STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE


 Frederick Lynch
 1 years ago
 Views:
Transcription
1 STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE
2 Chapter Outline Determination of crystal properties or properties of crystalline materials. Crystal Geometry! Crystal Directions! Linear Density of atoms! Crystal Planes! Planar Density of Atoms
3 Crystalline Geometry Determination of crystal properties or properties of crystalline materials is based on crystal geometry. Crystal geometry is described by means of MİLLER İNDECES. 1. Crystal Directions Many properties of crystals change with crystal directions. In a space lattice there are infinite number of parallel planes.
4 Crystalline Geometry 1. Crystal Directions A vector starting from the origin and ending at a corner of the next unit cell is used to describe directions. The components of this vector on each axis are described in terms of lattice constant to obtain the smallest possible whole number of sequence as [hkl].
5 Crystalline Geometry 1. Miller İndeces of the Directions z (x,y,z) Direction İndeces Line 1 has a,0,0 [100] 6 5 x 4 1 a 3 a a Line has a,a,0 [110] Line 3 has a,a,a [111] Line 4 has a,0,a [10] y Line 5 has a,a,0 [1ī0] Line 6 has 0,a,a [0ī] Ī
6 Example: Draw the following direction vectors in a cubic unit cells. z [011] From Miller İndeces [hkl], find the Position Coordinates (hkl). a) [010] & [011] b) [11] & [11] x y c) [ī10] & [11ī] & [1ī0] d) [131] & [11] & [130]
7
8 Linear Density of Atoms The spacing of atoms in a crystal lattice changes with respect to direction. The linear density (LD) of atoms affects certain properties. Linear Density [ hkl] # of atoms length of the direction
9 FCC Linear Density of Atoms ex: linear density of Al in [110] direction. a= nm
10 Linear Density of Atoms In a lattice system, equivalent directions form a family which is designated by hkl. For example in a cubic cell, 100 is composed of [100], [010], [001] Cubic edge directions collectively. z x [001] [100] [010] y 111 = [111], [ī 11], [1 ī 1], [11 ī], [ī ī ī] cubic body diagonals. 110 = [110], [1ī 0], [ī 10], [ī ī 0] cubic face diagonals.
11 Linear Density of Atoms For certain calculations, the angle between two directions may be necessary. Cos ( h 1 k h h 1 1 l 1 k 1 k )*( h l. Example: =? Between [110] & [111] directions in the cubic system. 1 l k l ) İs the angle between [h 1 k 1 l 1 ] & [h k l ] Cos 1*11*1 0*1 35, 3 (1 1 0 )*(1 1 1 ) 6
12 Crystal Planes A crystal contains planes of atoms, and these planes influence the properties and behaviour of crystals. Shear may occur between neighboring planes, permitting the crystal to shear and conferring ductility in metals. If the bond between planes is weak, they may apart from each other thus failure occurs. Then it is necessary to identify planes in crystal structures. Such identification is carried out by means of Miller İndeces..
13 Crystal Planes: Miller İndeces Miller Indices (hkl) is a specific crystallographic plane {hkl} is a family of planes with each one ahving the same atomic arrangement Determination of Miller İndeces (MI) Determine values where plane intercepts x,y,z axes Take reciprocals of intercepts. Put the resultants over their lowest common denominators The numerators then give the required indeces, i.e., (hkl)
14 Crystal Planes: Miller Indeces abc Plane Intercepts = 1, 1, Reciprocals = 1/1, 1/1, 1/ L.C.D = 1/1, 1/1, 0/1 MI = (110) abc Plane Intercepts = 1/,, Reciprocals = 1/1/, 1/, 1/ =, 0, 0 L.C.D = /, 0/, 0/ MI = (00) or (100)
15 Crystal Planes: Miller İndeces
16 Crystal Planes: Miller İndeces
17 Family of planes All equivalent planes in a structure are conventionally represented by one set of Miller indices in curly brackets {}. The family of the {100} planes. The family of the {110} planes.
