WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering

Size: px
Start display at page:

Download "WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering"

Transcription

1 WF637 A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering Low viscosity and high tacking power stabilize ball holding force and ensures excellent solder wettability Easy to wash out water-soluble flux which can be used for Pb-free reflow soldering at 25 C Prevents and inhibits contamination of reflow ovens with low-volatile flux Mounts solder balls with good squeezing property and ball holding force Solder ball Suction head Suction head Suction head Suction head Suction head Suction head Flux Flux printing Flux transfer Ball mounting Ball fusion and bonding Package Package Washing with water within 8 hours after mounting can remove flux residue Residue Washed after h Washed after 4h Washed after 8h Washed after 2h No flux residue after washing with warm water at 4 C Excellent wettability even on Cu-OSP PBC Washing with water No flux residue WF-637 Conventional flux Low-volatile flux inhibits contamination of reflow ovens Residue (%) 5 Low-volatile flux WF-637 Low-residue flux Reflow temperature ( C) 25 Residue-free flux TaiSemi4-E

2 Joint Protect Flux JPK8 Flux residue reinforces solder joints Flux residue improves joint strength by approx. 5% Even without cleaning, volatile components do not suppress a good underfill injection property Flux residue prevents cracks during long-term temperature cycle tests Process example JPK8 JPK8 JPK8 Flux film formation Dipping Transfer JPK8 residue Solder Ball JPK8 Mount Reflow Underfill injection Join by transfer and reflow and inject underfill without cleaning Maintains good adhesion with acid anhydride-based underfill agents Results of a temperature cycle test Ball diameter:.3 mm Temperature cycle: -4. C /3 min. 25 C/3 min. Flux residue reinforces joints, and a low amount of volatile components does not contaminate joints Result of a JEDEC Level 3 moisture sensitivity test Before After Initial stage After 25 cycles After 5 cycles Flux residue reinforces joints and increases joint strength by approx. 5% 6 Flux residue JEDEC Level 3; 3 /6%RH 96h Maintains a good underfill injection property regardless of the transfer amount Comparison of joint strength after high temperature exposure Strenbth (N) JPK8 Normal flux Ball diameter Test speed Test height :.3mm : 3um/s 2 Storage time at 5 C (h) Flux residue reinforces joints and prevents cracks : 5um Transfer time : 5msec Transfer time : 25msec Small Result of a temperature cycle test JPK8 JPK8 Flux residue Transfer time : msec Large Normal flux Cracks Temperature cycle -4 C 25 C/after cycles TaiSemi4-2E

3 NRF SERIES Realization of Highly Reliable Mounting with No-Residue / No-Cleaning Halogen-free and no-residue flux keeps residue level at % or lower Maintains excellent solder wettability under a rapid-heating profile Highly compatible with under-filling materials; leaves no void Successful development of halogen-free flux with no-residue TGA evaluation result TG[%] Time[sec] Post reflow solder ball with no flux NRF-S3 NRF-S4 5 temp(degc) 5 Temp[degC] Delivers excellent solder wettability under a rapid-heating profile Evaluation method SAC35 Copper plate 6µm NRF 99% or more flux Rapid-heating Copper plate µm The improved product offers even better wetting extendability than conventional product It s measured 4 times per each bump, and they are averaged. Evaluation results 2 Solder spread [um] Conventional product NRF-S3 NRF-S4 NRF-S3 Flux NRF-S4 Highly compatible even with under-filling materials; no formation of delamination or voids Cross section picture Solder Under -filling X-ray void check Heating profile (TCB process) 3 25 Temp[degC] There is no delamination and void. Compatibility is good. There is no void after flow UFalso after cure Time[sec] JPCA4-3E

4 LAS-/OZ63-BPS ser. Form 2µm-pitch bumps with Φ4μm alloy powder Excellent sticking characteristic forms fine bumps in each process Realizes excellent melting characteristic even when Type 7 or finer powder Good solder wettability enables bump formation with fewer voids Trend towards fine pitch Forms 2 µm pitch bumps with φ4µm alloy powder Metal mask Type 7 (φ to μm) Type 7 or finer (φ to 6 μm) Opening size Solder Mask opening size Narrower and thinner Pitch sizes and bump formation in various supplying methods 2 µm pitch printing Forms good bumps even when using paste with fine powder because of excellent melting property Open squeegee method Cartridge method Dry film method Rolling Movement Movement Rolling Movement Stencil Pressurization Dry film Type6 6 mm pitch or more Type7 to 8 mm pitch Type 7 or finer 9 to 5 mm pitch Excellent flux prevents heat sags and forms good bumps After printing Bump formation after reflow Uniquely developed flux prevents oxidation Conventional product Preheating 8 C-3min Even though fine powder, still has good wettability and forms bumps with fewer voids Conventional product BPS series Preheating 8 C-3min BPS series TaiSemi4-4E

5 -NRB7 Void-free soldering with residue-free paste Vacuum reflow oven SVR-625GT realizes void-free and residue-free soldering Achieves highly reliable soldering with residue-free and no-clean solder paste No cleaning liquid reduces environmental burden and realizes lower price Achieves void-free soldering of power devices with the vacuum reflow oven SVR-625GT Void area ratio % Paste: -NRB7 The void area ratio is decreased to % by controlling the degree of vacuum Residue-free and excellent wettability even with N 2 reflow oven General-purpose paste Residue-free = Residue ratio is 5% or less (defined by SMIC) No vacuum Degree of vacuum (Pa) Residue-free paste Changing heat-evaporating materials decreases the flux residue ratio to 5% or less and realizes no-clean solder paste Low-volatile flux Oxygen density: 5 ppm or less Residue (%) 5 Reflow temperature ( ) Residue-free mounting of fine pitch microscopic components made possible with Type 5 powder and NRB7H 25 Low-residue flux Residue-free flux NRB7 φ2 µm dot printing part 5 -type chip component No interference with repletion of underfill in BGA mounting ø2 µm dot printing part.4 mm pitch part 63 -type component TaiSemi4-5E

