Mechanical Properties of Materials

Size: px
Start display at page:

Download "Mechanical Properties of Materials"

Transcription

1 INTRODUCTION Mechanical Properties of Materials Many materials, when in service, are subjected to forces or loads, it is necessary to know the characteristics of the material and to design the member from which it is made such that any resulting deformation will not be excessive and fracture will not occur. The mechanical behaviour of a material reflects the relationship between its response or deformation to an applied load or force. Important mechanical properties are strength, hardness, ductility and stiffness. It is possible for the load to be tensile, compressive or shear and its magnitude may be constant with time or it may fluctuate continuously. Application time may be only a fraction of a second or it may extend over a period of many years. Service temperature may be an important factor. The role of structural engineers is to determine stresses and stress distributions within members that are subjected to well-defined loads. This may be accomplished by experimental testing techniques and/or by theoretical and mathematical stress analyses. These topics are treated in traditional stress analysis and strength of materials texts. Materials are frequently chosen for structural applications because they have desirable combinations of mechanical characteristics. Mechanical Properties of a material describes the response of the material to an applied force or torque. Stress:- The internally developed forces per unit area of a material due to the application of external force. Stress = = = Units N/m 2 Three types of Stress 1. Tensile stress: It occurs when equal and opposite forces are directed away from each other. 2. Compressive stress: It occurs when equal and opposite forces are directed toward each 1

2 other. 3. Shearing Stress: Force per unit area applied parallel to the surface of a body trying to displace the upper layers of the body. Shearing Stress or Tangential Stress = Force/Area Strain:- Fractional change in the dimensions of a material due to the application of external force. It has no unit. Strain = Three types of Strain: 1. Longitudinal Strain:- It is defined as the increase in length (Δl) per unit original length (l) when deformed by the external force. Longitudinal Strain = 2. Volumetric Strain:-It is defined as change in volume (ΔV) per unit original volume (v), when deformed by external force. Volume Strain = 3. Shear strain: It is defined as the tangent of the strain angle, θ Shear Strain = Tan θ. Hookes Law: Within the proportional limit, the strain produced in a body is directly proportional to the applied stress Stress α Strain, 2

3 i. e., Stress = (E) Strain. where E is proportionality constant and is called Modulus of Elasticity. Units N/m 2. Different Moduli of elasticity E: Basing on three different types of stresses and strains there are 3 types of modulii exists. 1. Young s modulus (Y): It is the ratio of tensile stress to tensile strain. Young ' s modulus = longitudinal stress Y = F / A ΔL / L Units N/m 2 = FL A ΔL longitudinal strain 2. Rigidity modulus / Shear modulus (S): It is the ratio of shear stress to shear strain. The shear modulus S is defined as the ratio of the shearing stress F/A to the shearing strain φ : S = Units N/m 2 3

4 Strain ϕ = 3. Bulk modulus (B): It is the ratio of volume stress to volume strain. The bulk modulus is negative because of decrease in V. IMPORTANT MECHANICAL PROPERTIES: Elasticity: The property of a material by virtue of which the material regains its original dimensions after the stress is removed. Within the elastic limit the material obeys Hooke s law, which states that stress is directly proportional to strain. Elastic deformation: Reversible: when the stress is removed, the material returns to the dimensions it had before the loading. Usually strains are small (except for the case of some plastics, e.g. rubber). 4

5 Plasticity: The property of the material where in the material has a permanent deformation after the stress is removed. Plastic deformation Irreversible: when the stress is removed, the material does not return to its original dimensions. In tensile tests, if the deformation is elastic, the stress-strain relationship is called Hooke's law: σ = E ε 5

6 Ductility: The ease with which the material can be drawn in the form of thin wires. This property exhibited by metals and alloys. Strength: The ability of a material to sustain loads without failure. It refers to the stress up to which the body obeys Hooke s law. It is load/unit area. Types of strengths: Yield strength: The strength beyond which it exhibits plasticity. Ultimate tensile strength: The strength at which the material breaks or fractures. Hardness: The ability of the material to withstand plastic deformation or indentation produced in the material. Creep: Changes that occur in the dimensions of the material as a function of time, when subjected to constant load. Fatigue: The changes in the mechanical properties of the material under the action a cyclical or repeated stresses. Fracture: The breakage of a material into separate parts under the action of stress. Brittleness: The property by virtue of which material undergoes fracture immediately after crossing the elastic limit. Toughness: The energy absorbed by the material due to application of external force up to fracture. Relationship between Engineering stress and true stress, Engineering strain and true strain: Engineering stress (σ E ) = where F is the force and A0 the original area of cross section Engineering strain (ε E ) = where L is the gauge length under the force F, and L0 is the original gauge length. 6

