Reduction kinetics of iron oxide pellets with H 2 and CO mixtures

Size: px
Start display at page:

Download "Reduction kinetics of iron oxide pellets with H 2 and CO mixtures"

Transcription

1 International Journal of Minerals, Metallurgy and Materials Volume, Number 7, July 015, Page 1 DOI: /s Reduction kinetics of iron oxide pellets with H and CO mixtures Hai-bin Zuo 1), Cong Wang 1), Jie-ji Dong ), Ke-xin Jiao ), and Run-sheng Xu ) 1) State Key Laboratory of Advanced Metallurgy, University of Science and Technology of Beijing, Beijing , China ) School of Metallurgical and Ecological Engineering, University of Science and Technology of Beijing, Beijing , China (Received: 9 May 014; revised: 18 September 014; accepted: September 015) Abstract: Reduction of hematite pellets using H CO mixtures with a wide range of H /CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 173 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens. Keywords: iron oxide pellets; reduction kinetics; kinetics models; hydrogen; carbon monoxide 1. Introduction Traditional ironmaking production is based on a carbon-consuming metallurgical process, leading to major environmental problems caused by the gigantic amount of CO emitted [1 3]. Hydrogen has been proven to be a good reductive agent as well as an environment-friendly material because it uses innocuous H O as its reducing product [4 7]. Substituting carbon for hydrogen in the ironmaking process would radically eliminate the environmental crisis caused by greenhouse gas emissions; however, the earth cannot supply a hydrogen resource used directly. In the iron and steel industries, a few gas-based direct-reduction iron (DRI) processes, such as HYL and Midrex, have employed the mixing gas enriched with hydrogen as the reducing agent, and, in order to mitigate CO emission, coke oven gas and natural gas have been introduced into blast furnaces from tuyeres in some plants during the ironmaking process, resulting in a promotion of hydrogen content in blast furnace gas. Full oxygen blast furnaces with top gas recycling and COREX processes are also characterized by high CO and H content in the gas [8 10]. In these processes, H content in the reducing gas ranges widely, often fluctuating from a few percent to dozens. In this paper, a pellet-reduction process with a wide range of H content syngas was investigated to reveal the requirements for pellet reduction and its dynamic parameters. While the reduction of iron oxide with H and CO has been extensively studied, the kinetics of reduction with H CO mixtures has not been adequately investigated for a large range of H content. Piotrowski et al. [11] investigated the effect of gas composition on the kinetics of iron oxide reduction from Fe O 3 to FeO at a temperature range from 973 K to 1183 K through thermogravimetric experiments. Liu et al. [1] also assessed the apparent activation energy needed to reduce iron oxides by a CO and CO H mixture. Pineau et al. [13 14] analyzed the apparent activation energy needed for the reduction of Fe O 3 and Fe 3 O 4 by H in the temperature range of 493 K to 953 K and 483 K to 13 K, respectively. Ono-Nakazato et al. [15] studied the reduction of FeO 1.05 powder packed bed with an H CO mixture. Bonalde et al. [16] reported on the kinetic analysis of iron oxide reduction through a batch of experiments on the reduction of fired hematite pellets at 113 K using hydrogen, Corresponding author: Hai-bin Zuo zuohaibin@metall.ustb.edu.cn University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 015

2 Int. J. Miner. Metall. Mater., Vol., No. 7, July 015 carbon monoxide, and Midrex gas. Mousa et al. [17] studied the reduction behavior of iron ore pellets with the simulated coke oven gas and natural gas between 973 K and 153 K. Although the reduction of iron ore using CO, H, or a mixture of the two has been widely investigated, the reduction development under a wide range of H /CO molar ratios at different temperatures still remains to be elucidated. Therefore, the purpose of this investigation was to study the kinetics of reduction in those cases to determine the rate-controlling step and its transit rules upon the gas composition and temperature, with the goal of providing scientific direction for reactor design and operational parameter determination.. Experimental.1. Sample preparation Iron oxide pellets used in the experiments were sampled from one batch of production in a commercial iron and steel plant. The chemical composition of the pellets is shown in Table 1. The pellets selected had a good spherical shape with the diameter carefully controlled at 1 mm. Table 1. Chemical composition of the iron oxide pellets wt% TFe FeO SiO Al O 3 MgO CaO S P Reduction experiments The schematic drawing of experimental apparatus for pellet reduction using an H CO mixture with different molar ratios of H to CO is shown in Fig. 1. The reducing gases (H and CO) were provided by individual commercial compressed gas cylinders, and a mass flow meter coupled to the outlet of cylinder was used to control the gas (N ) flow. Sample weight was acquired every 5 s by an electrical balance (Mettler Toledo AL04-IC) placed on a platform atop the furnace. The precision of balance was 0.1 mg and the data were automatically recorded by a computer. A sample basket was hung from the balance via a steel wire, as shown in Fig. 1. The wire length was designed to ensure that the basket was kept in the constant temperature zone. The basket was woven with Fe Cr Al alloy wire with 0.5 mm diameter to hold six pellet particles. An R-type thermocouple (Pt/Pt-13%Rh) was equipped beneath the basket to control the furnace temperature. After drying, the pellets were loaded into the basket and set into a vertical quartz tube embedded into a silicon molybdenum furnace. The power of the silicon molybdenum furnace was 8 kw, and the maximum heating rate and highest temperature were 100 K min 1 and 1873 K, respectively. The heating behavior and target temperature were well controlled by an intellective program control unit with ± K precision. The pure nitrogen gas was introduced from the bottom of tube at a rate of 5 L min 1 to evacuate the air in the tube. The sample was heated from room temperature to the target temperature (1073, 1173, and 173 K) with a 50 K min 1 heating rate, and the N gas was switched to the reducing gas with different H /CO molar ratios (1:0, 3:1, 1:1, 1:3, and 0:1) at a rate of 5 L min 1, then the data acquisition system was started simultaneously. The reducing gas flowed up through the tube, reacting with samples, then evacuated from the top of tube. The exhaust gas was removed by a ventilator to protect the operators from the poison. When the sample mass stopped changing, the reducing gas was replaced with nitrogen and the sample was cooled to room temperature..3. Mathematical model and resolution 1 Compressed gas cylinder; Program control unit; 3 Thermocouple; 4 Samples; 5 Silicon molybdenum furnace; 6 Outlet of flow; 7 Electrical balance Fig. 1. Schematic drawing of experimental apparatus for reaction. An unreacted core model has been widely used to describe the kinetics and mechanism of iron oxide reduction by H, CO, and mixtures of the two, and its applicability has been confirmed, especially for pellet reduction [18]. Considering the reduction from FeO to iron to be the most difficult step with the maximum extent of deoxygenization, it could be thought that only one single reaction interface, the iron/wustite interface, existed inside the whole pellet, and the reduction only occurred in that interface. In this case, the overall rate of reduction, including intrinsic reduction, pore diffusion, and gas-film mass transfer, could be described by