6 LS72V Series Low-Ag/Ag-free solder pastes with lower void Reduces voids by improving fluidity of flux during solder melting Reduces voids even in bottom surface electrode type components by improving solder wettability LS72V flux which can be used for low-ag/ag-free alloys Development of Ag-free/M773 alloy Price Lower prices M4 M47 M773 Main reason of void formation and the measure Bottom surface electrode 3.% Ag Appearance of QFN Although voids are tend to occur when bottom surface electrode type components such as QFN frequently, it can be reduced by LS72V Conventional product Achieves Ag-free while confrming reliability QFN Improvement M4.% Ag Sn-3.Ag-.5Cu Sn-.Ag-.7Cu-.6Bi-In Sn-.3Ag-.7Cu-.5Bi-Ni Sn-.Ag-.7Cu-.5Bi-Ni Void PWB Solder M47.3% Ag LS72V product % Ag The effect of LS72V is observed in suppressing void formation Solder paste M773 Voids are caused by reducing gas from residual flux and poor solder wettability Comparison of crack progression between Sn-Cu-Ni-Ge and M773 % Crack progression Approximately only 3% crack progression Joint strength improved with the addition of Bi and Ni (compared to % Ag material) Strength(N) Effect of Ni addition Cycle conditions: -4 to +25, after cycles Sn-Cu-Ni-Ge Evaluation using chip resistors -4 /3min +85 /3min M773 M773;Sn-Cu-Bi-Ni Sn-Cu-Ni-Ge ;SAC ,,2,4,6 Number of temperature cycle (Cycle) M773 Replacing Cu with Ni makes the construction of the bonding surface finer and thus increases strength Without Ni With Ni 5 Void area ratio (%) Conventional product LS72V Conventional product LS72V 4mm QFN 8mm QFN Reflow: time Reflow: 4times Surface treatment: Cu-OSP TaiSemi4-6E

7 PPS Achieves μm bump and 3μm pitch packaging No need for masking or positioning, thanks to transfer process Automatic ongoing production enabled by rolling Unlike plated coating, solder alloy structure can form bumps PPS structural diagram TaiSemi4-7E

8 Cu Core Ball Cu core ball facilitate 3D packaging and narrow-pitch mounting Ensures space to easily realize a highly-reliable component-built structure Enables narrow-pitch mounting that can be performed through Cu pillar mounting using existing equipment Promises high heat dissipation and electromigration countermeasures Ensures space through its multilayer structure with a Cu core Cu ball Ni plating Characteristics Inclination Electromigration Ensures space Heat dissipation PKG PKG PKG Solder ball Solder plating PCB PCB PCB Short Solder plating PKG PKG PKG Cu core ball Cu ball PCB PCB PCB Superior electromigration resistance Ensures appropriate space Cu has good thermal conductivity Cu core ball facilitate 3D packaging Cu core ball (spacer) Enables narrow-pitch mounting without short circuit risk with existing equipment Solder plating Cu plating Cu core ball Cu pillar mounting Cu core ball mounting Eliminates the plating processes required in Cu pillar mounting Drop test and temperature cycle test Drop test C-Cu M9 (conventional product) Temperature cycle test C-Cu M9 (conventional product) The Cu core ball ensure space to easily realize a highly-reliable component-built structure Cumulative Frequency Drop Number Realizes good drop resistance Cumulative Frequency Cycle Number Exhibits a temperature cycle equivalent to that of a conventional product TaiSemi4-9E

9 M758 A high-reliability WLCSP solder ball Forms bumps with high joint strength on wafer electrodes Good wettability on copper plating such wafer electrodes Packaged M758 has excellent thermal fatigue resistance M758 forms bumps having high joint strength on wafer electrodes Failure mode Failure Mode Shear tool Shear height Shear Good wettability on copper plating such wafer electrodes Testing method Flux Mode Mode2 Mode3 Mode4 Pad Solder Solder & Interface Interface The failure mode in every test is Mode 4: Interface failure Cu Plating Strength (N) Shear Strength SAC35 SAC45 M758 M758 forms bumps having high strength on the package level by the surface reforming effect of added Ni.3 Spreadability test result.2 Reflow oven (245 ) O₂;<2ppm Cu plating Length(mm)..9 Measured location Measured location Packaged M758 shows good results in temperature cycle test.8 SAC35 SAC45 M758 M758 has good wettability for Cu plated package 99.9 TCT 99.9 Drop WLCSP : Size 7 x 7mm Product Name Composition Melting Point (%) S/F : Cu Note SAC Pb-free Standard M7 SAC M Suitable material for WLP Accumulation rate.% Accumulation rate.%,,,, Cycle number Drop number M758 has excellent thermal fatigue resistance due to solid solution strengthening with Bi added compared to conventional products, such as SAC35 and SAC45. Also, M758 has drop impact resistance equivalent to or more than that of conventional products TaiSemi4-E

10 M77 Simultaneously realizes high thermal fatigue resistance and drop impact reliability Solves problems with contrary demands by means of technology controlling the separation strengthening and interface response Excellent affinity with all kinds of surface treatment materials (Cu, Ni, Au) Optimized for mobile devices such as smart phones and in-vehicle ball packaging Cumulative failure rate (%) Evaluation on Cu-OSP PCB 99.9 Drop impact reliability (Cu-OSP PCB) M6 M77 M6 Number of drops (times) Evaluation on electrolytic Ni/Au plated PCB Cumulative failure rate (%) 99.9 Thermal fatigue resistance (Cu-OSP PCB) M6 M6 M77 Number of cycles (cycles) Material structures M6 Interface Surface Ni M6 Ni Drop impact reliability (electrolytic Ni/Au plated PCB) 99.9 Thermal fatigue resistance (electrolytic Ni/Au plated PCB) 99.9 Cumulative failure rate (%) M6 M77 M6.. Number of drops (times) Cumulative failure rate (%) M6 M6 M77 Number of cycles (cycles) M77 Ni Material selection according to purpose and application Drop impact reliability Thermal fatigue resistance M6 M6 M77 Results from relative evaluation with as basis. Focus on thermal fatigue resistance: M6 Focus on drop impact reliability : M6 Satisfies both characteristics in a reliable manner: M77 TaiSemi4-E

11 M6 M6 solder ball with high drop impact resistance For products with high risk of being dropped, such as mobile devices Solder balls with excellent drop impact resistance Accommodates fine pitch connections, high density connections, and high-quality packaging Accommodates every type of surface treatment material Composition µ Product name Alloy composition Melting temperature( ) Solid phase Liquid phase Aims to achieve the stress absorption effect of bulk solder through material softening 2 Vickers hardness (.49 N/3 sec) Eutectic phase (Ag 3 Sn Cu 6 Sn 5 compound) Sn phase Hard Strength µ The year 23 The year % Concentration of stress is avoided through property modification of the joint interface by adding elements and optimizing the amount to be added. Schematic diagram of the joint process PKG Side(Cu,Ni/Au etc..) Sn PKG Side(Cu,Ni/Au etc..) Soft PKG Side(Cu,Ni/Au etc..) Ag content : % Sn-.Ag Low Ag concentration High Sn-3.Ag Fracture surface observation Electrolytic Ni/Au After drops Cu-OSP After 2 drops Electroless Ni/Pd/Au After 5 drops Cu Ni Diffusion velocity (vector) Cu(PCB Side) Cu(PCB Side) Cu(PCB Side) (Sn-3.Ag-.5Cu) Large diffusion layer Reflow Thick diffusion layer Cooling M6(Sn-.Ag-.75Cu-.7Ni) M6 M6 Electrolytic Ni/Au After 7 drops Cu-OSP After 2 drops Electroless Ni/Pd/Au After 33 drops Drop test result Thick diffusion layer M6 Thin and smooth diffusion layer The diffusion layer has been made thin, fine and smooth by adding Ni. fractures at the joint interface, and M6 fractures within the bulk solder Surface treatment: electrolytic Ni/Au PKG surface treatment: Cu-OSP PKG surface treatment: electroless Ni/Pd/Au Cumulative failure (t)(%) Cumulative failure InIn (/[-F(t)]) Cumulative failure (t)(%) Cumulative failure InIn (/[-F(t)]) Cumulative failure (t)(%) Cumulative failure InIn (/[-F(t)]) Drop Number Drop Number Drop Number TaiSemi4-2E

