STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE"

Transcription

1 STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

2 Chapter Outline Determination of crystal properties or properties of crystalline materials. Crystal Geometry! Crystal Directions! Linear Density of atoms! Crystal Planes! Planar Density of Atoms

3 Crystalline Geometry Determination of crystal properties or properties of crystalline materials is based on crystal geometry. Crystal geometry is described by means of MİLLER İNDECES. 1. Crystal Directions Many properties of crystals change with crystal directions. In a space lattice there are infinite number of parallel planes.

4 Crystalline Geometry 1. Crystal Directions A vector starting from the origin and ending at a corner of the next unit cell is used to describe directions. The components of this vector on each axis are described in terms of lattice constant to obtain the smallest possible whole number of sequence as [hkl].

5 Crystalline Geometry 1. Miller İndeces of the Directions z (x,y,z) Direction İndeces Line 1 has a,0,0 [100] 6 5 x 4 1 a 3 a a Line has a,a,0 [110] Line 3 has a,a,a [111] Line 4 has a,0,a [10] y Line 5 has a,-a,0 [1ī0] Line 6 has 0,-a,a [0ī] Ī

6 Example: Draw the following direction vectors in a cubic unit cells. z [011] From Miller İndeces [hkl], find the Position Coordinates (hkl). a) [010] & [011] b) [11] & [11] x y c) [ī10] & [11ī] & [1ī0] d) [131] & [11] & [130]

7

8 Linear Density of Atoms The spacing of atoms in a crystal lattice changes with respect to direction. The linear density (LD) of atoms affects certain properties. Linear Density [ hkl] # of atoms length of the direction

9 FCC Linear Density of Atoms ex: linear density of Al in [110] direction. a= nm

10 Linear Density of Atoms In a lattice system, equivalent directions form a family which is designated by hkl. For example in a cubic cell, 100 is composed of [100], [010], [001] Cubic edge directions collectively. z x [001] [100] [010] y 111 = [111], [ī 11], [1 ī 1], [11 ī], [ī ī ī] cubic body diagonals. 110 = [110], [1ī 0], [ī 10], [ī ī 0] cubic face diagonals.

11 Linear Density of Atoms For certain calculations, the angle between two directions may be necessary. Cos ( h 1 k h h 1 1 l 1 k 1 k )*( h l. Example: =? Between [110] & [111] directions in the cubic system. 1 l k l ) İs the angle between [h 1 k 1 l 1 ] & [h k l ] Cos 1*11*1 0*1 35, 3 (1 1 0 )*(1 1 1 ) 6

12 Crystal Planes A crystal contains planes of atoms, and these planes influence the properties and behaviour of crystals. Shear may occur between neighboring planes, permitting the crystal to shear and conferring ductility in metals. If the bond between planes is weak, they may apart from each other thus failure occurs. Then it is necessary to identify planes in crystal structures. Such identification is carried out by means of Miller İndeces..

13 Crystal Planes: Miller İndeces Miller Indices (hkl) is a specific crystallographic plane {hkl} is a family of planes with each one ahving the same atomic arrangement Determination of Miller İndeces (MI) Determine values where plane intercepts x,y,z axes Take reciprocals of intercepts. Put the resultants over their lowest common denominators The numerators then give the required indeces, i.e., (hkl)

14 Crystal Planes: Miller Indeces abc Plane Intercepts = 1, 1, Reciprocals = 1/1, 1/1, 1/ L.C.D = 1/1, 1/1, 0/1 MI = (110) abc Plane Intercepts = 1/,, Reciprocals = 1/1/, 1/, 1/ =, 0, 0 L.C.D = /, 0/, 0/ MI = (00) or (100)

15 Crystal Planes: Miller İndeces

16 Crystal Planes: Miller İndeces

17 Family of planes All equivalent planes in a structure are conventionally represented by one set of Miller indices in curly brackets {}. The family of the {100} planes. The family of the {110} planes.

18 Octahedral plane in an FCC or BCC structure Octahedral planes are (111) type planes. A 3-fold symmetry axis is perpendicular to those planes. That axis is of the type < 111 >. The octahedral plane. Note that for the cubic systems that the [hkl] direction is always normal to the (hkl) plane. A crystal plane & its normal directions have the same Miller İndeces. e.g. The normal to the (001) plane is [001] direction.