3 H.B. Zuo et al., Reduction kinetics of iron oxide pellets with H and CO mixtures 3 V ( ) 4πr c c 0 b e t = 1 r0( r0 ri) K r kg Deffri k r rec + i ( 1 K ) where V t is the reaction rate, mol s 1 ; r 0 the initial radius of pellet, m; c b the concentration of reducing agent, mol m 3 ; c e the equilibrium concentration of reducing agent, mol m 3 ; r i the radius of the un-reacted core of the pellet, m; k g the mass transfer diffusion coefficient in gas-film, m s 1 ; D eff the effective diffusion coefficient of gaseous species, m s 1 ; k rec the reaction rate constant, m s 1 ; and K the equilibrium constant of chemical reaction. X was defined as the reduction fraction (deoxygenization amount dividing initial oxygen amount). When the oxygen content in pellet was uniform, X was presented as X 3 r i = 1 r0 According to the conservation of mass, the reaction rate can be expressed as the following equation: Vtdt = 4πri d0dri (3) where d 0 is the oxygen density of the pellet, mol m 3 ; and t the time, s. Applying Eqs. () and (3) to Eq. (1), a relationship between the reduction fraction and time is given by X r 3k ( 1 X) 3 ( 1 X) g D + + eff K ( ) 1 c 3 b ce 1 1 X = t (4) krec ( 1+ K ) rd 0 0 where K is calculated according to the Gibbs free-energy change of reaction, as provided in Table. Table. Gibbs free-energy change ( ΔG reactions (1) () ) of the chemical Reaction ΔG FeO + H = Fe + H O T FeO + CO = Fe + CO T CO + H O = CO + H T Using the mixing gas, all three reactions listed in Table occurred simultaneously at the experimental temperature, leading to a complex reduction process relying on the reaction rate and chemical balance of the three reactions. However, no matter what degrees of the three reactions were, the gas-gas reaction (CO + H O = CO + H ) did not change the molar ratio of the reducing agent (H + CO) and products (H O + CO ). Therefore, the mixture was regarded as a single gas phase. The reaction becomes A + FeO = Fe + B, with A and B representing H CO and CO H O, respectively, and the equilibrium constantis given by K = CB C (5) A where C B and C A are the concentrations of product and reducing agent, respectively. In this case, the gas gas reaction was neglected because it did not affect C B /C A, and the equilibrium constant of reaction was decided by the initial composition of mixture and the equilibrium constants of the two gas solid reduction reactions individually. In previous publications, researchers have paid less attention to the calculation of K of the mixing gas; only a simple formula was given by Eq. (6) [19]. K = xcokco + xh K (6) H where xh and x CO are the molar fractions of H and CO in the mixture, and KH and KCO are the equilibrium constants of the two reduction reactions where FeO is reduced by H and CO, respectively. Because Eq. (6) did not provide a satisfactory result, especially when KCO was quite different from K H, a new method for calculating K needed to be established. Considering the chemical reaction balance, more than one mole of CO needs to be reduced to get one mole of Fe, the real consumption of CO is called the redundant coefficient of CO, donated by n, and the reaction is given as FeO + n CO = Fe + CO + (n 1) CO (7) In this circumstance, to get one mole of Fe, n moles of CO must be provided; and in the residual gas, KCO = PCO / P CO = 1/( n 1). Therefore, one mole of CO could be reduced to get K CO /( K CO + 1) moles of iron. Similarly, one mole of H could be reduced to get KH /( K H + 1) moles of iron, and one mole of mixture gas for K / ( K + 1) moles of iron as well. The total iron production using a certain quantity of CO or H individually as the reducing agent should be the same as that using the mixing gas consisting of equal quantities of CO and H when the reduction reactions reach balance. The relationship of iron production is given as K K CO H K xco + xh = (8) KCO + 1 KH + 1 K + 1 Then the equilibrium constant, K, is expressed by Eq. (9). K = xcokco ( KH + 1) + x ( ) H K H K CO + 1 ( K + 1)( K + 1) x K ( K + 1) x K ( K + 1) CO H CO CO H H H CO (9) The gas transfer coefficient, k g, in Eq. (4) could be calculated using an empirical formula according to the similarity principle as listed in Eq. (10).