12 Micro Solder Ball Realizes fine-pitch packaging with high reliability Balls with high sphericity and tight tolerance achieved by means of unique technique Materials can be selected according to purpose, thanks to line-up of all kinds of alloys Promise of high-quality connection, with balls that have few impurities and only a small dose of α Regions where processes are possible Bump height (μm) φ2 φ5 φ5 φ75 Solder ball Paste printing PPS (Precoated by Powder Sheets) 5 5 Pitch (μm) Various sizes from φ 3μm and structures are available Line-up Line-up of various sizes ranging from φ 3μm to φ μm Standard lead-free material Sn-3.Ag-.5Cu 27 Liquid Melting point ( ) Solid 22 φ 2μm solder ball has been achieved (reference exhibition) Excellent TCT reliability M6 Sn-2.3Ag-Ni-Co 22 Melting point ( ) Solid Liquid 222 Simultaneously realizes high thermal fatigue resistance and drop impact reliability M77 Sn-2.Ag-Cu-Ni 27 Melting point ( ) Solid Liquid 265 Silver/Lead-free soft solder M2 Sn-.7Cu 227 Melting point ( ) Solid Liquid 227 φ2μm The year 23 The year 23 Low melting point lead-free solder L2 Sn-58Bi 39 Melting point ( ) Solid Liquid 4 TaiSemi4-3E

LS720V Series. Comparison of crack progression between Sn-Cu-Ni-Ge and M773. Development of Ag-free/M773 alloy

LS720V Series. Comparison of crack progression between Sn-Cu-Ni-Ge and M773. Development of Ag-free/M773 alloy LS72V Series Low-Ag/Ag-free solder pastes with lower void Reduces voids by improving fluidity of flux during solder melting Reduces voids even in bottom surface electrode type components by improving solder

More information

Koki no-clean LEAD FREE solder paste. High-reliability Low Ag Lead Free Solder Paste

Koki no-clean LEAD FREE solder paste. High-reliability Low Ag Lead Free Solder Paste www.ko-ki.co.jp #514- Revised on Feb.4, 214 Koki no-clean LEAD FREE solder paste High-reliability Low Ag Lead Free Solder Paste S1XBIG58-M5-4 Product information S1XBIG SAC35 After -4/125ºC, 1 cycles This

More information

S3X58-M ICT Compatible Lead Free Solder Paste. Product Information. Koki no-clean LEAD FREE solder paste. Contents.

S3X58-M ICT Compatible Lead Free Solder Paste. Product Information. Koki no-clean LEAD FREE solder paste.   Contents. Koki no-clean LEAD FREE solder paste www.ko-ki.co.jp #53002 Revised on Mar. 3, 2015 ICT Compatible Lead Free Solder Paste Product Information Conventional Product Picture of ICT Checker Probe The product

More information

S3X58-G801. High Performance Low Voiding LF Solder Paste. Product Information. Koki no-clean LEAD FREE solder paste.

S3X58-G801. High Performance Low Voiding LF Solder Paste. Product Information. Koki no-clean LEAD FREE solder paste. www.ko-ki.co.jp #55001-3 First issue: Jan.13, 2017 Revised: Jun. 28, 2017 Koki no-clean LEAD FREE solder paste High Performance Low Voiding LF Solder Paste S3X58-G801 Product Information 0603R 0603R Disclaimer

More information

Composition/wt% Bal SA2 (SABI) Bal SA3 (SABI + Cu) Bal

Composition/wt% Bal SA2 (SABI) Bal SA3 (SABI + Cu) Bal Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive Takehiro Wada 1, Seiji Tsuchiya 1, Shantanu Joshi

More information

Ultralow Residue Semiconductor Grade Fluxes for Copper Pillar Flip-Chip

Ultralow Residue Semiconductor Grade Fluxes for Copper Pillar Flip-Chip Ultralow Residue Semiconductor Grade Fluxes for Copper Pillar Flip-Chip SzePei Lim (Presenter), Jason Chou, Maria Durham, and Dr. Andy Mackie Indium Corporation 1 Outline of Presentation Roadmaps and challenges

More information

Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate

Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate JAXA 25 rd Microelectronics Workshop Future Electronic Devices Technology in Cosmic Space and Electroless Ni/Pd/Au Plating for High Density Semiconductor Package Substrate November 2, 2012 Yoshinori Ejiri

More information

T/C stress resistant high reliability solder alloy SB6NX / SB6N. Patented by Panasonic

T/C stress resistant high reliability solder alloy SB6NX / SB6N. Patented by Panasonic T/C stress resistant high reliability solder alloy X / Patented by Panasonic Sn 3.5Ag 0.5Bi 6.0In 0.8Cu Sn 3.5Ag 0.5Bi 6.0In X & solder alloy X alloy is Panasonic patented Conventional (Sn3.5Ag0.5Bi6In)

More information

Hi-performance S3X58-M406

Hi-performance S3X58-M406 www.ko-ki.co.jp Ver. 42004.5 Prepared on Mar. 7, 2005 Koki no-clean LEAD FREE solder paste Hi-performance Product information 0.4mm pitch 0.3mm diameter This Product Information contains product performance

More information

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes Jason Chou and Sze Pei Lim Indium Corporation Agenda Company introduction Semiconductor assembly roadmap challenges Fine

More information

WS-575-C-RT. Halogen-Free Ball-Attach Flux PRODUCT DATA SHEET

WS-575-C-RT. Halogen-Free Ball-Attach Flux PRODUCT DATA SHEET -RT Halogen-Free Ball-Attach Introduction Indium Corporation s Ball-Attach -RT allows customers to use a completely halogen-free (NIA = no intentionally added halogens) single-step ball-attach process

More information

S3X48-M500C-5. Powerful Wetting Lead Free Solder Paste. Product information. Koki no-clean LEAD FREE solder paste. Contents.