18 Octahedral plane in an FCC or BCC structure Octahedral planes are (111) type planes. A 3fold symmetry axis is perpendicular to those planes. That axis is of the type < 111 >. The octahedral plane. Note that for the cubic systems that the [hkl] direction is always normal to the (hkl) plane. A crystal plane & its normal directions have the same Miller İndeces. e.g. The normal to the (001) plane is [001] direction.
19 PLANAR DENSITY When slip occurs under stress, it takes place on the planes on which the atoms are most densely packed. Planar Density, hkl) Example: FCC unit cell ( # of atoms Area of plane z δ (100) = 4*1/4+1 = a a 1 a = 4 r δ (100) = 4r x (100) a y
20 Example: [100] of cubic unit cell δ [100] = 1/a a Example: Calculate planar density of the face plane (100) and linear density on the face diagonal [011] of an FCC structure. a 0 (100) [011] (100) [011] a a0 a 0 0
Ex: NaCl. Ironically Bonded Solid
Ex: NaCl. Ironically Bonded Solid Lecture 2 THE STRUCTURE OF CRYSTALLINE SOLIDS 3.2 FUNDAMENTAL CONCEPTS SOLIDS AMORPHOUS CRYSTALLINE Atoms in an amorphous Atoms in a crystalline solid solid are arranged
More informationIntroduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates
Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids Dr. Coates Learning Objectives I 1. Describe difference in atomic/molecular structure between crystalline/noncrystalline
More informationChapter3 MSE201R. Prof. Dr. Altan Türkeli
Chapter3 MSE201R Prof. Dr. Altan Türkeli The Structure of Crystalline Solids FUNDAMENTAL CONCEPTS Solid materials may be classified according to the regularity with which atoms or ions are arranged
More informationMSE420/514: Session 1. Crystallography & Crystal Structure. (Review) Amaneh Tasooji
MSE420/514: Session 1 Crystallography & Crystal Structure (Review) Crystal Classes & Lattice Types 4 Lattice Types 7 Crystal Classes SIMPLE CUBIC STRUCTURE (SC) Rare due to poor packing (only Po has this
More informationExample: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s].
Example: Calculate the energy required to excite the hydrogen electron from level n = 1 to level n = 2. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state
More informationCHAPTER 3. Crystal Structures and Crystal Geometry 31
CHAPTER 3 Crystal Structures and Crystal Geometry 31 The Space Lattice and Unit Cells 32 Atoms, arranged in repetitive 3Dimensional pattern, in long range order (LRO) give rise to crystal structure.
More informationChapter One: The Structure of Metals
Fourth Edition SI Version Chapter One: The Structure of Metals 2010. Cengage Learning, Engineering. All Rights Reserved. 1.1 Importance of the structure: Structures Processing Properties Applications Classification
More information9/21/2018 5:48 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE
Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Assignment #1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Tuesday 2/10/2018 1 st Exam: Sunday 7/10/2018 3
More information9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE
Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure
More informationMME 2001 MATERIALS SCIENCE
MME 2001 MATERIALS SCIENCE 1 20.10.2015 crystal structures X tal structure Coord. # Atoms/ unit cell a=f(r) APF % SC 6 1 2R 52 BCC 8 2 4R/ 3 68 FCC 12 4 2R 2 74 HCP 12 6 2R 74 Theoretical Density, knowing
More informationSolid State Device Fundamentals
Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Solids Three types of solids classified according to atomic
More informationGeneral Objective. To develop the knowledge of crystal structure and their properties.
CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental
More information9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE
1 Chapter 3 The structure of crystalline solids 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 12/10/2014 Quiz # 1 will be held on Monday 13/10/2014 at 11:00 am
More information9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE
Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences
More informationPoint coordinates. Point coordinates for unit cell center are. Point coordinates for unit cell corner are 111
Point coordinates c z 111 Point coordinates for unit cell center are a/2, b/2, c/2 ½ ½ ½ Point coordinates for unit cell corner are 111 x a z 000 b 2c y Translation: integer multiple of lattice constants
More informationThe Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements
The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 3 Atomic and Ionic Arrangements 1 Objectives of Chapter 3 To learn classification of materials based on atomic/ionic
More informationChapter 1. Crystal Structure
Chapter 1. Crystal Structure Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement Amorphous solids: No ordered structure to the particles of the solid. No well defined
More informationCRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space.