4 4 Int. J. Miner. Metall. Mater., Vol., No. 7, July kd g Re Sc D = + (10) where d is the pellet diameter, m; D the diffusion coefficient, m s 1 ; Re the Reynolds number, and Sc the Schmidt number. Mass transfer coefficients at different temperatures are listed in Table 3. Table 3. Mass transfer coefficient of gas in gas film at different temperatures Temperature / K Mass transfer coefficient / (m s 1 ) In the reduction experiments, the extent of reduction, X, was improved gradually along with reducing time and was calculated accurately according to the weight loss of sample. The parameters C 1, C, F, and t 1 are defined as follows. rd 0 0 C1 = 6D c c C ( ) eff b e K rd 0 0 = k K c c ( 1+ )( ) ( X ) 1 3 rec b e (11) (1) F = 1 1 (13) rd 0 0X t1 = 3k c c ( ) g b e (14) where C 1, C, and t 1 are the corresponding total reaction times when the reaction rate is only controlled by interior diffusion, chemical reaction, and exterior diffusion, respectively, and F the ratio of reaction time and total reaction time. Eqs. (11), (1), (13), and (14) may be applied to Eq. (4) to get Eq. (15). t t 1 = C1 F F + C (15) ( 3 ) F Plotting (t t 1 )/F according to 3F F and making a linear fitting, C 1 and C correspond to the slope and intercept, respectively. Then, the effective diffusion coefficient and the rate constant of reaction were easily obtained from Eqs. (11) and (1). 3. Results and discussion 3.1. Effect of temperature The effect of temperature on the extent of reduction was investigated using mixing gases with different H /CO molar ratios. Fig. shows the change of reduction degrees with time when the CO/H ratios are 1:0 and 0:1. It is clear that the increase in temperature causes an increase in the extent of reduction after the same reducing time, whether the reducing agent is H or CO, as observed previously [16,18]. When using H as the reducing agent, the times for a 98% reduction degree at 1073 and 173 K are 37.5 and 19.5 min, respectively, reducing by 18 min. The reasons are as follows, first, the equilibrium content of H decreases with increasing temperature because it is an endothermal reaction, leading to a higher reducing potential at high temperature, and as a result, the driving force of reaction is enhanced; second, the high temperature contributes to a high mass transfer coefficient, as shown in Table 3, which attributes to an intensification of gas molecule motion and a mitigation of diffusion resistance. Moreover, the reaction rate constant is also increased, in accordance with the expression of Arrhenius equation, leading to a decrease in reaction resistance as well. The reduction reaction, thus, is accelerated as a result of above three factors. Fig.. Change of reduction degree with time: (a) CO:H =0:1; (b) CO:H =1:0. Similarly, using CO as the reducing agent, the reduction degree is improved from 50.01% at 107 K to 83.38% at 173 K after the same reducing time of 60 min. With increasing temperature, although the driving force of reaction decreases, caused by the increase of equilibrium content of CO, a greater degree of decrease in the resistances of internal diffusion and chemical reaction leads to a promotion in the reaction rate. It can thereby be deduced that the effect of

5 H.B. Zuo et al., Reduction kinetics of iron oxide pellets with H and CO mixtures 5 temperature on gas diffusion and chemical reaction resistance may exceed the reduction potential. According to these results, improving the reducibility of burden and optimizing the microstructure must be the preconditions to enhance indirect reduction by lowering the reaction temperature. 3.. Effect of mixture gas composition Different gases have different transfer properties and reaction capacities, presenting a specific characteristic reaction process. Fig. 3 shows the effect of gas composition on the reduction process. As reported in previous investigations [17,19], the fastest reaction occurred by using H, the lowest rate was obtained by using CO, and the reduction rate using a mixture gas of H and CO was intermediate. According to the thermodynamic calculations, the reductive ability of CO is higher than that of H when the temperature is lower than 1163 K. However, from Fig. 3(a), it can be seen that the reaction rate increases gradually with the increase of H content in the mixture. This can be attributed to the higher penetration capacity of H than CO. The dwindling of diffusion resistance becomes a dominating factor compared with the weakening of the reaction driving force caused by substituting CO with H. Contrasting Fig. 3 (a) and Fig. 3 (b), a more rapid increase in reaction rate is obtained with increase in the H content in the mixture gas when the temperature is between 1163 and 1173 K. This is because hydrogen has higher reducing and diffusing capacities than CO at temperatures above 1163 K. As the temperature increases, the differences caused by substituting H for CO decrease gradually, as shown in Fig. 3(c). Further quantitative analysis about the effects of H on reduction will be discussed. Fig. 3. Change of reduction degree with reducing time: (a) 1073 K; (b) 1173 K; (c) 173 K Effective diffusion coefficient and rate constant of reaction F and t 1 were calculated individually according to Eqs. (13) and (14), then (t t 1 )/F and 3F F were inserted into the calculation using the experimental data automatically recorded by computer. The relationship between (t t 1 )/F and 3F F was calculated and a linear fitting was generated, as shown in Fig. 4. The fitting equation parameters according to Eq. (15) are listed in Table 4. Fig. 4 shows that (t t 1 )/F and 3F F present a good linear relationship with the reduction degree (R ) over 93.0%, except for the cases at 173 K. This is mainly due to that, when the reaction temperature reaches 173 K, the pellets possibly soften and deform, leading to a more complex and complicated reaction process. Nevertheless, the values of R at 173 K are over 90%, which demonstrates the reliability of the linear fittings. The effective diffusion coefficient and reaction rate constant were obtained subsequently according to slope and intercept, and are listed in Table 5.

6 6 Int. J. Miner. Metall. Mater., Vol., No. 7, July 015 Fig. 4. Relationship of (t t 1 )/F and 3F F : (a) 1073 K; (b) 1173 K; (c) 173 K. Table 4. Fitting equations at different conditions Temperature / K CO: H by molar (t t 1 )/F = C 1 (3F F ) + C C C 1 R 1: : : : : : : : : : : : : : : Note: R is the relative coefficient, corresponding to the reduction degree. Table 5. Effective diffusion coefficient and reaction rate constant at different conditions CO: H by molar D eff / (10 4 m s 1 ) k rec / (10 m s 1 ) 1073 K 1173 K 173 K 1073 K 1173 K 173 K 1: : : : :