S3X48-M500C-5. Powerful Wetting Lead Free Solder Paste. Product information. Koki no-clean LEAD FREE solder paste.   Contents. Koki no-clean LEAD FREE solder paste www.ko-ki.co.jp #50011E-0 Revised on JAN.22, 2013 Powerful Wetting Lead Free Solder Paste Product information This Product Information contains product performance

More information

Lead Free Soldering Technology

Lead Free Soldering Technology Lead Free Soldering Technology Chung-Ang University Young-Eui Shin Trend of Package Small, Light, High performance High speed, Large capacity High integrity, High density Comparison of package size 45mm

More information

Future Electronic Devices Technology in Cosmic Space and Lead-free Solder Joint Reliability

Future Electronic Devices Technology in Cosmic Space and Lead-free Solder Joint Reliability The 22nd Microelectronics Work Future Electronic Devices Technology in Cosmic Space and Lead-free Solder Joint Reliability Key Points (1) High Speed Solder Ball Shear Test (2) Relationship between Surface

More information

3D-WLCSP Package Technology: Processing and Reliability Characterization

3D-WLCSP Package Technology: Processing and Reliability Characterization 3D-WLCSP Package Technology: Processing and Reliability Characterization, Paul N. Houston, Brian Lewis, Fei Xie, Ph.D., Zhaozhi Li, Ph.D.* ENGENT Inc. * Auburn University ENGENT, Inc. 2012 1 Outline Packaging

More information

TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION. S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin

TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION. S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim

More information

Lead Free Solder for Flip Chip

Lead Free Solder for Flip Chip Lead Free Solder for Flip Chip Zhenwei Hou & R. Wayne Johnson Laboratory for Electronics Assembly & Packaging Auburn University 162 Broun Hall, ECE Dept. Auburn, AL 36489 USA 334-844-1880 johnson@eng.auburn.edu

More information

High-reliability Low-Ag Alloy

High-reliability Low-Ag Alloy http://www.ko-ki.co.jp #47002E 2009.8.18 Koki no-clean LEAD FREE solder paste High-reliability Low-Ag Alloy PAT. pend Product information Sn0.3Ag0.7Cu S01X7C- alloy After -40+125ºC 1500cycle This Product

More information

Specification Reflow soldering of SMD assemblies - Solder paste / lead-free

Specification Reflow soldering of SMD assemblies - Solder paste / lead-free Previous Edition Specification 2009-06 Class: Electrical technology Class No.:53 Reflow soldering of SMD assemblies - JED solder paste of lead-free alloy 842 Part name (for databases) Solder paste / lead-free

More information

Edge Bond Package joint reinforcement JU-120EB Product Information

Edge Bond Package joint reinforcement JU-120EB Product Information www.ko-ki.co.jp #55023 First issue on October 25, 2017 Revised on Koki Adhesive Edge Bond Package joint reinforcement Product Information BGA body Disclaimer This Product Information contains product performance

More information

ALPHA PoP33 Solder Paste NO-CLEAN, ZERO HALOGEN, LEAD-FREE SOLDER PASTE FOR PACKAGE ON PACKAGE ASSEMBLY

ALPHA PoP33 Solder Paste NO-CLEAN, ZERO HALOGEN, LEAD-FREE SOLDER PASTE FOR PACKAGE ON PACKAGE ASSEMBLY ALPHA PoP33 Solder Paste NO-CLEAN, ZERO HALOGEN, LEAD-FREE SOLDER PASTE FOR PACKAGE ON PACKAGE ASSEMBLY SM988-7 DESCRIPTION To meet the demand of high-density and memory/logic options for sophisticated

More information

Lead Free Surface Mount Technology. Ian Wilding BSc Senior Applications Engineer Henkel Technologies

Lead Free Surface Mount Technology. Ian Wilding BSc Senior Applications Engineer Henkel Technologies Lead Free Surface Mount Technology Ian Wilding BSc Senior Applications Engineer Henkel Technologies Overview of the Presentation First contact: Impact on the production operator Packaging Labelling Impact

More information

Challenges in Material Applications for SiP

Challenges in Material Applications for SiP Challenges in Material Applications for SiP Sze PeiLim Regional Product Manager for Semiconductor Products Indium Corporation Indium Corporation Materials Supplier: SMT solder pastes and fluxes Power semiconductor

More information

Low Melting Point Lead Free Solder Paste

Low Melting Point Lead Free Solder Paste www.ko-ki.co.jp #49005E Revised on Nov 17, 2011 Koki no-clean LEAD FREE solder paste Koki no-clean LEAD FREE solder paste Low Melting Point Lead Free Solder Paste TB48-M742 & Product information This Product

More information

ALPHA OM-5100 FINE PITCH SOLDER PASTE

ALPHA OM-5100 FINE PITCH SOLDER PASTE SM 797-7 ALPHA OM-5100 FINE PITCH SOLDER PASTE DESCRIPTION Cookson Electronics Assembly Material s ALPHA OM-5100, is a low residue, no-clean solder paste designed to maximize SMT line yields. The flux

More information

CHALLENGING NEW TECHNOLOGIES

CHALLENGING NEW TECHNOLOGIES T4AB58-M742 Koki no-clean LEAD FREE solder paste www.ko-ki.co.jp #49005-1 Revised on Sep. 30, 2014 Koki no-clean LEAD FREE solder paste Low Melting Point Lead Free Solder Paste T4AB58-M742 Product information

More information

DSP 863 (Sn42/Bi58) LEAD FREE HALOGEN FREE NO CLEAN SOLDER PASTE

DSP 863 (Sn42/Bi58) LEAD FREE HALOGEN FREE NO CLEAN SOLDER PASTE SN/AG/CU. 862 Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS SN/AG/CU. 862 Rev DSP 863 (Sn42/Bi58) LEAD FREE HALOGEN FREE NO CLEAN SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison,

More information

Optimizing Immersion Silver Chemistries For Copper

Optimizing Immersion Silver Chemistries For Copper Optimizing Immersion Silver Chemistries For Copper Ms Dagmara Charyk, Mr. Tom Tyson, Mr. Eric Stafstrom, Dr. Ron Morrissey, Technic Inc Cranston RI Abstract: Immersion silver chemistry has been promoted

More information

ROOM TEMPERATURE FAST FLOW REWORKABLE UNDERFILL FOR LGA

ROOM TEMPERATURE FAST FLOW REWORKABLE UNDERFILL FOR LGA As originally published in the SMTA Proceedings ROOM TEMPERATURE FAST FLOW REWORKABLE UNDERFILL FOR LGA Mary Liu, Ph.D., and Wusheng Yin, Ph.D. YINCAE Advanced Materials, LLC Albany, NY, USA wyin@yincae.com

More information

A. Feature Good wettability and antioxidation effect of flux

A. Feature Good wettability and antioxidation effect of flux A. Feature wettability and antioxidation effect of flux We have considered active temperature and persistence of flux, and selected activator newly. As results of this, J3-8843-KG has good wettability

More information

Composition/wt% Bal SA2 (SABI) Bal SA3 (SABI + Cu) Bal

Composition/wt% Bal SA2 (SABI) Bal SA3 (SABI + Cu) Bal Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive Takehiro Wada 1, Seiji Tsuchiya 1, Shantanu Joshi

More information

High-Reliability Lead-Free Solder Paste M705-GRN360-K-V. Senju Metal Industry Co.,Ltd. Senju Manufacturing (Europe) Ltd.