7 True Stress (σt) = Instantaneous load / Instantaneous cross-sectional area = True strain: = = ln = = ln Where dl is the infinitesimal elongation, li is the instantaneous length and lo is the original length. Assuming that the density of the material does not change, the volume has to remain the same. Hence we have the relation, l o A o = l i A i = (1) ln = ln = True strain From eq. (1) = = = (2) ln = ln (1 + ) = ln (1 + ) This is the relation between true stress and true strain. And From eq. (2) = -----(3) and since = (4) From eq.n s (3) & (4) = (1 + ) = (1 + ) 7

8 Where and are the engineering stress and strain values at a particular load. The distinction between the plots of true stress-strain and engineering stress-strain curves is shown in below figure. Note that the true stress continuously increases up to the fracture point while the engineering stress slightly decreases near the fracture point. Figure: Comparison of engineering stress-engineering strain curve and true stress- true strain curve. Poisson s Ratio: Virtually all common materials undergo a transverse contraction when stretched in one direction and a transverse expansion when compressed. The extension of the wire is not the only change that takes place under the action of a tensile stress. There are also dimensional changes in the perpendicular direction. The diameter of the wire decreases with tensile stress and increases with compressive stress. If we consider a cube, with its edges parallel to the x, y and z-axes, the tensile stress which produces an increase in length along l x, leads to a decrease in l y and l z. This behaviour is quantitatively described by the Poisson s ratio (ν) which is defined as the ratio of lateral strain to the longitudinal strain. 8

9 The minus sign indicates that the change in length in the directions perpendicular to the applied stress is of the opposite sense to that in the direction parallel to the stress i.e. the tensile stress which produces an increase in length along l x leads to a decrease in length along l y and l z. Either transverse strain or longitudional strain is negative then ν is positive. Since the value of the Poisson s ratio (ν) is always found to be less than 0.5, the volume of the solid always increases under a tensile stress. Stress Strain behaviour of Ductile Materials: The below figure shows the typical relation between stress and strain exhibited by ductile materials. For a substantial range of applied stress, the stress verses strain relation is linear. This linearity between stress and strain was discovered by Hooke and is referred to as the Hooke s law. The slope of this curve gives the particular modulus of elasticity. For ductile materials, the point A marks the limit of Hooke s law, where the stress is linearly proportional to strain. Region AB corresponds to the nonlinear relation between stress and strain. The behaviour is still within the elastic limits. Strain is reversible up to point B. After point B material starts to deform plastically. From an atomic point of view, plastic deformation corresponds to breaking of bonds with 9

10 adjacent atoms and formation of new bonds. At this point stress is removed the atoms do not return to their original positions. In the figure point C is called upper yield point and D is called lower yield point. Usually yield strength is defined for amount of permanent deformation or the stress corresponding to the intersection of this line and the stress-strain curve as it bends over in the plastic region is defined as the yield strength. At the upper yield point, plastic deformation is initiated with an actual decrease in stress. Continued deformation fluctuates slightly about some constant stress value, called the lower yield point, stress subsequently rises with increasing strain. In this process raising the yield strength by permanently straining the material is called strain hardening. After yielding, the stress necessary to continue plastic deformation in metals increases to a maximum till E. This is termed as the tensile strength. From this point non uniform plastic deformation takes place. This process of the material is called necking. Point F marks the fracture point. The stress corresponding to point F is called the ultimate strength or breaking strength. The ability of a material to sustain loads without failure is called strength. It refers to the stress up to which the body obeys Hooke s law. It is load/unit area. It is of two types: 1. Yeild Strength: A yield strength or yield point of a material is defined as stress at which a material begins to deform plastically. 2. Ultimate Strength: It is the maximum stress that a material can withstand while being stretched or pulled before failing or breaking. Work hardening: It also known as strain hardening or cold working. It is strengthening of a metal by plastic deformation. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of material. Ductile materials exhibit plastic deformation while brittle materials do not. Brittle materials fracture immediately after the elastic limit is reached. 10

11 Figure: Stress - Strain curve for ductile materials. Tensile Properties: Ductility: Ductility is a measure of the deformation at fracture. It is defined by percent of elongation %EL = (l f - l 0 )X100/ l 0 The yield and tensile strengths and modulus of elasticity decrease with increasing temperature, ductility increases with temperature. Percentage reduction in area %RA = ( A 0 A f ) x100/ A 0 Effect of temperature: The yield and tensile strengths and modulus of elasticity decrease with increasing temperature, ductility increases with temperature. Toughness: The ability to absorb energy up to fracture = the total area under the strain-stress curve up to fracture. Units: the energy per unit volume, e.g. J/m 3. Figure 3: Stress-strain curve for ductile and brittle materials. 11