7 H.B. Zuo et al., Reduction kinetics of iron oxide pellets with H and CO mixtures 7 The rate constant of the chemical reaction escalates with the rise in reaction temperature and hydrogen content in the mixing gas. Furthermore, the increase in speed of the reaction rate constant with temperature is amplified when the hydrogen content is promoted in the mixture. The effects of temperature have been demonstrated effectively by the Arrhenius equation. On the contrary, regarding the role of hydrogen in improving the increasing rate of the rate constant, it may be attributed to the endothermal reaction of hydrogen reduction and exothermic reaction of carbon monoxide reducing the wustite. The results illustrate that the effect of temperature on rate constant for the endothermal reaction exceeds that for the exothermic reaction when temperature is increased, contributing to a higher rate of increase for the rate constant in the condition of high hydrogen content. The effective diffusion coefficients for different hydrogen contents were also obtained in our research. The diffusion coefficient is determined by the temperature and physical properties of gas, such as molecular size, viscosity, and pressure. The effective diffusion coefficient increases with increasing temperature or hydrogen content in the mixture. The effect of temperature on gas diffusion is easily explained by the diffusion mechanism; when the temperature is increased, the molecular motion increases, leading to the energy growth and diffusion enhancement. In terms of hydrogen, it has a higher penetration capacity than carbon monoxide due to a smaller molecule size and lower viscosity, which results in lower diffusion activation energy. Moreover, the effective diffusion coefficient drops drastically when mixing CO into H compared with pure H ; however, the reaction rate constant does not decrease so rapidly. For example, compared with using pure H at 1073 K, the effective diffusion coefficient declines to about one fifth after mixing CO into H in a molar ratio of 1:3, while the rate constant only decreases from to m s 1, only decreased by about 9.1%. Similar laws appear at 1173 and 173 K. The possible reasons for the drastic reduction in effective diffusion coefficient when mixing a little CO into H are considered as the intrinsic properties of gas; CO has the higher viscosity and bigger diameter than H, which lower the fluidity of the mixture; beyond that, large CO molecules block the diffusion path, holding back the hydrogen passing through, even if only a little CO is introduced. With continuous increase in CO content, the obstacle from large CO slows down, leading to the reduction rate of the effective diffusion coefficient slowing down consequently Resistance analysis in different reduction stages The diffusion and reaction resistances were calculated respectively based on the effective diffusion coefficients and reaction rate constants obtained by the above experiments, without external diffusion considered because of the high flow rate of the reducing gas. The relative resistance expression is presented in Fig. 5. Fig. 5. Change of relative resistance with reduction degree: (a) 1073 K; (b) 1173 K; (c) 173 K.

8 8 Int. J. Miner. Metall. Mater., Vol., No. 7, July 015 As many papers reported, the rate-controlling step transits from the chemical reaction at the beginning to the complex control of reaction and diffusion, and finally to the diffusion factor. Fig. 5 reveals that when using pure CO as the reducing agent, the chemical reaction controls the reaction rate to a higher reduction degree with the increase of temperature. This is because the promotion of effective diffusion coefficient has an advantage over the increase of the reaction rate constant with the increase of temperature, as seen in Table 5. When mixing more H into the reducing mixture, the high penetration capacity of H contributes to a big increase in the effective diffusion coefficient and further prolongs the rate-control period of the chemical reaction. When pure H is used as the reducing agent, the resistance of diffusion and chemical reaction both decrease with the rise of temperature, while the transit points where the diffusion resistance equals the chemical reaction resistance are almost the same. This result indicates that the temperature has almost the same effect on chemical reaction and diffusion. Furthermore, increasing H content in the mixture could weaken the effects of temperature on the transit point of dominating resistance. Moreover, when the temperature is 1173 K, there are the similar transit points for the mixing gas (H : CO=1:3, 1:1, and 3:1 by molar). This illuminates that when the reducing agent is mixing gas, H has almost equal impact on the diffusion and reaction rate constants. When temperature is 173 K, the effects of H on diffusion precede those on the reaction rate constant, resulting in a backward step for the reaction resistance transit point. 4. Conclusions (1) Increasing hydrogen content in the reducing gas mixture or increasing reaction temperature can clearly accelerate reduction reactions, and more hydrogen can lead to a more rapid increase in reaction rate with the increase of temperature due to the endothermal reaction of hydrogen reduction partly replacing the exothermic reaction of carbon monoxide reduction. () The effective diffusion coefficient and the rate constant of chemical reaction are simultaneously enhanced with increasing temperature or increasing hydrogen content in the mixture. The effect of temperature on the reaction rate constant is influenced by the hydrogen content. A higher hydrogen content leads to a higher intensity of impact; the similar rules exist for the effective diffusion coefficient. Moreover, adding just a little CO into the H would decrease the gas effective diffusion coefficient drastically compared with pure hydrogen. (3) The reduction of iron oxide pellets using an H CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during reduction process subsequently, and internal gas diffusion at the end. The transition of the rate-control step varies with the reducing agent composition and reaction temperature. When lowering the hydrogen content in mixture, increasing temperature takes the transit point of the rate-control step from chemical reaction to internal gas diffusion to a high reduction degree. After gradually increasing the hydrogen content to a certain value, the effect of temperature on the transit point of the rate-control step weakens. Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Nos and ). References [1] S.R. Zhang and H. Yin, The trends of ironmaking industry and challenge to Chinese blast furnace ironmaking in the 1st century, China Metall., 19(009), No. 9, p. 1. [] Y. Kato, Carbon recycling for reduction of carbon dioxide emission from iron-making process, ISIJ Int., 50(010), No. 1, p [3] C.H. Rhee, J.Y. Kim, K. Han, C.K. Ahn, and H.D. Chun, Process analysis for ammonia-based CO capture in ironmaking industry, Energy Procedia, 4(011), p [4] H.K. Pinegar, M.S. Moats, and H.Y. Sohn, Process simulation and economic feasibility analysis for a hydrogen-based novel suspension ironmaking technology, Steel Res. Int., 8(011), No. 8, p [5] H.T. Wang and H.Y. Sohn, Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process, Metall. Mater. Trans. B, 44(013), No. 1, p [6] D. Wagner, O. Devisme, F. Patisson, and D. Ablitzer, A laboratory study of the reduction of iron oxides by hydrogen, [in] The 135th TMS Annual Meeting Proceeding, San Diego, 006, p [7] J. Dang, G.H. Zhang, X.J. Hu, and K.C. Chou, Non-isothermal reduction kinetics of titanomagnetite by hydrogen, Int. J. Miner. Metall. Mater., 0(013), No. 1, p [8] J. Kopfle and R. Hunter, Direct reduction s role in the world steel industry, Ironmaking Steelmaking, 35(008), No. 4, p. 54. [9] A. Ziebik, K. Lampert, and M. Szega, Energy analysis of a blast-furnace system operating with the Corex process and