High-Reliability Lead-Free Solder Paste M705-GRN360-K-V. Senju Metal Industry Co.,Ltd. Senju Manufacturing (Europe) Ltd. Senju Metal Industry Co., Ltd. High-Reliability Lead-Free Solder Paste Manufacturer Senju Metal Industry Co.,Ltd. 23 Senju Hashido-cho, Adachi-Ku, Tokyo, Japan Phone: +81-33888-5156 Fax: +81-33870-3032

More information

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Vern Solberg STC-Madison Madison, Wisconsin USA Abstract The motivation for developing higher density IC packaging continues to be

More information

Characteristics of Solder Paste

Characteristics of Solder Paste Characteristics of Solder Paste Flow Solder paste is a viscous non-newtonian fluid, whose resistance to flow is not constant, and which exhibits shear thinning. This is an essential requirement for printing,

More information

High-Reliability Halogen Free Low Silver Lead-Free Solder Paste M40-LS720HF

High-Reliability Halogen Free Low Silver Lead-Free Solder Paste M40-LS720HF Senju Metal Industry Co., Ltd. High-Reliability Halogen Free Low Silver Lead-Free Solder Paste -LS720HF Manufacturer Senju Metal Industry Co.,Ltd. 23 Senju Hashido-cho, Adachi-Ku, Tokyo, Japan Phone: +81-33888-5156

More information

Material based challenge and study of 2.1, 2.5 and 3D integration

Material based challenge and study of 2.1, 2.5 and 3D integration 1 Material based challenge and study of 2.1, 2.5 and 3D integration Toshihisa Nonaka Packaging Solution Center R&D Headquarters Hitachi Chemical Co., Ltd., Sep. 8, 2016 Hitachi Chemical Co., Ltd. 2010.

More information

Ball shear strength and fracture mode of lead-free solder joints prepared using nickel nanoparticle doped flux

Ball shear strength and fracture mode of lead-free solder joints prepared using nickel nanoparticle doped flux Ball shear strength and fracture mode of lead-free solder joints prepared using nickel nanoparticle doped flux G. K. Sujan a, A. S. M. A. Haseeb a, *, Chong Hoe Jian b, Amalina Afifi a a Department of

More information

Optimizing Immersion Silver Chemistries For Copper

Optimizing Immersion Silver Chemistries For Copper Optimizing Immersion Silver Chemistries For Copper Ms Dagmara Charyk, Mr. Tom Tyson, Mr. Eric Stafstrom, Dr. Ron Morrissey, Technic Inc Cranston RI Abstract: Immersion silver chemistry has been promoted

More information

Lead Free No Clean Solder Paste 4900P Technical Data Sheet 4900P

Lead Free No Clean Solder Paste 4900P Technical Data Sheet 4900P Description MG Chemicals has developed a unique flux system designed specifically for high temperature lead free alloys. It provides the fluxing activity levels that promote thermal stability and prevents

More information

Flip Chip - Integrated In A Standard SMT Process

Flip Chip - Integrated In A Standard SMT Process Flip Chip - Integrated In A Standard SMT Process By Wilhelm Prinz von Hessen, Universal Instruments Corporation, Binghamton, NY This paper reviews the implementation of a flip chip product in a typical

More information

THE EFFECTS OF INTERNAL STRESSRS IN BGA Ni LAYER ON THE STRENGTH OF Sn/Ag/Cu SOLDER JOINT

THE EFFECTS OF INTERNAL STRESSRS IN BGA Ni LAYER ON THE STRENGTH OF Sn/Ag/Cu SOLDER JOINT THE EFFECTS OF INTERNAL STRESSRS IN BGA Ni LAYER ON THE STRENGTH OF Sn/Ag/Cu SOLDER JOINT C.H. Chien 1, * C.J. Tseng 1,2 T.P. Chen 1,3 1 Department of Mechanical and Electro-Mechanical Engineering, National

More information

T E C H N I C A L B U L L E T I N

T E C H N I C A L B U L L E T I N T E C H N I C A L B U L L E T I N SM1193 ALPHA CVP-390 SAC305- HIGH PERFORMANCE LEAD-FREE ALLOY SOLDER PASTE FOR AUTOMOTIVE ELECTRONICS DESCRIPTION CVP-390 SAC305 solder paste has been developed to provide

More information

DSP 875 (Sn/Ag/Cu) LEAD FREE NO CLEAN SOLDER PASTE

DSP 875 (Sn/Ag/Cu) LEAD FREE NO CLEAN SOLDER PASTE SN/AG/CU. 862 Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS SN/AG/CU. 862 Rev DSP 875 (Sn/Ag/Cu) LEAD FREE NO CLEAN SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison, IL 60101 630-628-8083

More information

Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes

Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes Effect of Process Variations on Solder Joint Reliability for Nickel-based Surface Finishes Hugh Roberts Atotech USA Inc., Rock Hill, SC, USA Sven Lamprecht, Gustavo Ramos and Christian Sebald Atotech Deutschland

More information

Typical Analysis Sn Ag Cu Pb Sb Bi In As Fe Ni Cd Al Zn Au

Typical Analysis Sn Ag Cu Pb Sb Bi In As Fe Ni Cd Al Zn Au TECHNICAL SPECIFICATIONS Physical Properties Solder Composition Qualitek Sn/Ag/Cu (Tin/Silver/Cu) Alloys are designed as a lead-free alternative for Sn/Pb alloys for electronics assembly operations. The

More information

Welcome to SMTA Brazil Chapter Brook Sandy-Smith Dr. Ron Lasky Tim Jensen

Welcome to SMTA Brazil Chapter Brook Sandy-Smith Dr. Ron Lasky Tim Jensen Welcome to SMTA Brazil Chapter 2013 Presented by Authors Ivan Castellanos Edward Briggs Brook Sandy-Smith Dr. Ron Lasky Tim Jensen Advantages / Concerns HP testing Mechanical properties New work Area ratio

More information

DSP 798LF (Sn/Ag/Cu) LEAD FREE WATER SOLUBLE SOLDER PASTE

DSP 798LF (Sn/Ag/Cu) LEAD FREE WATER SOLUBLE SOLDER PASTE LF217. 798LF Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS LF217. 798LF Rev DSP 798LF (Sn/Ag/Cu) LEAD FREE WATER SOLUBLE SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison, IL 60101

More information

DSP 699 (Sn63/Pb37) SUPER ACTIVITY- HALOGEN FREE NO CLEAN SOLDER PASTE

DSP 699 (Sn63/Pb37) SUPER ACTIVITY- HALOGEN FREE NO CLEAN SOLDER PASTE SN/AG/CU. 862 Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS SN/AG/CU. 862 Rev DSP 699 (Sn63/Pb37) SUPER ACTIVITY- HALOGEN FREE NO CLEAN SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison,

More information

DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE

DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE SN/AG/CU. 863 Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS SN/AG/CU. 863 Rev DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St.