12 Hardness test methods: HARDNESS Hardness is defined as "Resistance of metal to plastic deformation, usually by indentation. However, the term may also refer to stiffness or temper or to resistance to scratching, abrasion, or cutting. The greater the hardness of the metal, the greater resistance it has to deformation. In metallurgy hardness is defined as the ability of a material to resist plastic deformation. This is the usual type of hardness test, in which a pointed or rounded indenter is pressed into a surface under a substantially static load. 2. HARDNESS MEASUREMENT Hardness measurement can be defined as macro-, micro- or nano- scale according to the forces applied and displacements obtained. Microhardness is the hardness of a material as determined by forcing an indenter such as a Vick-ers or Knoop indenter into the surface of the material under 15 to 1000 gf load; usually, the in-dentations are so small that they must be measured with a microscope. Micro-indenters works by pressing a tip into a sample and continuously measuring: applied load, penetration depth and cycle time. HARDNESS TESTS Hardness tests may be classified as (i) (ii) (iii) Scratch hardness test (Mohs hardness scale) Indentation test (Brinell, Rockwell and Vickers hardness tests) Rebound (Dynamic hardness) test (Shore scleroscope test) Most of the hardness tests are based on resistance to indentation. The indentation tests consists of forcing a indentor into the specimen and measuring the effects. Brinell Hardness Test Brinell hardness is determined by forcing a hard steel or carbide sphere of a specified diameter 12

13 under a specified load into the surface of a material and measuring the diameter of the indentation left after the test. The Brinell hardness number, or simply the Brinell number, is obtained by dividing the load used, in kilograms, by the actual surface area of the indentation, in square millimeters. The result is a pressure measurement, but the units are rarely stated. The Brinell hardness test uses a desk top machine to press a 10mm diameter, hardened steel ball into the surface of the test specimen. The machine applies a load of 500 kilograms for soft metals such as copper, brass and thin stock. A 1500 kilogram load is used for aluminum castings, and a 3000 kilogram load is used for materials such as iron and steel. The load is usually applied for 10 to 15 seconds. After the impression is made, a measurement of the diameter of the resulting round impression is taken. It is measured to plus or minus 0.05mm using a low-magnification portable microscope. The hardness is calculated by dividing the load by the area of the curved surface of the indention. The Brinell hardness test was one of the most widely used hardness tests during World War II. For measuring armour plate hardness the test is usually conducted by pressing a tungsten carbide sphere 10mm in diameter into the test surface for 10 seconds with a load of 3,000kg, then measuring the diameter of the resulting depression. The BHN is calculated according to the following formula: Figure: Brinell's hardness test method. 13

14 where BHN = the Brinell hardness number F = the imposed load in kg D = the diameter of the spherical indenter in mm Di = diameter of the resulting indenter impression in mm Several BHN tests are usually carried out over an area of armour plate. On a typical plate each test would result in a slightly different number. This is due not only to minor variations in quality of the armour plate (even homogenous armour is not absolutely uniform) but also because the test relies on careful measurement of the diameter of the depression. Small errors in this measurement will lead to small variations in BHN values. As a result, BHN is usually quoted as a range of values (e.g. 210 to 245, or ) rather than as a single value. Rockwell Hardness Test Rockwell hardness tests use different loads and penetrators (indentors) and depth of indentation is calibrated on a dial to a hardness number. To eliminate the effect of slackness and surface roughness, the indentor is loaded with minor load (10kg) and the major load (100kg for soft material and 140 kg for hard material) is applied. Depth of indentation due to major load is used as a measure of hardness. Hardened steel ball with 100 kg total load is used for B-scale; while diamond tipped cone of 120 o angle and 0.2 mm tip radius called Brale with 150 kg total load is used for c-scale. A minor load of 10 kg is first applied, which causes an initial penetration and holds the indenter in place. Then, the dial is set to zero and the major load is applied. Upon removal of the major load, the depth reading is taken while the minor load is still on. The hardness number may then be read directly from the scale. This test measures the difference in depth caused by two different forces, using a dial gauge. Using standard hardness conversion tables, the Rockwell hardness value is determined for the load applied, the diameter of the indentor, and the indentation depth. 14

15 Rockwell hardness number on B-scale, = And on C-scale = Where e = depth of indentation corresponding to major load. The Rockwell hardness tester to measure the hardness of metal measures resistance to penetration like the Brinell test, but in the Rockwell case, the depth of the impression is measured rather than the diametric area. With the Rockwell tester, the hardness is indicated directly on the scale attached to the machine. This dial like scale is really a depth gauge, graduated in special units. The Rockwell hardness test is the most used and versatile of the hardness tests. Vickers Hardness Test Figure: Rock-well hardness test method It is the standard method for measuring the hardness of metals, particularly those with extremely hard surfaces: the surface is subjected to a standard pressure for a standard length of time by means of a pyramid-shaped diamond. The diagonal of the resulting indention is measured under a microscope and the Vickers Hardness value read from a conversion table. Vickers hardness is a measure of the hardness of a material, calculated from the size of an impression produced under load by a pyramid-shaped diamond indenter. Devised in the 1920s by engineers at Vickers, Ltd., in the United Kingdom, the diamond pyramid hardness test, as it also became known, permitted the establishment of a continuous scale of comparable numbers that accurately reflected the wide range of hardnesses found in steels. 15