19 PLANAR DENSITY When slip occurs under stress, it takes place on the planes on which the atoms are most densely packed. Planar Density, hkl) Example: FCC unit cell ( # of atoms Area of plane z δ (100) = 4*1/4+1 = a a 1 a = 4 r δ (100) = 4r x (100) a y

20 Example: [100] of cubic unit cell δ [100] = 1/a a Example: Calculate planar density of the face plane (100) and linear density on the face diagonal [011] of an FCC structure. a 0 (100) [011] (100) [011] a a0 a 0 0

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids Dr. Coates Learning Objectives I 1. Describe difference in atomic/molecular structure between crystalline/noncrystalline

More information

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1

CHAPTER 3. Crystal Structures and Crystal Geometry 3-1 CHAPTER 3 Crystal Structures and Crystal Geometry 3-1 The Space Lattice and Unit Cells 3-2 Atoms, arranged in repetitive 3-Dimensional pattern, in long range order (LRO) give rise to crystal structure.

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space.

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space. CRYSTAL LATTICE How to form a crystal? 1. Define the structure of the lattice 2. Define the lattice constant 3. Define the basis Defining lattice: Mathematical construct; ideally infinite arrangement of

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Outline: Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Review (example with square lattice) Lattice: square,

More information

Energy and Packing. Materials and Packing

Energy and Packing. Materials and Packing Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Chapter 3 Structure of Crystalline Solids

Chapter 3 Structure of Crystalline Solids Chapter 3 Structure of Crystalline Solids Crystal Structures Points, Directions, and Planes Linear and Planar Densities X-ray Diffraction How do atoms assemble into solid structures? (for now, focus on

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples UNIT V CRYSTAL PHYSICS PART-A Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent

More information

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith

Twins & Dislocations in HCP Textbook & Paper Reviews. Cindy Smith Twins & Dislocations in HCP Textbook & Paper Reviews Cindy Smith Motivation Review: Outline Crystal lattices (fcc, bcc, hcp) Fcc vs. hcp stacking sequences Cubic {hkl} naming Hcp {hkil} naming Twinning

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods

Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods Lectures on: Introduction to and fundamentals of discrete dislocations and dislocation dynamics. Theoretical concepts and computational methods Hussein M. Zbib School of Mechanical and Materials Engineering

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution 3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices

More information

ENGINEERING MATERIALS LECTURE #4

ENGINEERING MATERIALS LECTURE #4 ENGINEERING MATERIALS LECTURE #4 Chapter 3: The Structure of Crystalline Solids Topics to Cover What is the difference in atomic arrangement between crystalline and noncrystalline solids? What features

More information

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence

Impurities in Solids. Crystal Electro- Element R% Structure negativity Valence 4-4 Impurities in Solids 4.4 In this problem we are asked to cite which of the elements listed form with Ni the three possible solid solution types. For complete substitutional solubility the following

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Symmetry in crystalline solids.

Symmetry in crystalline solids. Symmetry in crystalline solids. Translation symmetry n 1,n 2,n 3 are integer numbers 1 Unitary or primitive cells 2D 3D Red, green and cyano depict all primitive (unitary) cells, whereas blue cell is not

More information

Lecture # 11 References:

Lecture # 11 References: Lecture # 11 - Line defects (1-D) / Dislocations - Planer defects (2D) - Volume Defects - Burgers vector - Slip - Slip Systems in FCC crystals - Slip systems in HCP - Slip systems in BCC Dr.Haydar Al-Ethari

More information

Chapter 3: Structures of Metals & Ceramics

Chapter 3: Structures of Metals & Ceramics Chapter 3: Structures of Metals & Ceramics School of Mechanical Engineering Professor Choi, Hae-Jin Chapter 3-1 Chapter 3: Structures of Metals & Ceramics ISSUES TO ADDRESS... How do atoms assemble into

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

CRYSTAL GEOMETRY. An Introduction to the theory of lattice transformation in metallic materials with Matlab applications. 8 courses of 2 hours

CRYSTAL GEOMETRY. An Introduction to the theory of lattice transformation in metallic materials with Matlab applications. 8 courses of 2 hours CRYSTAL GEOMETRY An Introduction to the theory of lattice transformation in metallic materials with Matlab applications Français Cours 0 : lundi 4 décembre 9h30-11h30 Cours 1 : vendredi 8 décembre 9h30-11h30

More information

CH445/545 Winter 2008

CH445/545 Winter 2008 CH445/545 Winter 2008 Assignment # 1 - due 01/18/08 60 total points SHOW ALL WORKING FOR FULL CREDIT, ANSWERS WITHOUT WORKING WILL BE PENALIZED! 1. Text Ch. 1 # 2 "Calculate the size of the largest sphere