More information

Australian Journal of Basic and Applied Sciences. Pb-Free Solder Ball Robustness Comparison under AC and TC Reliability Test

Australian Journal of Basic and Applied Sciences. Pb-Free Solder Ball Robustness Comparison under AC and TC Reliability Test AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Pb-Free Solder Ball Robustness Comparison under AC and TC Reliability Test 1,2 Tan Cai

More information

Murata Silicon Capacitors - XTSC 400µm NiAu finishing Assembly by Soldering High temperature silicon capacitor. Table of Contents

Murata Silicon Capacitors - XTSC 400µm NiAu finishing Assembly by Soldering High temperature silicon capacitor. Table of Contents Table of Contents Table of Contents...1 Introduction...2 Handling precautions and storage...2 Pad opening...3 Process Flow...5 Solder print material and stencil printing recommendations...6 Pick and Place...7

More information

Simulations and Characterizations for Stress Reduction Designs in Wafer Level Chip Scale Packages

Simulations and Characterizations for Stress Reduction Designs in Wafer Level Chip Scale Packages Simulations and Characterizations for Stress Reduction Designs in Wafer Level Chip Scale Packages by Ming-Che Hsieh STATS ChipPAC Taiwan Co. Ltd. Copyright 2013. Reprinted from 2013 International Microsystems,

More information

Material Selection and Parameter Optimization for Reliable TMV Pop Assembly

Material Selection and Parameter Optimization for Reliable TMV Pop Assembly Selection and Parameter Optimization for Reliable TMV Pop Assembly Brian Roggeman, David Vicari Universal Instruments Corp. Binghamton, NY, USA Roggeman@uic.com Martin Anselm, Ph.D. - S09_02.doc Lee Smith,

More information

An Innovative High Throughput Thermal Compression Bonding Process

An Innovative High Throughput Thermal Compression Bonding Process An Innovative High Throughput Thermal Compression Bonding Process Li Ming 2 September 2015 Outline Introduction Throughput improved TCB Process Liquid Phase Contact (LPC) bonding Flux-LPC-TCB under inert

More information

Low CTE / High Tg FR-4 with High Heat Resistance

Low CTE / High Tg FR-4 with High Heat Resistance Low CTE / High Tg FR-4 with High Heat Resistance Laminate: EM-827 Prepreg: EM-827B 1 Features Tg(DSC) > 170 Z direction CTE < 3.0% (50~260 ) High thermal degradation temperature: Td > 340 Excellent thermal

More information

EPOXY FLUX MATERIAL AND PROCESS FOR ENHANCING ELECTRICAL INTERCONNECTIONS

EPOXY FLUX MATERIAL AND PROCESS FOR ENHANCING ELECTRICAL INTERCONNECTIONS As originally published in the SMTA Proceedings. EPOXY FLUX MATERIAL AND PROCESS FOR ENHANCING ELECTRICAL INTERCONNECTIONS Neil Poole, Ph.D., Elvira Vasquez, and Brian J. Toleno, Ph.D. Henkel Electronic

More information

IPC -7095C Design and Assembly Process Implementation For BGAs

IPC -7095C Design and Assembly Process Implementation For BGAs IPC -7095C Design and Assembly Process Implementation For BGAs 1 Overview With the introduction of BGA components, things had to change: New design New assembly process New repair process New inspection

More information

MEPTEC Semiconductor Packaging Technology Symposium

MEPTEC Semiconductor Packaging Technology Symposium MEPTEC Semiconductor Packaging Technology Symposium Advanced Packaging s Interconnect Technology Process Shift and Direction October 23, 2014 Jay Hayes- Director of Business Development -Bumping and Flip

More information

Die Attach Materials. Die Attach G, TECH. 2U. TECHNICAL R&D DIV.

Die Attach Materials. Die Attach G, TECH. 2U. TECHNICAL R&D DIV. Die Attach Materials Die Attach G, TECH. 2U. TECHNICAL R&D DIV. 2 Topics 3 What it is X 5,000 X 10,000 X 50,000 Si Chip Au Plating Substrate Ag Resin 4 Current Products Characteristics H9890-6A H9890-6S

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

Henkel Pb-Free Soldering Technology

Henkel Pb-Free Soldering Technology Transitioning to a Pb-free Process Dr. Brian J. Toleno Americas Application Engineering Team Leader brian.toleno@us.henkel.com Henkel Technologies Marketplace - Alloy Selection Japan still a range of materials

More information

ALPHA PoP33 Solder Paste No-Clean, Zero Halogen, Lead-Free Solder Paste for Package on Package Assembly

ALPHA PoP33 Solder Paste No-Clean, Zero Halogen, Lead-Free Solder Paste for Package on Package Assembly DESCRIPTION To meet the demand of high-density and memory/logic options for sophisticated electronic devices, many assemblers are evaluating package on package (PoP) technology. PoP assemblies allow for

More information

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Zaheed S. Karim 1 and Jim Martin 2 1 Advanced Interconnect Technology Ltd. 1901 Sunley Centre, 9 Wing Yin Street, Tsuen Wan, Hong

More information

XTSC SiCap 400µm - NiAu finishing - Assembly by soldering

XTSC SiCap 400µm - NiAu finishing - Assembly by soldering General description This document describes the attachment techniques recommended by Murata* for their XTSC silicon capacitors on the customer substrates. This document is non-exhaustive. Customers with

More information

TAMURA PRODUCT INFORMATION. Pb-FREE SOLDER PAST TLF-SERIES. Characteristics of LFSOLDER TLF M is shown in Table 1 and Table 2.

TAMURA PRODUCT INFORMATION. Pb-FREE SOLDER PAST TLF-SERIES. Characteristics of LFSOLDER TLF M is shown in Table 1 and Table 2. 2005. 5 TAMURA PRODUCT INFORMATION Pb-FREE SOLDER PAST TLF-SERIES LFSOLDER TLF-204-111 LFSOLDER TLF-204-111M is Pb-free solder paste using Pb-free, spherical solder powder and special flux. As the paste

More information

M40 & M46. M40 & M46 SP series that enables maximum cost reduction

M40 & M46. M40 & M46 SP series that enables maximum cost reduction M40 & M46 M40 & M46 SP series that enables maximum cost reduction Achieves high quality with low silver content Achieves quality characteristics equivalent to those of the M705 series by using lower amounts

More information

BGA Package Underfilm for Autoplacement. Jan Danvir Tom Klosowiak

BGA Package Underfilm for Autoplacement. Jan Danvir Tom Klosowiak BGA Package Underfilm for Autoplacement Jan Danvir Tom Klosowiak NIST-ATP Acknowledgment Project Brief Microelectronics Manufacturing Infrastructure (October 1998) Wafer-Scale Applied Reworkable Fluxing