16 The indenter employed in the Vickers test is a square-based pyramid whose opposite sides meet at the apex at an angle of 136º. The diamond is pressed into the surface of the material at loads ranging up to approximately 120 kilograms-force, and the size of the impression (usually no more than 0.5 mm) is measured with the aid of a calibrated microscope. The Vickers number (HV) is calculated using the following formula: HV = with F being the applied load (measured in kilograms force) and the area of the indentation (measured in square millimetres). The applied load is usually specified when HV is cited. The Vickers machine uses a penetrator that is square in shape, but tipped on one corner so it has the appear ance of a playing card "diamond". The Vickers indenter is a 136 degrees square-based diamond cone, the diamond material of the indenter has an advantage over other indenters because it does not deform over time and use. The impression left by the Vickers penetrator is a dark square on a light background. The Vickers impression is more easily "read" for area size than the circular impression of the Brinell method. Like the Brinell test, the Vickers number is determined by dividing the load by the surface area of the indentation (H = P/A). The load varies from 1 to 120 kilo-grams. To perform the Vickers test, the specimen is placed on an anvil that has a screw threaded base. The anvil is turned raising it by the screw threads until it is close to the point of the inden - ter. With start lever activated, the load is slowly applied to the indenter. The load is released and the anvil with the specimen is lowered. The operation of applying and removing the load is con-trolled automatically. Vickers hardness test are that extremely accurate readings can be taken, and just one type of indenter is used for all types of metals and surface treatments. Although thoroughly adaptable and very precise for testing the softest and hardest of materials, under varying loads, the Vickers machine is a floor standing unit that is rather more expensive than the Brinell or Rockwell machines. 16

17 Figure: Vickers hardness test method. 17

18 18

19 Problems 1. A piece of copper originally 305 mm (12 in.) long is pulled in tension with a stress of 276 MPa (40,000 psi). If the deformation is entirely elastic, what will be the resultant elongation? 2. A specimen of copper having a rectangular cross section 15.2 mm X 19.1 mm (0.60 in.x 0.75in.) is pulled in tension with 44,500 N (10,000 lb ) force, producing only elastic deformation. Calculate the resulting strain. 3. A cylindrical specimen of nickel alloy having an elastic modulus of 207 Gpa and an original cross diameter of 10.2 mm will experience only elastic deformation when a tensile load of 8900 N is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.25 mm. 4. A piece of copper originally 305 mm long is pulled in a tension with a stress of 276 M Pa. If the deformation is entirely elastic, what will be resultant elongation? Given 1 M Pa is 10 6 N/m A specimen of copper having a rectangular cross section 15.2 mm 19.1 mm (0.60 in.0.75 in.) is pulled in tension with 44,500 N (10,000 lb ) force, producing only elastic deformation. Calculate the resulting strain. 6. A cylindrical specimen of a nickel alloy having an elastic modulus of 207 GPa (psi) and an original diameter of 10.2 mm (0.40 in.) will experience only elastic deformation when a tensile load of 8900 N (2000 lb) is applied. Compute the maximum length of the specimen before deformation if the maximum allowable elongation is 0.25 mm (0.010 in.). 7. An aluminum bar 125 mm (5.0 in.) long and having a square cross section 16.5 mm (0.65 in) on an edge is pulled in tension with a load of 66,700 N (15,000 lb), and experiences an elongation of 0.43 mm (in.). Assuming that the deformation is entirely elastic, calculate the modulus of elasticity of the aluminum. 8. Consider a cylindrical nickel wire 2.0 mm (0.08 in.) in diameter and mm (1200 in.) long. Calculate its elongation when a load of300 N (67 lb) is applied. Assume that the deformations totally elastic. 9. For a brass alloy, the stress at which plastic deformation begins is 345 MPa (50,000 psi), and the modulus of elasticity is 103 GPa( 15X10 6 psi). (a) What is the maximum load that may be applied to a specimen with a cross-sectional area of 130 mm 2 (0.2 in 2 ) without plastic deformation? (b) If the original specimen length is 76 mm (3.0 in.), what is the maximum length to which it may be stretched without causing plastic deformation? 10. A cylindrical rod of steel ( E=207GPa, 30X10 6 psi) having a yield strength of 310 MPa (45,000 psi) is to be subjected to a load of 11,100 N (2500 lb ). If the length of the rod is 500 mm (20.0 in.), what must be the diameter to allow an elongation of 0.38 mm (0.015 in.)? 19

MECHANICAL PROPERTIES AND TESTS. Materials Science

MECHANICAL PROPERTIES AND TESTS. Materials Science MECHANICAL PROPERTIES AND TESTS Materials Science Stress Stress is a measure of the intensity of the internal forces acting within a deformable body. Mathematically, it is a measure of the average force

More information

Chapter Outline Mechanical Properties of Metals How do metals respond to external loads?