9 H.B. Zuo et al., Reduction kinetics of iron oxide pellets with H and CO mixtures 9 CO removal, Energy, 33(008), No., p [10] H. Helle, M. Helle, H. Saxén, and F. Pettersson, Optimization of top gas recycling conditions under high oxygen enrichment in the blast furnace, ISIJ Int., 50(010), No. 7, p [11] K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, and T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduciton in a hydrogen production process, Int. J. Hydrogen Energy, 30(005), No. 15, p [1] J.H. Liu, J.Y. Zhang, and T.P. Zhou, Assessment of apparent activation energies for reducing iron oxides by CO and CO-H, J. Iron Steel Res., 1(000), No. 1, p. 5. [13] A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H : Part I. Low temperature reduction of hematite, Thermochim. Acta, 447(006), No. 1, p. 89. [14] A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H : Part II. Low temperature reduction of magnetite, Thermochim. Acta, 456(007), No., p. 75. [15] H. Ono-Nakazato, T. Yonezawa, and T. Usui, Effect of water gas shift reaction on reduction of iron oxide powder packed bed with H CO mixtures, ISIJ Int., 43(003), No. 10, p [16] A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen carbon monoxide mixtures as reducing agent, ISIJ Int., 45(005), No. 9, p. 15. [17] E.A. Mousa, A. Babich, and D. Senk, Reduction behavior of iron ore pellets with simulated coke oven gas and natural gas, Steel Res. Int., 84(013), No. 11, p [18] H.J. Ryu, D.H. Bae, K.H. Han, S.Y. Lee, G.T. Jin, and J.H. Choi, Oxidation and reduction characteristics of oxygen carrier particles and reaction kinetics by unreacted core model, Korean J. Chem. Eng., 18(001), No. 6, p [19] Y.Q. Li, R.X. Zhang, T.J. Yang, and L.T. Kong, Kinetic research of pellet reduction in shaft furnace by using two different reducing gases, Baosteel Technol., (000), No., p. 36.

Effect of H 2 H 2 O on the Reduction of Olivine Pellets in CO CO 2 Gas

Effect of H 2 H 2 O on the Reduction of Olivine Pellets in CO CO 2 Gas , pp. 1973 1978 Effect of H 2 H 2 O on the Reduction of Olivine Pellets in CO CO 2 Gas Antti KEMPPAINEN, 1) * Olli MATTILA, 2) Eetu-Pekka HEIKKINEN, 1) Timo PAANANEN 2) and Timo FABRITIUS 1) 1) Laboratory

More information

Structure evolution in the reduction process of FeO powder by hydrogen

Structure evolution in the reduction process of FeO powder by hydrogen 37 2 163-167 2015 2 Chinese Journal of Engineering Vol 37 No 2 163-167 February 2015 100083 E-mail huxiaojun@ ustb edu cn 773 ~ 1273 K 873 K 973 ~ 1073 K 973 K 1023 K 973 K 1023 K 1173 K 2 min TF55 Structure

More information

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore

Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore , pp. 570 575 Effect of CO Gas Concentration on Reduction Rate of Major Mineral Phase in Sintered Iron Ore Daisuke NOGUCHI, 1) * Ko-ichiro OHNO, 2) Takayuki MAEDA, 2) Kouki NISHIOKA 3) and Masakata SHIMIZU

More information

Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas

Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas MANIA KAZEMI, MOHSEN SAFFARI POUR, and DU SICHEN Gaseous reduction by hydrogen was performed for three types of hematite

More information

Gasification and Reduction Behavior of Iron Ore-Carbon Composite under High Pressure

Gasification and Reduction Behavior of Iron Ore-Carbon Composite under High Pressure , pp. 1778 1784 Gasification and Reduction Behavior of Iron Ore-Carbon Composite under High Pressure Zhou QI, Taichi MURAKAMI* and Eiki KASAI Graduate School of Environmental Studies, Tohoku University,

More information

Effect of Using Oxygen-Enriched Gas during Induration Process of Iron Ore Pellets Containing Solid Fuel

Effect of Using Oxygen-Enriched Gas during Induration Process of Iron Ore Pellets Containing Solid Fuel , pp. 27-31 Effect of Using Oxygen-Enriched Gas during Induration Process of Iron Ore Pellets Containing Solid Fuel M. Alizadeh* 1 Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Tehran,

More information

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System , pp. 922 927 Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System Guo-Hua ZHANG, 1,2) * Yu-Lan ZHEN 1,2) and Kuo-Chih CHOU 1,2) 1) State Key Laboratory of Advanced Metallurgy,

More information

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process , pp. 413 418 Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process Hiroyuki MATSUURA* and Fumitaka TSUKIHASHI Department of Advanced Materials Science,

More information

Reduction and Disintegration Behavior of Sinter under N 2 CO CO 2 H 2 H 2 O Gas at 773 K

Reduction and Disintegration Behavior of Sinter under N 2 CO CO 2 H 2 H 2 O Gas at 773 K ISIJ International, Vol. 55 (2015), ISIJ International, No. 6 Vol. 55 (2015), No. 6, pp. 1181 1187 Reduction and Disintegration Behavior of Sinter under N 2 CO CO 2 H 2 H 2 O Gas at 773 K Taichi MURAKAMI,*

More information

Thermodynamic Calculation of Reaction and Equilibrium between Coal and FeO-containing Slag in the Atmosphere of CO 2 Gas

Thermodynamic Calculation of Reaction and Equilibrium between Coal and FeO-containing Slag in the Atmosphere of CO 2 Gas ISIJ International, Advance Publication by J-STAGE ISIJ International, ISIJ International, J-Stage Advanced Advance ISIJ Publication International, Publication, ISIJ International, by DOI: J-STAGE, Advance

More information

REDUCTION OF Fe AND Ni IN Fe-Ni-O SYSTEMS

REDUCTION OF Fe AND Ni IN Fe-Ni-O SYSTEMS J. Min. Metall. Sect. B-Metall. 49 (1) B (2013) 13-20 Journal of Mining and Metallurgy, Section B: Metallurgy Abstract REDUCTION OF Fe AND Ni IN Fe-Ni-O SYSTEMS Y. Zhang a, W. Wei a,*, X. Yang a, F.Wei

More information

Investigation on Thermal Conductivity of Vanadium Titano-magnetite Concentrate Carbon-containing Pellets in Direct Reduction.