More information

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model. { Stacking atoms together Crystal Structure Stacking Oranges Packing atoms together Long Range Order Crystalline materials... atoms pack in periodic, 3D arrays typical of: -metals -many ceramics -some

More information

Chapter 8: Molecules and Materials

Chapter 8: Molecules and Materials Chapter 8: Molecules and Materials Condensed Phases - Solids Bonding in Solids Metals Insulators Semiconductors Intermolecular Forces Condensed Phases - Liquids Carbon There are three forms of the element

More information

Single-Crystal Plasticity

Single-Crystal Plasticity Single-Crystal Plasticity Eric M. Taleff, Department of Mechanical Engineering, Austin, TX 78712 October 10, 2005 Single-Crystal Plasticity p.1 Schmid Factor [uvw] σ applied λ θ (hkl) The relationship

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Review of Metallic Structure

Review of Metallic Structure Phase Diagrams Understanding the Basics F.C. Campbell, editor Copyright 2012 ASM International All rights reserved www.asminternational.org Appendix A Review of Metallic Structure The word metal, derived

More information

Diffraction Basics. The qualitative basics:

Diffraction Basics. The qualitative basics: The qualitative basics: Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure, x-rays scattered in

More information

Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed.

Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed. Supplementary Figures Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed. Supplementary Figure 2: The original

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

1.10 Close packed structures cubic and hexagonal close packing

1.10 Close packed structures cubic and hexagonal close packing 1.9 Description of crystal structures The most common way for describing crystal structure is to refer the structure to the unit cell. The structure is given by the size and shape of the cell and the position

More information

Engineering Materials Department of Physics K L University

Engineering Materials Department of Physics K L University Engineering Materials Department of Physics K L University 1 Crystallography Bonding in solids Many of the physical properties of materials are predicated on a knowledge of the inter-atomic forces that

More information

Prof. Stephen A. Nelson Geology 211. Crystal Form, Zones, Crystal Habit. Crystal Forms

Prof. Stephen A. Nelson Geology 211. Crystal Form, Zones, Crystal Habit. Crystal Forms Prof. Stephen A. Nelson Geology 211 Tulane University Mineralogy Crystal Form, Zones, Crystal Habit This page last updated on 27-Aug-2002 Crystal Forms As stated at the end of the last lecture, the next

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

These metal centres interact through metallic bonding

These metal centres interact through metallic bonding The structures of simple solids The majority of inorganic compounds exist as solids and comprise ordered arrays of atoms, ions, or molecules. Some of the simplest solids are the metals, the structures

More information

Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry

Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry Symmetry and Anisotropy Structure, Properties, Sample and Material, Texture and Anisotropy, Symmetry Objectives Symmetry Operators & Matrix representation. Effect of crystal and sample symmetry

More information

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS MODULE ONE CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS CRYSTAL STRUCTURE Metallic crystal structures; BCC, FCC and HCP Coordination number and Atomic Packing Factor (APF) Crystal imperfections:

More information

Dislocations and Plastic Deformation

Dislocations and Plastic Deformation Dislocations and Plastic Deformation Edge and screw are the two fundamental dislocation types. In an edge dislocation, localized lattice distortion exists along the end of an extra half-plane of atoms,

More information

Crystal Structures of Interest

Crystal Structures of Interest rystal Structures of Interest Elemental solids: Face-centered cubic (fcc) Hexagonal close-packed (hcp) ody-centered cubic (bcc) Diamond cubic (dc) inary compounds Fcc-based (u 3 u,nal, ß-ZnS) Hcp-based

More information

Primitive cells, Wigner-Seitz cells, and 2D lattices. 4P70, Solid State Physics Chris Wiebe

Primitive cells, Wigner-Seitz cells, and 2D lattices. 4P70, Solid State Physics Chris Wiebe Primitive cells, Wigner-Seitz cells, and 2D lattices 4P70, Solid State Physics Chris Wiebe Choice of primitive cells! Which unit cell is a good choice?! A, B, and C are primitive unit cells. Why?! D, E,

More information

Fundamentals of Plastic Deformation of Metals

Fundamentals of Plastic Deformation of Metals We have finished chapters 1 5 of Callister s book. Now we will discuss chapter 10 of Callister s book Fundamentals of Plastic Deformation of Metals Chapter 10 of Callister s book 1 Elastic Deformation