Chapter Outline Mechanical Properties of Metals How do metals respond to external loads? Chapter Outline Mechanical Properties of Metals How do metals respond to external loads?! Stress and Strain " Tension " Compression " Shear " Torsion! Elastic deformation! Plastic Deformation " Yield Strength

More information

11/2/2018 7:58 PM. Chapter 6. Mechanical Properties of Metals. Mohammad Suliman Abuhaiba, Ph.D., PE

11/2/2018 7:58 PM. Chapter 6. Mechanical Properties of Metals. Mohammad Suliman Abuhaiba, Ph.D., PE 1 Chapter 6 Mechanical Properties of Metals 2 Assignment 7, 13, 18, 23, 30, 40, 45, 50, 54 4 th Exam Tuesday 22/11/2018 3 WHY STUDY Mechanical Properties of Metals? How various mechanical properties are

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals Materials Engineering 272-C Fall 2001, Lectures 9 & 10 Introduction to Mechanical Properties of Metals From an applications standpoint, one of the most important topics within Materials Science & Engineering

More information

Engineering Materials

Engineering Materials Engineering Materials Mechanical Properties of Engineering Materials Mechanical testing of engineering materials may be carried out for a number of reasons: The tests may simulate the service conditions

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) of Materials Course KGP003 Ch. 6 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Mohs scale

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Outline Tension and compression

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

THE MECHANICAL PROPERTIES OF STAINLESS STEEL

THE MECHANICAL PROPERTIES OF STAINLESS STEEL THE MECHANICAL PROPERTIES OF STAINLESS STEEL Stainless steel is primarily utilised on account of its corrosion resistance. However, the scope of excellent mechanical properties the within the family of

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. 1 2 Mechanical properties. 3 The intended learning outcomes from this lecture summary are that you

More information

Properties of Engineering Materials

Properties of Engineering Materials Properties of Engineering Materials Syllabus Mechanical Properties, Tensile, Fatigue, Creep, Impact, Hardness, Chemical Properties, Physical properties, Corrosion and Cathodic Protection, Carbon Steel,

More information

MECHANICAL PROPERTIES.

MECHANICAL PROPERTIES. MECHANICAL PROPERTIES. Hardness, strength, ductility and elasticity are among the mechanical properties of a material that would probably first come to mind. In order to know how each of these characteristics

More information

Mechanical Characterisation of Materials

Mechanical Characterisation of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology, Dhaka MME298 Structure and Properties of Biomaterials Sessional 1.50 Credits 3.00 Hours/Week July

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 5 Hardness and Hardness Testing Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction Hardness

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Mechanical Properties: In the course of operation or use, all the articles and structures are subjected to the action of external forces, which create stresses that inevitably cause

More information

MECHANICAL TESTING OF METALLIC MATERIALS

MECHANICAL TESTING OF METALLIC MATERIALS MECHANICAL TESTING OF METALLIC MATERIALS Outline Hardness Testing Tensile Testing Impact Testing Fatigue Testing Creep Testing Wear Testing 22-Jan-11 11111 2 MATERIALS PROPERTIES Design Engineer - Materials

More information

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom

Chapter 4 MECHANICAL PROPERTIES OF MATERIAL. By: Ardiyansyah Syahrom Chapter 4 MECHANICAL PROPERTIES OF MATERIAL By: Ardiyansyah Syahrom Chapter 2 STRAIN Department of Applied Mechanics and Design Faculty of Mechanical Engineering Universiti Teknologi Malaysia 1 Expanding

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

AML 883 Properties and selection of engineering materials

AML 883 Properties and selection of engineering materials AML 883 Properties and selection of engineering materials LECTURE 8. Plasticity M P Gururajan Email: guru.courses@gmail.com Room No. MS 207/A 3 Phone: 1340 Problem Sheet 3 Problems on strength limited

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414 FME201 Solid & Structural Mechanics I Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 11am -1pm (CELT) Tutorial Tue 12-1pm (E207) 10/1/2013 1 CHAPTER OBJECTIVES Show relationship of stress

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

MECHANICAL PROPERTIES PROPLEM SHEET

MECHANICAL PROPERTIES PROPLEM SHEET MECHANICAL PROPERTIES PROPLEM SHEET 1. A tensile test uses a test specimen that has a gage length of 50 mm and an area = 200 mm 2. During the test the specimen yields under a load of 98,000 N. The corresponding

More information

Material Properties 3

Material Properties 3 Material Properties 3 Real Stress and Strain True M Corrected Stress M Engineering Strain Several Alloys Material n MPa psi Low-carbon steel 0.26 530 77,000 (annealed) Alloy steel 0.15 640 93,000 (Type