More information

Various Techniques for Reliability Estimation and Failure Analysis of Electronic Products and Components

Various Techniques for Reliability Estimation and Failure Analysis of Electronic Products and Components JFE No. 13 2006 8 p. 97 102 Various Techniques for Reliability Estimation and Failure Analysis of Electronic Products and Components BAN Mitsuyuki SHIMAUCHI Yutaka JFE JFE JFE X IC Pb Abstract: JFE Techno-Research

More information

Manufacturability and Reliability Impacts of Alternate Pb-Free BGA Ball Alloys. June 2007

Manufacturability and Reliability Impacts of Alternate Pb-Free BGA Ball Alloys. June 2007 Manufacturability and Reliability Impacts of Alternate Pb-Free BGA Ball Alloys Greg Henshall Michael Roesch Kris Troxel Helen Holder Jian Miremadi HP Global Engineering Services The information contained

More information

M705-GRN360 K-Series

M705-GRN360 K-Series Senju Metal Industry Co.,Ltd. High-Reliability Lead-Free Solder Paste M705-GRN360 K-Series Manufacturer Senju Metal Industry Co.,Ltd. 23 Senju Hashido-cho, Adachi-Ku, Tokyo, Japan Phone: +81-33888-5156

More information

EVALUATION OF HIGH RELIABILITY REWORKABLE EDGE BOND ADHESIVES FOR BGA APPLICATIONS

EVALUATION OF HIGH RELIABILITY REWORKABLE EDGE BOND ADHESIVES FOR BGA APPLICATIONS As originally published in the SMTA Proceedings. EVALUATION OF HIGH RELIABILITY REWORKABLE EDGE BOND ADHESIVES FOR BGA APPLICATIONS Fei Xie, Ph.D., Han Wu, Daniel F. Baldwin, Ph.D., Swapan Bhattacharya,

More information

LPSC SiCap 100µm NiAu finishing - Assembly by soldering

LPSC SiCap 100µm NiAu finishing - Assembly by soldering General description This document describes the attachment techniques recommended by Murata* for their LPSC silicon capacitors on the customer substrates. This document is non-exhaustive. Customers with

More information

DSP 798LF (Sn42/Bi58) LEAD FREE WATER SOLUBLE SOLDER PASTE

DSP 798LF (Sn42/Bi58) LEAD FREE WATER SOLUBLE SOLDER PASTE LF217. 798LF Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS LF217. 798LF Rev DSP 798LF (Sn42/Bi58) LEAD FREE WATER SOLUBLE SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison, IL 630-628-8083

More information

DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE

DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE SN/AG/CU. 863 Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS SN/AG/CU. 863 Rev DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St.

More information

CLAD MATERIAL ~ FINE CLAD is a solution for high density, low cost PWB.

CLAD MATERIAL ~ FINE CLAD is a solution for high density, low cost PWB. ~ CLAD MATERIAL ~ FINE CLAD is a solution for high density, low cost PWB. Principle of bonding technique Principle of bonding technique Step 1 Material A, B In vacuum Step 2 Surface activated treatment

More information

DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE

DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE SN/AG/CU. 863 Rev.A APPLICATION NOTES TECHNICAL SPECIFICATIONS 825HF RevB, 10/15 SN/AG/CU. 863 Rev DSP 825HF X-TREME ACTIVITY HALOGEN FREE LEAD FREE NO CLEAN SOLDER PASTE CORPORATE HEADQUARTERS USA: 315

More information

IMC Layers Formed with Various Combinations of Solders and Surface Finishes and Their Effect on Solder Joint Reliability

IMC Layers Formed with Various Combinations of Solders and Surface Finishes and Their Effect on Solder Joint Reliability IMC Layers Formed with Various Combinations of Solders and Surface Finishes and Their Effect on Solder Joint Reliability Per-Erik Tegehall, Swerea IVF 4 th Electronic Materials and Assembly Processes for

More information

S/C Packaging Assembly Challenges Using Organic Substrate Technology

S/C Packaging Assembly Challenges Using Organic Substrate Technology S/C Packaging Assembly Challenges Using Organic Substrate Technology Presented by Bernd Appelt ASE Group Nov. 17, 2009 Overview The Packaging Challenge Chip Substrate Interactions Stiffeners for FC-BGA

More information

XBSC/UBDC/UBSC/BBSC/ULSC 100 µm & 400 µm - Assembly by soldering

XBSC/UBDC/UBSC/BBSC/ULSC 100 µm & 400 µm - Assembly by soldering Assembly by soldering General description This document describes the attachment techniques recommended by Murata* for their pre-bumped and un-bumped silicon capacitors on the customer substrates. This

More information

By Ron Blankenhorn, Pac Tech USA, Santa Clara, Calif., and Thomas Oppert, Pac Tech GbmH, Nauen, Germany

By Ron Blankenhorn, Pac Tech USA, Santa Clara, Calif., and Thomas Oppert, Pac Tech GbmH, Nauen, Germany INTRODUCTION Modern microelectronic products require packages that address the driving forces of reduced size and weight, as well as increased performance at high frequencies. Flipchip and direct chip

More information

DSP 670I (Sn63/Pb37) NO CLEAN SOLDER PASTE

DSP 670I (Sn63/Pb37) NO CLEAN SOLDER PASTE SN/AG/CU. 862 Rev.A SN/AG/CU. 862 Rev DSP 670I (Sn63/Pb37) NO CLEAN SOLDER PASTE USA: 315 Fairbank St. Addison, IL 60101 630-628-8083 FAX 630-628-6543 UK: Unit 9 Apex Ct. Bassendale Rd. Bromborough, Wirral

More information

Two Chips Vertical Direction Embedded Miniaturized Package

Two Chips Vertical Direction Embedded Miniaturized Package Two Chips Vertical Direction Embedded Miniaturized Package Shunsuke Sato, 1 Koji Munakata, 1 Masakazu Sato, 1 Atsushi Itabashi, 1 and Masatoshi Inaba 1 Continuous efforts have been made to achieve seemingly

More information

Thermal cyclic test for Sn-4Ag-0.5Cu solders on high P Ni/Au and Ni/Pd/Au surface finishes

Thermal cyclic test for Sn-4Ag-0.5Cu solders on high P Ni/Au and Ni/Pd/Au surface finishes Journal of Mechanical Engineering and Sciences (JMES) ISSN (Print): 2289-4659; e-issn: 2231-8380; Volume 9, pp. 1572-1579, December 2015 Universiti Malaysia Pahang, Malaysia DOI: http://dx.doi.org/10.15282/jmes.9.2015.4.0152