More information

CHAPTER 2. Structural Issues of Semiconductors

CHAPTER 2. Structural Issues of Semiconductors CHAPTER 2 Structural Issues of Semiconductors OUTLINE 1.0 Energy & Packing 2.0 Materials & Packing 3.0 Crystal Structures 4.0 Theoretical Density, r 5.0.Polymorphism and Allotropy 6.0 Close - Packed Crystal

More information

11.3 The analysis of electron diffraction patterns

11.3 The analysis of electron diffraction patterns 11.3 The analysis of electron diffraction patterns 277 diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the slight buckling of the thin foil specimens all of which serve

More information

Part 1. References: Gray: Chapter 6 OGN: Chapter 19 and (24.1)

Part 1. References: Gray: Chapter 6 OGN: Chapter 19 and (24.1) Part 1 References: Gray: Chapter 6 OGN: Chapter 19 and (24.1) Aspects of Chemical Bonds Bonding in Chem 1a Atomic Structure Explain Atomic Line Spectra, Galaxies, etc. Shapes of Orbitals in Atoms for Bonding

More information

How to Make Micro/Nano Devices?

How to Make Micro/Nano Devices? How to Make Micro/Nano Devices? Science: Physics, Chemistry, Biology, nano/biotech Materials: inorganic, organic, biological, rigid/flexible Fabrication: photo/e-beam lithography, self-assembly, D/3D print

More information

Chapter 8 Deformation and Strengthening Mechanisms. Question: Which of the following is the slip system for the simple cubic crystal structure?

Chapter 8 Deformation and Strengthening Mechanisms. Question: Which of the following is the slip system for the simple cubic crystal structure? Chapter 8 Deformation and Strengthening Mechanisms Concept Check 8.1 Why? Question: Which of the following is the slip system for the simple cubic crystal structure? {100} {110} {100} {110}

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Bio5325 Fall Crystal Vocabulary

Bio5325 Fall Crystal Vocabulary Crystals and Crystallization Bio5325 Fall 2007 Crystal Vocabulary Mosaicity (mosaic spread) Protein crystals are imperfect, consisting of a mosaic of domains that are slightly misaligned. As a result,

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

C h a p t e r 4 : D e f e c t s i n C r y s t a l s

C h a p t e r 4 : D e f e c t s i n C r y s t a l s C h a p t e r 4 : D e f e c t s i n C r y s t a l s...perfection's a gift of The gods, few can boast they possess it - and most Of you, my dears, don't. - Ovid, The Art of Love Chapter 4: Defects in Crystals...

More information

Crystal Structure. Andrew R. Barron Carissa Smith. 1 Introduction. 2 Crystallography

Crystal Structure. Andrew R. Barron Carissa Smith. 1 Introduction. 2 Crystallography OpenStax-CNX module: m16927 1 Crystal Structure Andrew R. Barron Carissa Smith This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Introduction In any

More information

BRAGG SCATTERING FROM COLLOIDAL CRYSTALS

BRAGG SCATTERING FROM COLLOIDAL CRYSTALS BRAGG SCATTERING FROM COLLOIDAL CRYSTALS In this experiment you have the opportunity to study the structure of microscopic crystals made of polystyrene spheres in water. By measuring the angles at which

More information

Supplemental Exam Problems for Study

Supplemental Exam Problems for Study 3.091 OCW Scholar Self-Asessment Crystalline Materials Supplemental Exam Problems for Study Solutions Key 3.091 Fall Term 2007 Test #2 page 2 Problem #1 z z y y x x (a) Using proper crystallographic notation

More information

X-ray diffraction and structure analysis Introduction

X-ray diffraction and structure analysis Introduction Teknillisen fysiikan ohjelmatyö X-ray diffraction and structure analysis Introduction Oleg Heczko 120 100 80 118 12-5 125 Ni-Mn-Ga (298K) SQRT(Intensity) 60 40 20 015 200 123 12-7 20-10 20,10 20-8 040

More information

X-RAY DIFFRACTIO N B. E. WARREN

X-RAY DIFFRACTIO N B. E. WARREN X-RAY DIFFRACTIO N B. E. WARREN Chapter 1 X-Ray Scattering by Atom s 1.1 Classical scattering by a free electron 1 1.2 Polarization by scattering 4 1.3 Scattering from several centers, complex representation

More information

Problem Set 2 Solutions

Problem Set 2 Solutions M 4733: Deformation and Fracture of ngineering Materials Spring 00 Problem Set Solutions *) Prove that for the case of cubic crystals the modulus of elasticity in any given direction may be given by the

More information

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p.