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals 1496T_c06_131-173 11/16/05 17:06 Page 166 166 Chapter 6 / Mechanical Properties of Metals IMPORTANT TERMS AND CONCEPTS Anelasticity Design stress Ductility Elastic deformation Elastic recovery Engineering

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties بسم الله الرحمن الرحیم Materials Science Chapter 7 Mechanical Properties 1 Mechanical Properties Can be characterized using some quantities: 1. Strength, resistance of materials to (elastic+plastic) deformation;

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Chapter 8: Mechanical Properties of Metals. Elastic Deformation Chapter 8: Mechanical Properties of Metals ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much

More information

Mechanical Properties

Mechanical Properties Stress-strain behavior of metals Elastic Deformation Plastic Deformation Ductility, Resilience and Toughness Hardness 108 Elastic Deformation bonds stretch δ return to initial Elastic means reversible!

More information

Chapter 2: Mechanical Behavior of Materials

Chapter 2: Mechanical Behavior of Materials Chapter : Mechanical Behavior of Materials Definition Mechanical behavior of a material relationship - its response (deformation) to an applied load or force Examples: strength, hardness, ductility, stiffness

More information

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Mechanical behaviour of ceramics 7.5. Mechanical behaviour of polymers

More information

MECHANICAL PROPERTIES OF THIOUREA BASED ORGANIC AND SEMIORGANIC SINGLE CRYSTALS

MECHANICAL PROPERTIES OF THIOUREA BASED ORGANIC AND SEMIORGANIC SINGLE CRYSTALS 153 CHAPTER 7 MECHANICAL PROPERTIES OF THIOUREA BASED ORGANIC AND SEMIORGANIC SINGLE CRYSTALS 7.1 INTRODUCTION Hardness of a material is the resistance it offers to indentation by a much harder body. It

More information

Chapter 7. Mechanical Properties

Chapter 7. Mechanical Properties Chapter 7 Mechanical Properties Chapter 7 Plastic Deformation, Ductility and Toughness Issues to address Stress and strain: What are they and why are they used instead of load and deformation? Elastic

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

Vickers Berkovich Knoop Conical Rockwell Spherical Figure 15 a variety of different indenter's shapes and sizes

Vickers Berkovich Knoop Conical Rockwell Spherical Figure 15 a variety of different indenter's shapes and sizes Hardness Test of Ceramic materials Hardness is a measure of a materials resistance to penetration by a hard indenter of defined geometry and loaded in prescribed manner, it is one of the most frequently

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Workshop Practice TA 102

Workshop Practice TA 102 Workshop Practice TA 102 Lec 2 & 3 :Engineering Materials By Prof.A.Chandrashekhar Engineering Materials Materials play an important role in the construction and manufacturing of equipment/tools. Right

More information

3. Mechanical Properties of Materials

3. Mechanical Properties of Materials 3. Mechanical Properties of Materials 3.1 Stress-Strain Relationships 3.2 Hardness 3.3 Effect of Temperature on Properties 3.4 Fluid Properties 3.5 Viscoelastic Properties Importance of Mechanical Properties

More information

Chapter 6: Mechanical Properties: Part One

Chapter 6: Mechanical Properties: Part One Slide 1 Chapter 6: Mechanical Properties: Part One ` 6-1 Slide 2 Learning Objectives 1. Technological significance 2. Terminology for mechanical properties 3. The tensile test: Use of the stress strain

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. Civil Engineering CE6411 STRENGTH OF MATERIALS LABORATORY

Dharmapuri LAB MANUAL. Regulation : 2013 Branch. : B.E. Civil Engineering CE6411 STRENGTH OF MATERIALS LABORATORY Dharmapuri 636 703 LAB MANUAL Regulation : 2013 Branch Year & Semester : B.E. Civil Engineering : II Year / IV Semester CE6411 STRENGTH OF MATERIALS LABORATORY OBJECTIVE: ANNA UNIVERSITY CE-6411 STRENGTH

More information

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor

NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices: Benkelman Beam (BB) Sri Atmaja P. Rosyidi, Ph.D., P.E. Associate Professor NDT Deflection Measurement Devices on Pavement Structure NDT measurement of pavement surface

More information

The Mechanical Properties of Polymers

The Mechanical Properties of Polymers The Mechanical Properties of Polymers Date: 14/07/2018 Abu Zafar Al Munsur Behavior Of Material Under Mechanical Loads = Mechanical Properties. Term to address here Stress and strain: These are size-independent

More information

MATERIALS: Clarifications and More on Stress Strain Curves

MATERIALS: Clarifications and More on Stress Strain Curves A 3.0 m length of steel rod is going to be used in the construction of a bridge. The tension in the rod will be 10 kn and the rod must extend by no more than 1.0mm. Calculate the minimum cross-sectional

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

Tensile/Tension Test Fundamentals

Tensile/Tension Test Fundamentals CIVE.3110 Engineering Materials Laboratory Fall 2016 Tensile/Tension Test Fundamentals Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister You need to be able to: Name the properties determined in a tensile test including UTS,.2% offset yield strength, Elastic Modulus,

More information

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN

CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN CITY AND GUILDS 910 Unit 130 MECHANICS O MACHINES AND STRENGTH O MATERIALS OUTCOME 1 TUTORIAL 1 - BASIC STRESS AND STRAIN Outcome 1 Explain static equilibrium, Newton's laws, and calculation of reaction

More information

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar.