CRYSTAL LATTICE How to form a crystal? 1. Define the structure of the lattice 2. Define the lattice constant 3. Define the basis Defining lattice: Mathematical construct; ideally infinite arrangement of
More informationMaterials Science and Engineering
Introduction to Materials Science and Engineering Chap. 3. The Structures of Crystalline Solids How do atoms assemble into solid structures? How does the density of a material depend on its structure?
More informationPacking of atoms in solids
MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:
More informationEnergy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regularpacked structures tend to have lower energy.
Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r
More informationSingle vs Polycrystals
WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals
More informationPoint coordinates. x z
Point coordinates c z 111 a 000 b y x z 2c b y Point coordinates z y Algorithm 1. Vector repositioned (if necessary) to pass through origin. 2. Read off projections in terms of unit cell dimensions a,
More informationEnergy and Packing. Materials and Packing
Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r
More informationبسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics
بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?
More informationSolid State Device Fundamentals
Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Interatomic bonding Bonding Forces and Energies Equilibrium
More informationUNIT V CRYSTAL STRUCTURE
UNIT V CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure
More informationReview key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices
Outline: Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Review (example with square lattice) Lattice: square,
More informationPhysics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava
Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior Physics
More informationChapter1: Crystal Structure 1
Chapter1: Crystal Structure 1 University of Technology Laser Engineering & Optoelectronic Department Glass: 3 rd year Optoelectronic Engineering Subject: Solid state physics & material science Ass. Prof.
More informationChapter 3 Structure of Crystalline Solids
Chapter 3 Structure of Crystalline Solids Crystal Structures Points, Directions, and Planes Linear and Planar Densities Xray Diffraction How do atoms assemble into solid structures? (for now, focus on
More informationMetallic crystal structures The atomic bonding is metallic and thus nondirectional in nature
Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline
More informationBasic Solid State Chemistry, 2 nd ed. West, A. R.
Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types
More informationFundamental concepts and language Unit cells Crystal structures! Facecentered cubic! Bodycentered cubic! Hexagonal closepacked Close packed
Fundamental concepts and language Unit cells Crystal structures! Facecentered cubic! Bodycentered cubic! Hexagonal closepacked Close packed crystal structures Density computations Crystal structure
More informationAtomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.
Atomic Densities Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Planar Density Number of atoms per unit area that are centered
More informationCRYSTAL STRUCTURE TERMS
CRYSTAL STRUCTURE TERMS crystalline material  a material in which atoms, ions, or molecules are situated in a periodic 3dimensional array over large atomic distances (all metals, many ceramic materials,
More informationHow can we describe a crystal?
How can we describe a crystal? Examples of common structures: (1) The Sodium Chloride (NaCl) Structure (LiH, MgO, MnO, AgBr, PbS, KCl, KBr) The NaCl structure is FCC The basis consists of one Na atom and
More informationCHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart
CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES Sarah Lambart RECAP CHAP. 2 2 different types of close packing: hcp: tetrahedral interstice (ABABA) ccp: octahedral interstice (ABCABC) Definitions:
More informationASE324: Aerospace Materials Laboratory
ASE324: Aerospace Materials Laboratory Instructor: Rui Huang Dept of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin Fall 2003 Lecture 3 September 4, 2003 Iron and Steels
More informationMaterials and their structures
Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their
More informationCrystal structure of the material : the manner in which atoms, ions, or molecules are spatially.