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. Preface p. xvii Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. 6 Content of the unit cell p. 7 Asymmetric

More information

Master examination. Metallic Materials

Master examination. Metallic Materials Master examination Metallic Materials 01.03.2016 Name: Matriculation number: Signature: Task Points: Points achieved: 1 13 2 4 3 3 4 6 5 6 6 3 7 4 8 9 9 6 10 9.5 11 8 12 8 13 10.5 14 4 15 6 Sum 100 Points

More information

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO Today the structure determinations etc are all computer -assisted It is instructive however for you to do a simple structure by hand Rocksalt Structure Quite common in nature KCl, NaCl, MgO 9-1 Typical

More information

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES ISSUES TO ADDRESS... How do atoms assemble into solid structures? (for now, focus on metals) How does the density of a material depend on its structure? When

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

3. Anisotropic blurring by dislocations

3. Anisotropic blurring by dislocations Dynamical Simulation of EBSD Patterns of Imperfect Crystals 1 G. Nolze 1, A. Winkelmann 2 1 Federal Institute for Materials Research and Testing (BAM), Berlin, Germany 2 Max-Planck- Institute of Microstructure

More information

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number:

Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Engineering 45: Properties of Materials Final Exam May 9, 2012 Name: Student ID number: Instructions: Answer all questions and show your work. You will not receive partial credit unless you show your work.

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Planar Defects in Materials. Planar Defects in Materials

Planar Defects in Materials. Planar Defects in Materials Classification of Defects in Solids: Planar defects: Stacking faults o {311} defects in Si o Inversion domain boundaries o Antiphase boundaries (e.g., super dislocations): analogous to partials but in

More information

NO NEGATIVE MARKINGS. SECTIONS A

NO NEGATIVE MARKINGS. SECTIONS A Application No. Department of Materials Science & Engineering, IIT Kanpur **********: Written Examination: ******* Examination: ********* Duration: 1 hour Maximum Marks: 60 Please read these instructions

More information

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres.

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres. HW#3 Louisiana Tech University, Chemistry 481. POGIL (Process Oriented Guided Inquiry Learning) Exercise on Chapter 3. Metals and Alloys. Why? Metals What is the structure of a metallic solid? What is

More information

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p.

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. 7 Crystallographic Planes, Directions, and Indices p. 8 Crystallographic

More information

Chapter 2 Grain Boundaries: Description, Structure and Thermodynamics

Chapter 2 Grain Boundaries: Description, Structure and Thermodynamics Chapter 2 Grain Boundaries: Description, Structure and Thermodynamics Grain boundary in a solid crystalline material is a region separating two crystals (grains) of the same phase. These two grains differ

More information

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation

ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation ENGN2340 Final Project Computational rate independent Single Crystal Plasticity with finite deformations Abaqus Umat Implementation Anastasia Tzoumaka Fall 2017 Intorduction: Single crystals, are monocrystalline

More information

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials Grain Boundaries 1 Point Defects 2 Point Defects A Point Defect is a crystalline defect associated with one or, at most, several atomic sites. These are defects at a single atom position. Vacancies Self-interstitials

More information

Semiconductor Very Basics

Semiconductor Very Basics Semiconductor Very Basics Material (mostly) from Semiconductor Devices, Physics & Technology, S.M. Sze, John Wiley & Sons Semiconductor Detectors, H. Spieler (notes) July 3, 2003 Conductors, Semi-Conductors,

More information

Mobility laws in dislocation dynamics simulations

Mobility laws in dislocation dynamics simulations Materials Science and Engineering A 387 389 (2004) 277 281 Mobility laws in dislocation dynamics simulations Wei Cai, Vasily V. Bulatov Lawrence Livermore National Laboratory, University of California,

More information

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10

Dislocations & Materials Classes. Dislocation Motion. Dislocation Motion. Lectures 9 and 10 Lectures 9 and 10 Chapter 7: Dislocations & Strengthening Mechanisms Dislocations & Materials Classes Metals: Disl. motion easier. -non-directional bonding -close-packed directions for slip. electron cloud

More information

What is a crystal? Historic definition before the advent of crystallography. - A material with a regularly repeating structural motif

What is a crystal? Historic definition before the advent of crystallography. - A material with a regularly repeating structural motif What is a crystal? Historic definition before the advent of crystallography - A solid with well-defined faces Crystallographic definition - A material with a regularly repeating structural motif The strict

More information

SOLID-STATE STRUCTURE.. FUNDAMENTALS

SOLID-STATE STRUCTURE.. FUNDAMENTALS SOLID-STATE STRUCTURE.. FUNDAMENTALS Metallic Elements & Sphere Packing, Unit Celis, Coordination Number, Ionic Structures Stoichiometry PRELAB ASSIGNMENT Properties of Shapes & Patterns following question

More information

6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations

6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations C. Epitaxial Growth 6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations M. Rickart, A.R. Frank, J. Jorzick, Ch. Krämer, S.O.

