today s Topics

Strengthening Mechanisms. Today s Topics MME 131: Lecture 17 Strengthening Mechanisms Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Strengthening strategies: Grain strengthening Solid solution strengthening Work hardening

More information

Lecture 3: Description crystal structures / Defects

Lecture 3: Description crystal structures / Defects Lecture 3: Description crystal structures / Defects Coordination Close packed structures Cubic close packing Hexagonal close packing Metallic structures Ionic structures with interstitial sites Important

More information

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity? Electrical Good conductors of heat & electricity Create semiconductors Oxides are basic ionic solids Aqueous cations (positive charge, Lewis acids) Reactivity increases downwards in family Mechanical Lustrous

More information

Fundamentals of Plastic Deformation of Metals

Fundamentals of Plastic Deformation of Metals We have finished chapters 1 5 of Callister s book. Now we will discuss chapter 10 of Callister s book Fundamentals of Plastic Deformation of Metals Chapter 10 of Callister s book 1 Elastic Deformation

More information

Introduction to Heat Treatment. Introduction

Introduction to Heat Treatment. Introduction MME444 Heat Treatment Sessional Week 01 Introduction to Heat Treatment Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction Can you control the microstructure that formed during cooling of

More information

Last Date of Submission:. Section: CE 21/CE 22. Babu Banarasi Das- National Institute of Technology & Management, Lucknow

Last Date of Submission:. Section: CE 21/CE 22. Babu Banarasi Das- National Institute of Technology & Management, Lucknow Tutorial Sheet: I /Unit: 1 1. Discuss importance of engineering materials with proper illustration and examples. 2. Describe Bohrs Atomic Model along with its merits and limitations. 3. Differentiate between

More information

From sand to silicon wafer

From sand to silicon wafer From sand to silicon wafer 25% of Earth surface is silicon Metallurgical grade silicon (MGS) Electronic grade silicon (EGS) Polycrystalline silicon (polysilicon) Single crystal Czochralski drawing Single

More information

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials Grain Boundaries 1 Point Defects 2 Point Defects A Point Defect is a crystalline defect associated with one or, at most, several atomic sites. These are defects at a single atom position. Vacancies Self-interstitials

More information

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Study theme outcomes: After studying this chapter, students should or should be able to: - know and understand

More information

UNIT-II PART- A Heat treatment Annealing annealing temperature Normalizing.

UNIT-II PART- A Heat treatment Annealing annealing temperature Normalizing. UNIT-II PART- A 1. What is "critical cooling rate" in hardening of steels? This critical cooling rate, when included on the continuous transformation diagram, will just miss the nose at which the pearlite

More information

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10 Lectures 9 and 10 Chapter 7: Dislocations & Strengthening Mechanisms Dislocations & Materials Classes Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloud

More information

Master examination. Metallic Materials

Master examination. Metallic Materials Master examination Metallic Materials 01.03.2016 Name: Matriculation number: Signature: Task Points: Points achieved: 1 13 2 4 3 3 4 6 5 6 6 3 7 4 8 9 9 6 10 9.5 11 8 12 8 13 10.5 14 4 15 6 Sum 100 Points

More information

Defects in solids http://www.bath.ac.uk/podcast/powerpoint/inaugural_lecture_250407.pdf http://www.materials.ac.uk/elearning/matter/crystallography/indexingdirectionsandplanes/indexing-of-hexagonal-systems.html

More information

Metal working: Deformation processing II. Metal working: Deformation processing II

Metal working: Deformation processing II. Metal working: Deformation processing II Module 28 Metal working: Deformation processing II Lecture 28 Metal working: Deformation processing II 1 Keywords : Difference between cold & hot working, effect of macroscopic variables on deformation

More information

Wrought Aluminum I - Metallurgy

Wrought Aluminum I - Metallurgy Wrought Aluminum I - Metallurgy Northbrook, IL www.imetllc.com Copyright 2015 Industrial Metallurgists, LLC Course learning objectives Explain the composition and strength differences between the alloy

More information

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability HEAT TREATMENT With focus on Steels Principles of Heat Treatment of Steels Romesh C Sharma New Age International (P)

More information

NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS

NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS Q1: What do you understand by Ceramics? Ans: Ceramics are a group of chemical compounds, either simple (consisting of only