Investigation on Thermal Conductivity of Vanadium Titano-magnetite Concentrate Carbon-containing Pellets in Direct Reduction. International Forum on Energy, Environment and Sustainable Development (IFEESD 2016) Investigation on Thermal Conductivity of Vanadium Titano-magnetite Concentrate Carbon-containing Pellets in Direct Reduction

More information

Comparative Reduction Behavior of Various Cement Coated Iron Ore Pellets

Comparative Reduction Behavior of Various Cement Coated Iron Ore Pellets doi: 10.14355/me.2015.04.005 Comparative Reduction Behavior of Various Cement Coated Iron Ore Pellets M. Bahgat* 1, S. Niaz 2, S. Lakdawala 3 and H. Hanafy 4 1 Currently Lead scientist, Metal technology

More information

Study on reduction behavior of molybdenum trioxide in molten steel

Study on reduction behavior of molybdenum trioxide in molten steel Indian Journal of Engineering & Materials Sciences Vol. 22, August 2015, pp. 460-464 Study on reduction behavior of molybdenum trioxide in molten steel Hangyu Zhu*, Jianli Li, Zhengliang Xue & Wei Wang

More information

Furnace Operated with Pure Hydrogen

Furnace Operated with Pure Hydrogen 2 nd International Workshop Advances in Cleaner Production 20-22 May 2009 São Paulo Modelling of an Iron Ore Reduction Furnace Operated with Pure Hydrogen A. Ranzani da Costa; D. Wagner; F. Patisson Institut

More information

Direct Reduction Behaviors of Composite Binder Magnetite Pellets in Coal-based Grate-rotary Kiln Process

Direct Reduction Behaviors of Composite Binder Magnetite Pellets in Coal-based Grate-rotary Kiln Process , pp. 214 219 Direct Reduction Behaviors of Composite Binder Magnetite Pellets in Coal-based Grate-rotary Kiln Process Deqing ZHU, 1) Vinicius MENDES, 1,2) Tiejun CHUN, 1) Jian PAN, 1) Qihou LI, 1) Jian

More information

Dynamic Migration Process and Mechanism of Phosphorus Permeating into Metallic Iron with Carburizing in Coal-based Direct Reduction

Dynamic Migration Process and Mechanism of Phosphorus Permeating into Metallic Iron with Carburizing in Coal-based Direct Reduction ISIJ International, Vol. 55 (2015), ISIJ International, No. 12 Vol. 55 (2015), No. 12, pp. 2576 2581 Dynamic Migration Process and Mechanism of Phosphorus Permeating into Metallic Iron with Carburizing

More information

Novel Ironmaking Technology with Low Energy Requirement and CO 2 Emission

Novel Ironmaking Technology with Low Energy Requirement and CO 2 Emission Novel Ironmaking Technology with Low Energy Requirement and CO 2 Emission University of Utah PI: H. Y. Sohn Postdoc: G. Han Lab Assts: M.E. Choi, Y. Zhang, Josh Ramos, H. Wang Supported by DOE/AISI Partner

More information

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA Kuang-di Xu Chinese Academy of Engineering, China ABSTRACT China s iron and steel industry enjoys accelerated development thanks

More information

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide PAN, X. and ERIC, R.H. Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide. VII International Conference on Molten Slags Fluxes and

More information

CZ.1.07/2.3.00/

CZ.1.07/2.3.00/ NEW CREATIVE TEAMS IN PRIORITIES OF SCIENTIFIC RESEARCH CZ.1.07/2.3.00/30.0055 This project is funded by Structural Funds of the European Union (ESF) and state budget of the Czech Republic Theme: Experimental

More information

Conditions for Minimizing Direct Reduction in Smelting Reduction Iron Making

Conditions for Minimizing Direct Reduction in Smelting Reduction Iron Making ISIJ International, Vol. 58 (2018), ISIJ International, No. 2 Vol. 58 (2018), No. 2, pp. 274 281 Conditions for Minimizing Direct Reduction in Smelting Reduction Iron Making Yang-Sub SHIM and Sung-Mo JUNG*

More information

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL Dong HU 1 Pei-Xiao LIU 2 Shao-Jun CHU 1 1 School of Metallurgical and Ecological Engineering, University of Science

More information

Development of the Process for Producing Pre-reduced Agglomerates

Development of the Process for Producing Pre-reduced Agglomerates Development of the Process for Producing Pre-reduced Agglomerates JFE TECHNICAL REPORT No. 13 (May 9) MACHIDA Satoshi *1 SATO Hideaki * TAKEDA Kanji *3 Abstract: The Japanese steel industry, accounting

More information

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

Pyrometallurgy of iron is still the most important pyrometallurgical process economically. 1 Pyrometallurgy of iron is still the most important pyrometallurgical process economically. Prehistorically, iron was prepared by simply heating it with charcoal in a fired clay pot. Coke is coal that

More information

SOLUBILITY OF MgO IN CaO-BASED SLAGS

SOLUBILITY OF MgO IN CaO-BASED SLAGS SOLUBILITY OF MgO IN CaO-BASED SLAGS Sung-Mo Jung & Chang-Hee Rhee Pohang University of Science and Technology, Korea Dong-Joon Min Yonsei University, Korea ABSTRACT The solubilities of MgO obtained from