When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. 11.1 AXIAL STRAIN When an axial load is applied to a bar, normal stresses are produced on a cross section perpendicular to the axis of the bar. In addition, the bar increases in length, as shown: 11.1

More information

MECHANICS OF MATERIALS. Mechanical Properties of Materials

MECHANICS OF MATERIALS. Mechanical Properties of Materials MECHANICS OF MATERIALS Mechanical Properties of Materials By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Understand the concept of tension and

More information

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS

ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS ME 212 EXPERIMENT SHEET #2 TENSILE TESTING OF MATERIALS 1. INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective is

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

MECHANICAL PROPERTIES. (for metals)

MECHANICAL PROPERTIES. (for metals) MECHANICAL PROPERTIES (for metals) 1 Chapter Outline Terminology for Mechanical Properties The Tensile Test: Stress-Strain Diagram Properties Obtained from a Tensile Test True Stress and True Strain The

More information

CHAPTER 3 - MECHANICAL PROPERTIES. Mechanical properties are the characteristic responses of a material to applied stresses. Selection of mechanical

CHAPTER 3 - MECHANICAL PROPERTIES. Mechanical properties are the characteristic responses of a material to applied stresses. Selection of mechanical CHAPTER 3 - MECHANICAL PROPERTIES Mechanical properties are the characteristic responses of a material to applied stresses. Selection of mechanical tests for a particular application is based primarily

More information

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS 1. Bending Test (Slide 3) 2. Shear Test (Slide 8) 3. Hardness (Slide 14) 4. Effect of Temperature on Properties

More information

Question Paper Code : 11410

Question Paper Code : 11410 Reg. No. : Question Paper Code : 11410 B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2011 Fourth Semester Mechanical Engineering ME 2254 STRENGTH OF MATERIALS (Common to Automobile Engineering and Production

More information

STRENGTH OF MATERIALS laboratory manual

STRENGTH OF MATERIALS laboratory manual STRENGTH OF MATERIALS laboratory manual By Prof. Shaikh Ibrahim Ismail M.H. Saboo Siddik College of Engineering, MUMBAI TABLE OF CONTENT Sr. No. Title of Experiment page no. 1. Study of Universal Testing

More information

Concepts of stress and strain

Concepts of stress and strain Chapter 6: Mechanical properties of metals Outline Introduction Concepts of stress and strain Elastic deformation Stress-strain behavior Elastic properties of materials Plastic deformation Yield and yield

More information

Page 1 of 46 Exam 1. Exam 1 Past Exam Problems without Solutions NAME: Given Formulae: Law of Cosines: C. Law of Sines:

Page 1 of 46 Exam 1. Exam 1 Past Exam Problems without Solutions NAME: Given Formulae: Law of Cosines: C. Law of Sines: NAME: EXAM 1 PAST PROBLEMS WITHOUT SOLUTIONS 100 points Tuesday, September 26, 2017, 7pm to 9:30 You are allowed to use a calculator and drawing equipment, only. Formulae provided 2.5 hour time limit This

More information

Chapter 6:Mechanical Properties

Chapter 6:Mechanical Properties Chapter 6:Mechanical Properties Why mechanical properties? Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles, pedestrians materials

More information

NANOINDENTATION CREEP MEASUREMENT

NANOINDENTATION CREEP MEASUREMENT NANOINDENTATION CREEP MEASUREMENT Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard for tomorrow's materials. 010 NANOVEA INTRO Creep can

More information

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES Dr. Mert Yücel YARDIMCI Istanbul Okan University Deparment of Civil Engineering Chapter Outline Terminology for Mechanical Properties The Tensile Test:

More information

Engineering Materials

Engineering Materials Engineering Materials PREPARED BY Academic Services August 2011 Institute of Applied Technology, 2011 Module Objectives After the completion of this module, the student will be able to: Explain the terms

More information

Correlation of Hardness Values to Tensile Strength

Correlation of Hardness Values to Tensile Strength Correlation of Hardness Values to Tensile Strength Semih Genculu, P.E. Various procedures and approaches are utilized to determine if a given material is suitable for a certain application. The material

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

FACULTY OF ENGINEERING UNIVERSITY OF MAURITIUS. Mechanical properties of Materials UTOSP 1293 Basics of Metallurgy Prepared by s.