Crystal structure A crystalline material : is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material : the manner in which
More informationSolid State Physics 460 Lecture 2a Structure of Crystals (Kittel Ch. 1)
Solid State Physics 460 Lecture 2a Structure of Crystals (Kittel Ch. 1) See many great sites like ob s rock shop with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html
More informationCondensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras
Condensed Matter Physics Prof. G.Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture  3 Symmetry in Perfect Solids (Continued) (Refer Slide Time: 00:26) So, the last lecture,
More informationCarbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)
Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a
More informationAtomic Densities. Linear Density. Planar Density. Linear Density. Outline: Planar Density
Atomic Densities Outline: Atomic Densities  Linear Density  Planar Density Single vs poly crystalline materials Xray Diffraction Example Polymorphism and Allotropy Linear Density Number of atoms per
More informationTwo marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples
UNIT V CRYSTAL PHYSICS PARTA Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent
More informationTwins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith
Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning
More informationChapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.
Chapter 3: Atomic and Ionic Arrangements 31 Learning Objectives 1. 2. 3. 4. 5. 6. 7. 8. Shortrange order versus longrange order Amorphous materials Lattice, basis, unit cells, and crystal structures
More informationDensity Computations
CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius
More informationChapter Outline. How do atoms arrange themselves to form solids?
Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Facecentered cubic! Bodycentered cubic! Hexagonal closepacked Close packed
More informationLecture # 11. Line defects (1D) / Dislocations
Lecture # 11  Line defects (1D) / Dislocations  Planer defects (2D)  Volume Defects  Burgers vector  Slip  Slip Systems in FCC crystals  Slip systems in HCP  Slip systems in BCC References: 1
More informationStructure of silica glasses (Chapter 12)
Questions and Problems 97 Glass Ceramics (Structure) heattreated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)
More informationENGINEERING MATERIALS LECTURE #4
ENGINEERING MATERIALS LECTURE #4 Chapter 3: The Structure of Crystalline Solids Topics to Cover What is the difference in atomic arrangement between crystalline and noncrystalline solids? What features
More informationSingle crystal Xray diffraction. Zsolt Kovács
Single crystal Xray diffraction Zsolt Kovács based on the Hungarian version of the Laue lab description which was written by Levente Balogh, Jenő Gubicza and Lehel Zsoldos INTRODUCTION Xray diffraction
More informationChapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige
Chapter 7 Dislocations and Strengthening Mechanisms Dr. Feras Fraige Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and
More informationLectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods
Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods Hussein M. Zbib School of Mechanical and Materials Engineering
More informationHow do atoms assemble into solid structures? How does the density of a material depend on its structure?
제 3 장 : 결정질고체의구조 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure? When do material properties vary with the sample (i.e., part)
More informationMSE 170 Midterm review
MSE 170 Midterm review Exam date: 11/2/2008 Mon, lecture time Place: Here! Close book, notes and no collaborations A sheet of lettersized paper with doublesided notes is allowed Material on the exam
More informationChapter Outline How do atoms arrange themselves to form solids?
Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Facecentered cubic Bodycentered cubic Hexagonal closepacked Close packed
More information3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution
3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices
More informationIntroduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates
Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction
More informationChapter Outline Dislocations and Strengthening Mechanisms. Introduction
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
More informationLecture # 11 References:
Lecture # 11  Line defects (1D) / Dislocations  Planer defects (2D)  Volume Defects  Burgers vector  Slip  Slip Systems in FCC crystals  Slip systems in HCP  Slip systems in BCC Dr.Haydar AlEthari
More informationImpurities in Solids. Crystal Electro Element R% Structure negativity Valence
44 Impurities in Solids 4.4 In this problem we are asked to cite which of the elements listed form with Ni the three possible solid solution types. For complete substitutional solubility the following
More informationE45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa
1.!Mechanical Properties (20 points) Refer to the following stressstrain plot derived from a standard uniaxial tensile test of a high performance titanium alloy to answer the following questions. Show
More informationProblems. 104 CHAPTER 3 Atomic and Ionic Arrangements
104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Shortrange order The regular and predictable arrangement
More information4Crystal Defects & Strengthening
4Crystal Defects & Strengthening A perfect crystal, with every atom of the same type in the correct position, does not exist. The crystalline defects are not always bad! Adding alloying elements to a
More informationChapter 8: Molecules and Materials
Chapter 8: Molecules and Materials Condensed Phases  Solids Bonding in Solids Metals Insulators Semiconductors Intermolecular Forces Condensed Phases  Liquids Carbon There are three forms of the element
More information3, MSE 791 Mechanical Properties of Nanostructured Materials
3, MSE 791 Mechanical Properties of Nanostructured Materials Module 3: Fundamental Physics and Materials Design Lecture 1 1. What is strain (work) hardening? What is the mechanism for strain hardening?