More information

Acceleration of Carburization and Melting of Reduced Iron in Iron Ore Carbon Composite Using Different Types of Carbonaceous Materials

Acceleration of Carburization and Melting of Reduced Iron in Iron Ore Carbon Composite Using Different Types of Carbonaceous Materials ISIJ International, Vol. 57 (2017), ISIJ International, No. 11 Vol. 57 (2017), No. 11, pp. 1928 1936 Acceleration of Carburization and Melting of Reduced Iron in Iron Ore Carbon Composite Using Different

More information

EFFECT OF LIMESTONE ADDITION ON THE METALLURGICAL PROPERTIES OF IRON ORE PELLETS

EFFECT OF LIMESTONE ADDITION ON THE METALLURGICAL PROPERTIES OF IRON ORE PELLETS 1 EFFECT OF LIMESTONE ADDITION ON THE METALLURGICAL PROPERTIES OF IRON ORE PELLETS CASR SEMINAR Mikko Iljana Doctoral student, M.Sc. (Tech.) Research Group of Process Metallurgy University of Oulu CONTENTS

More information

REDUCTION OF IRON ORE PELLETS BY STATISTICAL DESIGN OF EXPERIMENTS

REDUCTION OF IRON ORE PELLETS BY STATISTICAL DESIGN OF EXPERIMENTS Int. J. Engg. Res. & Sci. & Tech. 2014 2013 K M K Sinha and T Sharma, 2014 Research Paper ISSN 2319-5991 www.ijerst.com Vol. 3, No. 1, February 2014 2014 IJERST. All Rights Reserved REDUCTION OF IRON ORE

More information

Enrichment of Phosphorus Oxide in Steelmaking Slag by Utilizing Capillary Action

Enrichment of Phosphorus Oxide in Steelmaking Slag by Utilizing Capillary Action J. Sustain. Metall. (2016) 2:38 43 DOI 10.1007/s40831-015-0035-3 THEMATIC SECTION: SLAG VALORISATION TODAY Enrichment of Phosphorus Oxide in Steelmaking Slag by Utilizing Capillary Action Shohei Koizumi

More information

Effects of Reducing Time on Metallization Degree of Carbothermic Reduction of Tall Pellets Bed

Effects of Reducing Time on Metallization Degree of Carbothermic Reduction of Tall Pellets Bed ISIJ International, Vol. 56 (2016), ISIJ No. International, 1 Vol. 56 (2016), No. 1, pp. 88 93 Effects of Reducing Time on Metallization Degree of Carbothermic Reduction of Tall Pellets Bed Xin JIANG,

More information

Kinetics of Generation of Magnesium Vapor of Novel Magnesiabased Desulfurizer for External Desulfurization of Hot Metal

Kinetics of Generation of Magnesium Vapor of Novel Magnesiabased Desulfurizer for External Desulfurization of Hot Metal ISIJ International, Vol. 56 (2016), ISIJ International, No. 1 Vol. 56 (2016), No. 1, pp. 103 107 Kinetics of Generation of Magnesium Vapor of Novel Magnesiabased Desulfurizer for External Desulfurization

More information

Effect of Mineral Composition and Pore Structure on Reducibility of Composite Iron Ore Sinter

Effect of Mineral Composition and Pore Structure on Reducibility of Composite Iron Ore Sinter , pp. 722 728 Effect of Mineral Composition and Pore Structure on Reducibility of Composite Iron Ore Sinter Hideki ONO, 1) Yusuke DOHI, 2) Yuki ARIKATA 3) and Tateo USUI 1) 1) Division of Materials and

More information

EFFECT OFTHE TYPE OFCARBON MATERIALON THE REDUCTION KINETICS OF BARIUM SULFATE

EFFECT OFTHE TYPE OFCARBON MATERIALON THE REDUCTION KINETICS OF BARIUM SULFATE EFFECT OFTHE TYPE OFCARBON MATERIALON THE REDUCTION KINETICS OF BARIUM SULFATE M. Sh. Bafghi 1,*, A. Yarahmadi 2, A. Ahmadi 3 and H. Mehrjoo 3 * msbafghi@iust.ac.ir Received: April 2011 Accepted: July

More information

The Function of Ca(OH) 2 and Na 2 CO 3 as Additive on the Reduction of High-Phosphorus Oolitic Hematite-coal Mixed Pellets

The Function of Ca(OH) 2 and Na 2 CO 3 as Additive on the Reduction of High-Phosphorus Oolitic Hematite-coal Mixed Pellets , pp. 427 433 The Function of Ca(OH) 2 and Na 2 CO 3 as Additive on the Reduction of High-Phosphorus Oolitic Hematite-coal Mixed Pellets Wen YU, Tichang SUN,* Jue KOU, Yuxia WEI, Chengyan XU and Zhenzhen

More information

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production Qi-xing YANG 1 2 2, Dong-feng HE 2 3 1 Abstract: Wastes from stainless steel production were briquetted together

More information

Study on the permeability index of COREX melter-gisifer and its influencing factors

Study on the permeability index of COREX melter-gisifer and its influencing factors Study on the permeability index of COREX melter-gisifer and its influencing factors Wenlong ZHAN,Keng WU, Yong ZHAO and Erhua ZHANG School of Metallurgical and Ecological Engineering, University of Science

More information

Effect of catalyst to oil weight ratio on gaseous product distribution during heavy oil catalytic pyrolysis

Effect of catalyst to oil weight ratio on gaseous product distribution during heavy oil catalytic pyrolysis Chemical Engineering and Processing 3 () 965 97 Effect of catalyst to oil weight ratio on gaseous product distribution during heavy oil catalytic pyrolysis Xianghai Meng, Chunming Xu, Jinsen Gao, Qian