More information

room and cold readouts were performed every 250 cycles. Failure data and Weibull plots were generated. Typically, the test vehicles were subjected to

room and cold readouts were performed every 250 cycles. Failure data and Weibull plots were generated. Typically, the test vehicles were subjected to SOLDER JOINT RELIABILITY ASSESMENT OF Sn-Ag-Cu BGA COMPONENTS ATTACHED WITH EUTECTIC Pb-Sn SOLDER Fay Hua 1, Raiyo Aspandiar 2, Cameron Anderson 3, Greg Clemons 3, Chee-key Chung 4, Mustapha Faizul 4 Intel

More information

Growth Kinetics of Reaction Layers in Flip Chip Joints with Cu-cored Lead-free Solder Balls

Growth Kinetics of Reaction Layers in Flip Chip Joints with Cu-cored Lead-free Solder Balls Materials Transactions, Vol. 5, No. 3 () pp. 75 to 75 Special Issue on Lead-Free Soldering in Electronics # The Japan Institute of Metals Growth Kinetics of Reaction Layers in Flip Chip Joints with Cu-cored

More information

TECHNICAL INFORMATION. Dispensing LEAD FREE No-clean SOLDER PASTE S3X58 - M406D. [ Contents ]

TECHNICAL INFORMATION. Dispensing LEAD FREE No-clean SOLDER PASTE S3X58 - M406D. [ Contents ] Lead free SOLUTIONS you can TRUST TECHNICAL INFORMATION Dispensing LEAD FREE No-clean SOLDER PASTE S3X58 - M406D [ Contents ] 1. FEATURES...Page 2 2. SPECIFICATIONS... 2 3. ALLOY PROPERTIES... 3 4. DISPENSABILITY...

More information

Sn623-5T-E SOLDER PASTE

Sn623-5T-E SOLDER PASTE Sn623-5T-E SOLDER PASTE INTRODUCTION Singapore Asahi s solder paste Sn623-5T-E is a silver bearing paste to prevent silver migration and brittleness. It is formulated for fine pitch applications up to

More information

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Revision 0 2006 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the

More information

Solder paste for transfer soldering NT2 Series

Solder paste for transfer soldering NT2 Series www.ko-ki.co.jp #49002E-0 2011.10.26 Solder paste for transfer soldering Product information This product information has been prepared with the cooperation of Fuji Machine Mfg. Co., Ltd. This product

More information

Solder alloy development for FOWLP Hikaru Nomura

Solder alloy development for FOWLP Hikaru Nomura Solder alloy development for FOWLP Hikaru Nomura Researcher, Senju Metal Industry Co., Ltd., Solder technical center Introduction Wafer Level Packaging(WLP) and Fun-out WLP Wafer level packaging (WLP)

More information

INTERFLUX ELECTRONICS NV

INTERFLUX ELECTRONICS NV Reflow soldering temperature profiling Min : 30sec Max : 120sec Max : +4 C/sec Max : 250 C Min : 230 C Min: +0,5 C/sec Min : +1 C/sec Max : +3 C/sec Max : +1 C/sec Max : -6 C/sec Min : -2 C/sec Min : +1

More information

ENHANCING WLCSP RELIABILITY THROUGH BUILD-UP STRUCTURE IMPROVEMENTS AND NEW SOLDER ALLOYS

ENHANCING WLCSP RELIABILITY THROUGH BUILD-UP STRUCTURE IMPROVEMENTS AND NEW SOLDER ALLOYS ENHANCING WLCSP RELIABILITY THROUGH BUILD-UP STRUCTURE IMPROVEMENTS AND NEW SOLDER ALLOYS B. Rogers, M. Melgo, M. Almonte, S. Jayaraman, C. Scanlan, and T. Olson Deca Technologies, Inc 7855 S. River Parkway,

More information

Murata Silicon Capacitors - LPSC 100µm NiAu finishing Assembly by Soldering. Table of Contents

Murata Silicon Capacitors - LPSC 100µm NiAu finishing Assembly by Soldering. Table of Contents Table of Contents Table of Contents...1 Introduction...2 Handling precautions and storage...2 Pad opening...3 Process Flow...5 Solder print material and stencil printing recommendations...6 Pick and Place...7

More information

DSP 230 (Sn96.5/Ag3.5) LEAD FREE R.M.A. SOLDER PASTE

DSP 230 (Sn96.5/Ag3.5) LEAD FREE R.M.A. SOLDER PASTE SN/AG/CU. 862 Rev.A TECHNICAL DATA SHEET TECHNICAL SPECIFICATIONS SN/AG/CU. 862 Rev DSP 230 (Sn96.5/Ag3.5) LEAD FREE R.M.A. SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison, IL 630-628-8083

More information

DSP 798LF (Ecolloy ) LEAD FREE WATER SOLUBLE SOLDER PASTE

DSP 798LF (Ecolloy ) LEAD FREE WATER SOLUBLE SOLDER PASTE LF217. 798LF Rev.A TECHNICAL SPECIFICATIONS LF217. 798LF Rev DSP 798LF (Ecolloy ) LEAD FREE WATER SOLUBLE SOLDER PASTE CORPORATE HEADQUARTERS USA: 315 Fairbank St. Addison, IL 60101! 630-628-8083! FAX

More information

Reliability And Processability Of Sn/Ag/Cu Solder Bumped Flip Chip Components On Organic High Density Substrates

Reliability And Processability Of Sn/Ag/Cu Solder Bumped Flip Chip Components On Organic High Density Substrates Reliability And Processability Of Sn/Ag/Cu Solder Bumped Flip Chip Components On Organic High Density Substrates Minja Penttilä, Kauppi Kujala Nokia Mobile Phones, Research and Technology Access Itamerenkatu

More information

HTSC SiCap 400µm - NiAu finishing - Assembly by soldering

HTSC SiCap 400µm - NiAu finishing - Assembly by soldering General description This document describes the attachment techniques recommended by Murata* for their HTSC silicon capacitors on the customer substrates. This document is non-exhaustive. Customers with

More information

Novel Materials and Activities for Next Generation Package. Hitachi Chemical., Co.Ltd. Packaging Solution Center Hiroaki Miyajima

Novel Materials and Activities for Next Generation Package. Hitachi Chemical., Co.Ltd. Packaging Solution Center Hiroaki Miyajima Novel Materials and Activities for Next Generation Package Hitachi Chemical., Co.Ltd. Packaging Solution Center Hiroaki Miyajima 1. Activities of Packaging Solution Center 2. Novel Materials for Next Gen.

More information

Manufacturing of electronic equipment

Manufacturing of electronic equipment Manufacturing of electronic equipment 13.10.2016 Objective: To give a generic understanding on the manufacturing methods and 2 nd level interconnection materials of electronic equipments Literature: K.

More information

ALPHA OM-325 Solder Paste product guide

ALPHA OM-325 Solder Paste product guide the product: a superior lead-free solder paste that simplifies the transition to µ-fine feature printing. ALPHA OM-325 Solder Paste product guide µ-fine Feature Solder Paste 1 Welcome to the Solder Paste

More information