More informationChapter 3: Structures of Metals & Ceramics
Chapter 3: Structures of Metals & Ceramics School of Mechanical Engineering Professor Choi, HaeJin Chapter 31 Chapter 3: Structures of Metals & Ceramics ISSUES TO ADDRESS... How do atoms assemble into
More informationSymmetry in crystalline solids.
Symmetry in crystalline solids. Translation symmetry n 1,n 2,n 3 are integer numbers 1 Unitary or primitive cells 2D 3D Red, green and cyano depict all primitive (unitary) cells, whereas blue cell is not
More informationMaterials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4Oct10
ME 274 Dr Yehia M. Youssef 1 The Structure of Crystalline Solids Solid materials may be classified according to the regularity with which atoms or ions are arranged with respect to one another. A crystalline
More informationEP 364 SOLID STATE PHYSICS. Prof. Dr. Beşire Gönül. Course Coordinator
EP 364 SOLID STATE PHYSICS Course Coordinator Prof. Dr. Beşire Gönül INTRODUCTION AIM OF SOLID STATE PHYSICS WHAT IS SOLID STATE PHYSICS AND WHY DO IT? CONTENT REFERENCES EP364 SOLID STATE PHYSICS INTRODUCTION
More information(a) Would you expect the element P to be a donor or an acceptor defect in Si?
MSE 200A Survey of Materials Science Fall, 2008 Problem Set No. 2 Problem 1: At high temperature Fe has the fcc structure (called austenite or γiron). Would you expect to find C atoms in the octahedral
More informationCHAPTER 4 INTRODUCTION TO DISLOCATIONS. 4.1 A single crystal of copper yields under a shear stress of about 0.62 MPa. The shear modulus of
CHAPTER 4 INTRODUCTION TO DISLOCATIONS 4.1 A single crystal of copper yields under a shear stress of about 0.62 MPa. The shear modulus of copper is approximately. With this data, compute an approximate
More informationDefect in crystals. Primer in Materials Science Spring
Defect in crystals Primer in Materials Science Spring 2017 11.05.2017 1 Introduction The arrangement of the atoms in all materials contains imperfections which have profound effect on the behavior of the
More informationChapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.)
Chapter 12 Metals 12.1 Classification of Solids Covalent Ionic Molecular Metallic Solids Solids Solids Solids Molecular consist of molecules held next to each other by IMF s. Relatively low to moderate
More informationChapter 7: Dislocations and strengthening mechanisms
Chapter 7: Dislocations and strengthening mechanisms Introduction Basic concepts Characteristics of dislocations Slip systems Slip in single crystals Plastic deformation of polycrystalline materials Plastically
More informationFigure.1. The conventional unit cells (thick black outline) of the 14 Bravais lattices. [crystallographic symmetry] 1
[crystallographic symmetry] The crystallographic space groups. Supplementary to { 9.6:324} In the 3D space there are 7 crystal systems that satisfy the point (e.g., rotation, reflection and inversion)
More informationCME 300 Properties of Materials. ANSWERS Homework 2 September 28, 2011
CME 300 Properties of Materials ANSWERS Homework 2 September 28, 2011 1) Explain why metals are ductile and ceramics are brittle. Why are FCC metals ductile, HCP metals brittle and BCC metals tough? Planes
More informationCRYSTAL GEOMETRY. An Introduction to the theory of lattice transformation in metallic materials with Matlab applications. 8 courses of 2 hours
CRYSTAL GEOMETRY An Introduction to the theory of lattice transformation in metallic materials with Matlab applications Français Cours 0 : lundi 4 décembre 9h3011h30 Cours 1 : vendredi 8 décembre 9h3011h30
More informationStructure factors and crystal stacking
Structure factors and crystal stacking Duncan Alexander EPFLCIME 1 Contents Atomic scattering theory Crystal structure factors Close packed structures Systematic absences Twinning and stacking faults
More informationCH445/545 Winter 2008
CH445/545 Winter 2008 Assignment # 1  due 01/18/08 60 total points SHOW ALL WORKING FOR FULL CREDIT, ANSWERS WITHOUT WORKING WILL BE PENALIZED! 1. Text Ch. 1 # 2 "Calculate the size of the largest sphere
More informationStacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.