More information

Introduction to Dislocations

Introduction to Dislocations Introduction to Dislocations This page intentionally left blank Introduction to Dislocations Fifth Edition D. Hull and D. J. acon Department of Engineering, Materials Science and Engineering, University

More information

Steps in solving a structure. Diffraction experiment. Obtaining well-diffracting crystals. Three dimensional crystals

Steps in solving a structure. Diffraction experiment. Obtaining well-diffracting crystals. Three dimensional crystals Protein structure from X-ray diffraction Diffraction images: ciprocal space Protein, chemical structure: IALEFGPSLKMNE Conformation, 3D-structure: CRYST1 221.200 73.600 80.900 90.00 90.00 90.00 P 21 21

More information

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 5 X ray diffraction

AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 5 X ray diffraction 1 AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 5 X ray diffraction Prof YU Kin Man E-mail: kinmanyu@cityu.edu.hk Tel: 3442-7813 Office: P6422 Lecture 5: Outline Review on crystallography

More information

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilmenau.de thomas.hannappel@tu-ilmenau.de http://www.tu-ilmenau.de/nanostruk/ Solid State Structure of Semiconductor Semiconductor manufacturing

More information

PHYSICAL ELECTRONICS(ECE3540) Brook Abegaz, Tennessee Technological University, Fall 2013

PHYSICAL ELECTRONICS(ECE3540) Brook Abegaz, Tennessee Technological University, Fall 2013 PHYSICAL ELECTRONICS(ECE3540) Brook Abegaz, Tennessee Technological University, Fall 2013 1 Chapter 1 The Crystal Structure of Solids Physical Electronics: Includes aspects of the physics of electron movement

More information

Strengthening Mechanisms

Strengthening Mechanisms Strengthening Mechanisms The ability of a metal/ alloy to plastically deform depends on the ability of dislocations to move. Strengthening techniques rely on restricting dislocation motion to render a

More information

Metallurgy 101 (by popular request)

Metallurgy 101 (by popular request) Metallurgy 101 (by popular request) Metals are crystalline materials Although electrons are not shared between neighboring atoms in the lattice, the atoms of a metal are effectively covalently bonded.

More information

Orientation / Texture Polyethylene films

Orientation / Texture Polyethylene films Application Note PT-002 Orientation / Texture Polyethylene films Polyethylene (PE) film is one of the most commonly used polymeric products and orientation measurements of this material are of great interest.

More information

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. A.(16) An electrochemical cell is prepared with a strip of manganese metal dipping in to a 1.0 M MnSO 4 solution

More information

CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES. Sarah Lambart

CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES. Sarah Lambart CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES Sarah Lambart RECAP CHAP. 1 Mineral: naturally occurring (always) a structure and a composition that give it defined macroscopic properties (always)

More information

Formability and Crystallographic Texture in Novel Magnesium Alloys

Formability and Crystallographic Texture in Novel Magnesium Alloys Formability and Crystallographic Texture in Novel Magnesium Alloys Carlos Soto, Dr. Pnina Ari-Gur, Andreas, Quojo Quainoo, Dr. Betsy Aller, Dr. Andrew Kline Western Michigan University Abstract By looking

More information

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014 An Introduction to X-Ray Powder Diffraction credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014 LATTICE ARRAYS AND BRAVAIS LATTICES Crystalline materials differ from amorphous materials

More information

Donald Neamen 물리전자 / 김삼동 1-1

Donald Neamen 물리전자 / 김삼동 1-1 An Introduction to Semiconductor Devices Donald Neamen Images and illustrations from supplements of An Introduction to Semiconductor Devices, 4 th Ed., Mc Graw Hill were used for this lecture materials.

More information

Bulk Silicon Micromachining

Bulk Silicon Micromachining Bulk Silicon Micromachining Micro Actuators, Sensors, Systems Group University of Illinois at Urbana-Champaign Outline Types of bulk micromachining silicon anisotropic etching crystal orientation isotropic

More information