FACULTY OF ENGINEERING UNIVERSITY OF MAURITIUS. Mechanical properties of Materials UTOSP 1293 Basics of Metallurgy Prepared by s. FACULTY OF ENGINEERING UNIVERSITY OF MAURITIUS Mechanical properties of Materials UTOSP 1293 Basics of Metallurgy Prepared by s. Venkannah MECHANICAL PROPERTIES Engineers are basically concerned with the

More information

Chapter 6 Mechanical Properties

Chapter 6 Mechanical Properties Engineering Materials MECH 390 Tutorial 2 Chapter 6 Mechanical Properties Chapter 3-1 6.14:A cylindrical specimen of steel having a diameter of 15.2 mm and length of 250 mm is deformed elastically in tension

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the

More information

Nano Puncture Resistance Using Nanoindentation

Nano Puncture Resistance Using Nanoindentation Nano Puncture Resistance Using Nanoindentation Prepared by Jorge Ramirez 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard for tomorrow's materials. 011 NANOVEA

More information

EXPERIMENT NO.1 AIM: - OBJECT: - To determined tensile test on a metal. APPRETERS:- THEORY:-

EXPERIMENT NO.1 AIM: - OBJECT: - To determined tensile test on a metal. APPRETERS:- THEORY:- EXPERIMENT NO.1 AIM: - OBJECT: - APPRETERS:- DIAGRAM:- THEORY:- To determined tensile test on a metal. To conduct a tensile test on a mild steel specimen and determine the following: (i) Limit of proportionality

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties Chapter 6: Mechanical Properties Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? Stress and strain: What are they and why are they used instead of load

More information

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties

Part IA Paper 2: Structures and Materials MATERIALS Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties Engineering Part IA Paper 2: Structures and Materials MATERIALS FIRST YEAR Examples Paper 3 Stiffness-limited Design; Plastic Deformation and Properties Straightforward questions are marked with a Tripos

More information

CHAPTER 6: Mechanical properties

CHAPTER 6: Mechanical properties CHAPTER 6: Mechanical properties ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors Mechanical Properties of Materials 2 Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

More information

HONEYCOMB MECHANICAL BEHAVIOR USING MACROINDENTATION

HONEYCOMB MECHANICAL BEHAVIOR USING MACROINDENTATION HONEYCOMB MECHANICAL BEHAVIOR USING MACROINDENTATION. Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.

More information

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Properties in Shear. Figure 7c. Figure 7b. Figure 7a Properties in Shear Shear stress plays important role in failure of ductile materials as they resist to normal stress by undergoing large plastic deformations, but actually fail by rupturing under shear

More information

P A (1.1) load or stress. elongation or strain

P A (1.1) load or stress. elongation or strain load or stress MEEN 3145 TENSION TEST - BACKGROUND The tension test is the most important and commonly used test in characterizing properties of engineering materials. This test gives information essential

More information

ME 215 Engineering Materials I

ME 215 Engineering Materials I ME 215 Engineering Materials I Chapter 5 Hardness and Hardness Testing (Part II) Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana www.gantep.edu.tr/~bozdana Shore Scleroscope Test Invented

More information

Materials Properties 2

Materials Properties 2 Materials Properties 2 Elastic Deformation Most metals can only obey hook s law for s up to 0.005 Elastic Plastic y P Nearly all engineering is performed in the elastic region 0.002 Elastic Plastic y P

More information

Deformation, plastic instability

Deformation, plastic instability Deformation, plastic instability and yield-limited design Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Material

More information

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Slip Systems 8.3 (a) Compare planar densities (Section 3.15 and Problem W3.46 [which appears on the book s Web site]) for the (100),

More information

EDGE CHIPPING RESISTANCE USING MACROINDENTATION TESTING

EDGE CHIPPING RESISTANCE USING MACROINDENTATION TESTING EDGE CHIPPING RESISTANCE USING MACROINDENTATION TESTING Prepared by Ali Mansouri 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Lab Exercise #2: Tension Testing (Uniaxial Stress)

Lab Exercise #2: Tension Testing (Uniaxial Stress) Lab Exercise #2: (Uniaxial Stress) Learning Outcomes: 1. Understand the basic concepts of stress and strain 2. Identify the engineering material properties 3. Connect stress and strain through Hooke s

More information

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3.

5. A round rod is subjected to an axial force of 10 kn. The diameter of the rod is 1 inch. The engineering stress is (a) MPa (b) 3. The Avogadro's number = 6.02 10 23 1 lb = 4.45 N 1 nm = 10 Å = 10-9 m SE104 Structural Materials Sample Midterm Exam Multiple choice problems (2.5 points each) For each problem, choose one and only one

More information