{ Stacking atoms together Crystal Structure Stacking Oranges Packing atoms together Long Range Order Crystalline materials... atoms pack in periodic, 3D arrays typical of: metals many ceramics some
More informationFIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro
FIRST MIDTERM EXAM Chemistry 465 1 March 2011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closedbook exam; no books, notes, other students, other student exams, or any
More informationSingleCrystal Plasticity
SingleCrystal Plasticity Eric M. Taleff, Department of Mechanical Engineering, Austin, TX 78712 October 10, 2005 SingleCrystal Plasticity p.1 Schmid Factor [uvw] σ applied λ θ (hkl) The relationship
More information(iii) Describe how you would use a powder diffraction pattern of this material to measure
Supplemental Problems for Chapter 5 100 45.29 Intensity, au 80 60 40 20 38.95 65.98 30 40 50 60 70 2!, 1) The figure above shows a schematic diffraction pattern for a cubic material, recorded with an Xray
More informationSolid State1 1) Ionic solids are characterised by 1) Good conductivity in solid state 2) High vapour pressure 3) Low melting point 4) Solubility in polar solvents 2) Three metals X, Y and Z are crystallised
More informationEngineering materials
1 Engineering materials Lecture 2 Imperfections and defects Response of materials to stress 2 Crystalline Imperfections (4.4) No crystal is perfect. Imperfections affect mechanical properties, chemical
More informationSolids. The difference between crystalline and noncrystalline materials is in the extent of ordering
Chapter 3 The Structure t of Crystalline Solids The difference between crystalline and noncrystalline materials is in the extent of ordering Both materials have the same composition but one is ordered
More informationReview of Metallic Structure
Phase Diagrams Understanding the Basics F.C. Campbell, editor Copyright 2012 ASM International All rights reserved www.asminternational.org Appendix A Review of Metallic Structure The word metal, derived
More informationDiffraction Basics. The qualitative basics:
The qualitative basics: Diffraction Basics Coherent scattering around atomic scattering centers occurs when xrays interact with material In materials with a crystalline structure, xrays scattered in
More informationTopic 21: Lattice and Basis Kittel Pages: 29
Topic 21: Lattice and Basis Kittel Pages: 29 Summary: We begin our introduction of crystal structure by defining a few terms. The first is translational symmetry which explains the periodicity of a crystal.
More information1.10 Close packed structures cubic and hexagonal close packing
1.9 Description of crystal structures The most common way for describing crystal structure is to refer the structure to the unit cell. The structure is given by the size and shape of the cell and the position
More informationCrystallographic orientation
Crystallographic orientation Orientations and misorientations Orientation (g): The orientation of the crystal lattice with respect to some reference frame; usual a frame defined by the processing or sample
More informationIMPERFECTIONSFOR BENEFIT. Subtopics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface
IMPERFECTIONSFOR BENEFIT Subtopics 1 Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IDEAL STRENGTH Ideally, the strength of a material is the force necessary
More informationChapter 12 The Solid State The Structure of Metals and Alloys
Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks longrange
More informationBasics of XRD part I. 1 KIT 10/31/17. Name of Institute, Faculty, Department. The Research University in the Helmholtz Association
Basics of XRD part I Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 KIT 10/31/17 The Research University in the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu Overview
More informationMovement of edge and screw dislocations
Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)
More informationMaterials Science. Imperfections in Solids CHAPTER 5: IMPERFECTIONS IN SOLIDS. Types of Imperfections
In the Name of God Materials Science CHAPTER 5: IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... What are the solidification mechanisms? What types of defects arise in solids? Can the number and type of defects
More information