More information

Binary Phase Diagrams - II

Binary Phase Diagrams - II Binary Phase Diagrams - II Note the alternating one phase / two phase pattern at any given temperature Binary Phase Diagrams - Cu-Al Can you spot the eutectoids? The peritectic points? How many eutectic

More information

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials. Mid-Term Examination (Closed Book)

Department of Mechanical Engineering University of Saskatchewan. ME324.3 Engineering Materials. Mid-Term Examination (Closed Book) Student #: Department of Mechanical Engineering University of Saskatchewan ME. Engineering Materials Mid-Term Examination (Closed Book) Instructor: I. Oguocha Time Allowed: h Friday, 9 October 00. Section

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections

Materials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections In the Name of God Materials Science CHAPTER 5: IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects

More information

Dr. Ali Abadi Chapter Three: Crystal Imperfection Materials Properties

Dr. Ali Abadi Chapter Three: Crystal Imperfection Materials Properties Dr. Ali Abadi Chapter Three: Crystal Imperfection Materials Properties A perfect crystal, with every atom of the same type in the correct position, does not exist. There always exist crystalline defects,

More information

Metals are used by industry for either one or combination of the following properties

Metals are used by industry for either one or combination of the following properties Basic Metallurgy Metals are the backbone of the engineering industry being the most important Engineering Materials. In comparison to other engineering materials such as wood, ceramics, fabric and plastics,

More information

Phase Transformation in Materials

Phase Transformation in Materials 2015 Fall Phase Transformation in Materials 09. 02. 2015 Eun Soo Park Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Introduction Web lecture assistance: http://etl.snu.ac.kr

More information

Metallurgy in Production

Metallurgy in Production In the Name of Allah University of Hormozgan Metallurgy in Production First semester 95-96 Mohammad Ali Mirzai 1 Chapter 6 : the iron carbon phase diagram 2 The Iron-Carbon Alloy Classification 3 The Iron-Carbon

More information

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111

Point coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111 Point coordinates c z 111 Point coordinates for unit cell center are a/2, b/2, c/2 ½ ½ ½ Point coordinates for unit cell corner are 111 x a z 000 b 2c y Translation: integer multiple of lattice constants

More information

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988)

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) CREEP CREEP Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) Review If failure is considered as change in desired performance*- which could involve changes in properties and/or

More information

NATURE OF METALS AND ALLOYS

NATURE OF METALS AND ALLOYS NATURE OF METALS AND ALLOYS Chapter 4 NATURE OF METALS AND ALLOYS Instructor: Office: MEC 325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu Link to ME 215: http://mechanical.njit.edu/students/merequired.php

More information

Kinetics - Heat Treatment

Kinetics - Heat Treatment Kinetics - Heat Treatment Nonequilibrium Cooling All of the discussion up till now has been for slow cooling Many times, this is TOO slow, and unnecessary Nonequilibrium effects Phase changes at T other

More information

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I Module 31 Heat treatment of steel I Lecture 31 Heat treatment of steel I 1 Keywords : Transformation characteristics of eutectoid steel, isothermal diagram, microstructures of pearlite, bainite and martensite,

More information

EXPERIMENT 6 HEAT TREATMENT OF STEEL

EXPERIMENT 6 HEAT TREATMENT OF STEEL EXPERIMENT 6 HEAT TREATMENT OF STEEL Purpose The purposes of this experiment are to: Investigate the processes of heat treating of steel Study hardness testing and its limits Examine microstructures of

More information

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C).

In their simplest form, steels are alloys of Iron (Fe) and Carbon (C). Iron-Carbon Phase Diagram Its defined as:- A map of the temperature at which different phase changes occur on very slow heating and cooling in relation to Carbon content. is Isothermal and continuous cooling

More information

Point coordinates. x z

Point coordinates. x z Point coordinates c z 111 a 000 b y x z 2c b y Point coordinates z y Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a,

More information

CHAPTER10. Kinetics Heat Treatment

CHAPTER10. Kinetics Heat Treatment CHAPTER10 Kinetics Heat Treatment The microstructure of a rapidly cooled eutectic soft solder ( 38 wt%pb 62 wt % Sn) consists of globules of lead-rich solid solution (dark) in a matrix of tin-rich solid

More information

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.

Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational. Steels Processing, Structure, and Performance, Second Edition Copyright 2015 ASM International G. Krauss All rights reserved asminternational.org Contents Preface to the Second Edition of Steels: Processing,

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity? Electrical Good conductors of heat & electricity Create semiconductors Oxides are basic ionic solids Aqueous cations (positive charge, Lewis acids) Reactivity increases downwards in family Free Electron

More information

Polymorphism. Learning Objectives On completion of this topic you will be able to understand:

Polymorphism. Learning Objectives On completion of this topic you will be able to understand: Introduction Do you know the difference between α-quartz, β-quartz? Or why does quartz have these different forms? Certain chemical elements, can exist in two or more different forms. For example, iron

More information

Chapter 7: Dislocations and strengthening mechanisms

Chapter 7: Dislocations and strengthening mechanisms Chapter 7: Dislocations and strengthening mechanisms Introduction Basic concepts Characteristics of dislocations Slip systems Slip in single crystals Plastic deformation of polycrystalline materials Plastically

More information

Metals I. Anne Mertens

Metals I. Anne Mertens "MECA0139-1: Techniques "MECA0462-2 additives : et Materials 3D printing", Selection", ULg, 19/09/2017 25/10/2016 Metals I Anne Mertens Introduction Outline Metallic materials Materials Selection: case

More information

Heat Treatment of Steels : Metallurgical Principle

Heat Treatment of Steels : Metallurgical Principle Heat Treatment of Steels : Metallurgical Principle Outlines: Fe ad Fe-Fe 3 C system Phases and Microstructure Fe-Fe 3 C Phase Diaram General Physical and Mechanical Properties of each Microstructure Usanee

More information

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS MODULE ONE CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS CRYSTAL STRUCTURE Metallic crystal structures; BCC, FCC and HCP Coordination number and Atomic Packing Factor (APF) Crystal imperfections:

More information

Lecture # 11. Line defects (1D) / Dislocations

Lecture # 11. Line defects (1D) / Dislocations Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC References: 1-

More information

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy

Fundamentals of. Steel Product. Graduate Institute of Ferrous Metallurgy Fundamentals of Steel Product Physical Metallurgy B.C. De Cooman Graduate Institute of Ferrous Metallurgy Pohang University of Science and Technology, South Korea J.G Speer Advanced Steel Products and

More information

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS Why are dislocations observed primarily in metals CHAPTER 8: and alloys? DEFORMATION AND STRENGTHENING MECHANISMS How are strength and dislocation motion related? How do we manipulate properties? Strengthening

More information

4-Crystal Defects & Strengthening

4-Crystal Defects & Strengthening 4-Crystal Defects & Strengthening A perfect crystal, with every atom of the same type in the correct position, does not exist. The crystalline defects are not always bad! Adding alloying elements to a

More information

Chapter 9: Dislocations & Strengthening Mechanisms. Why are the number of dislocations present greatest in metals?

Chapter 9: Dislocations & Strengthening Mechanisms. Why are the number of dislocations present greatest in metals? Chapter 9: Dislocations & Strengthening Mechanisms ISSUES TO ADDRESS... Why are the number of dislocations present greatest in metals? How are strength and dislocation motion related? Why does heating

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige Chapter 7 Dislocations and Strengthening Mechanisms Dr. Feras Fraige Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and

More information

FUNDAMENTALS OF METAL ALLOYS, EQUILIBRIUM DIAGRAMS

FUNDAMENTALS OF METAL ALLOYS, EQUILIBRIUM DIAGRAMS FUNDAMENTALS OF METAL ALLOYS, EQUILIBRIUM DIAGRAMS Chapter 5 5.2 What is a Phase? Phase is a form of material having characteristic structure and properties. More precisely: form of material with identifiable

More information

NMC EXAM BRUSH-UP NOVEMBER 2009

NMC EXAM BRUSH-UP NOVEMBER 2009 NMC EXAM BRUSH-UP NOVEMBER 2009 OVERVIEW 1. Crystal Structures 2. Solidification and Crystal Defects in Solids 3. Heat Treatments 4. Electrical Properties of Materials 5. Magnetic Properties of Materials

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information