More information

Keywords: Reformer model; Preferential oxidation; Water-gas shift reaction

Keywords: Reformer model; Preferential oxidation; Water-gas shift reaction A Reformer Performance Model for Fuel Cell Applications S.S. Sandhu +,a, Y.A. Saif a, J.P. Fellner b a Department of Chemical and Materials Engineering, University of Dayton 300 College Park, Dayton, OH

More information

Experimental Research on Reducing the Dust of BOF in CO 2 and O 2 Mixed Blowing Steelmaking Process

Experimental Research on Reducing the Dust of BOF in CO 2 and O 2 Mixed Blowing Steelmaking Process , pp. 1694 1699 Experimental Research on Reducing the Dust of BOF in CO 2 and O 2 Mixed Blowing Steelmaking Process Cao YI, 1) Rong ZHU, 1) Bo-yu CHEN, 2) Can-rong WANG 2) and Jian-Xiang KE 2) 1) Metallurgical

More information

Calculation and Analysis the Influence on the Cooling Water Velocity and Hot Metal Circulation to the Long Life Blast Furnace

Calculation and Analysis the Influence on the Cooling Water Velocity and Hot Metal Circulation to the Long Life Blast Furnace Journal of Materials Science and Engineering B 5 (1-2) (2015) 36-41 doi: 10.17265/2161-6221/2015.1-2.003 D DAVID PUBLISHING Calculation and Analysis the Influence on the Cooling Water Velocity and Hot

More information

Subjects for Achievement of Blast Furnace Operation with Low Reducing Agent Rate

Subjects for Achievement of Blast Furnace Operation with Low Reducing Agent Rate , pp. 1379 1385 Subjects for Achievement of Blast Furnace Operation with Low Reducing Agent Rate Yutaka UJISAWA, Kaoru NAKANO, Yoshinori MATSUKURA, Kohei SUNAHARA, Shusaku KOMATSU and Takaiku YAMAMOTO

More information

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation Title Author(s) Citation Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation Nakamoto, Masashi; Tanaka, Toshihiro; Lee, Joonho; Usui, Tateo ISIJ International. 44(12)

More information

A Kinetic Study of the Carbothermic Reduction of Zinc Oxide with Various Additives

A Kinetic Study of the Carbothermic Reduction of Zinc Oxide with Various Additives Materials Transactions, Vol. 47, No. 9 (006) pp. 4 to 46 #006 The Japan Institute of Metals EXPRESS REGULAR ARTICLE A Kinetic Study of the Carbothermic Reduction of Zinc Oxide with Various Additives Byung-Su

More information

Thermodynamic Interaction between Chromium and Aluminum in Liquid Fe Cr Alloys Containing 26 mass% Cr

Thermodynamic Interaction between Chromium and Aluminum in Liquid Fe Cr Alloys Containing 26 mass% Cr ISIJ International, Vol. 51 (2011), o. 2, pp. 208 213 Thermodynamic Interaction between Chromium and uminum in Liquid Fe loys Containing 26 mass% Jong-h J, 1) Moon-Sic JUG, 1) Jong-Hyun PARK, 1) Chang-h

More information

THE HOT GAS DESULFURIZATION IN A COMPACT TWO BEDS SYSTEM INTEGRATED WITH COAL GASIFICATION AND FISHER-TROPSCH SYSTEM

THE HOT GAS DESULFURIZATION IN A COMPACT TWO BEDS SYSTEM INTEGRATED WITH COAL GASIFICATION AND FISHER-TROPSCH SYSTEM Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 21 THE HOT GAS DESULFURIZATION IN A COMPACT

More information

Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, , China

Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, , China Advanced Materials Research Online: 2012-05-14 ISSN: 1662-8985, Vols. 518-523, pp 5012-5015 doi:10.4028/www.scientific.net/amr.518-523.5012 2012 Trans Tech Publications, Switzerland CO 2 emissions from

More information

Studying the Sintering Behavior of Oxidized Magnetite Pellet During Induration

Studying the Sintering Behavior of Oxidized Magnetite Pellet During Induration Studying the Sintering Behavior of Oxidized Magnetite Pellet During Induration T. K. Sandeep Kumar 1, N.N. Viswanathan 2, H. Ahmed 1, 3, C. Andersson 4 and B. Björkman 1 1 Lulea University of Technology

More information

Effective Use of CH 4 Gas as a Reducing Agent in Suspension Reduction Process

Effective Use of CH 4 Gas as a Reducing Agent in Suspension Reduction Process , pp. 166 174 Effective Use of CH 4 Gas as a Reducing Agent in Suspension Reduction Process Woo-Il PARK and Sung-Mo JUNG* Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and

More information

REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN

REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN C. N. Harman Director (Technical), Facor Alloys Ltd., Shreeramnagar-535 101(A.P.), India;

More information

USING OF WASTE PET (POLYETHYLENE TEREPHTHALATE) AS AN ALTERNATIVE REDUCTANT IN IRON AND STEEL INDUSTRY

USING OF WASTE PET (POLYETHYLENE TEREPHTHALATE) AS AN ALTERNATIVE REDUCTANT IN IRON AND STEEL INDUSTRY USING OF WASTE PET (POLYETHYLENE TEREPHTHALATE) AS AN ALTERNATIVE REDUCTANT IN IRON AND STEEL INDUSTRY Gökhan POLATolat, Burak BIROL and Muhlis Nezihi SARIDEDE Department of Metallurgical and Materials

More information

Liquidus and phase equilibria in CaO-SiO 2 -FeO x -Al 2 O 3 system under intermediate oxygen partial pressure

Liquidus and phase equilibria in CaO-SiO 2 -FeO x -Al 2 O 3 system under intermediate oxygen partial pressure Liquidus and phase equilibria in CaO-SiO 2 -FeO x -Al 2 O 3 system under intermediate oxygen partial pressure Nan WANG 1*), Shuichao CHEN 1), Zongshu ZOU 1), Zhan ZHANG 2), Yanping XIAO 2) and Yongxiang

More information

Desulfurization of CaO Al 2 O 3 SiO 2 TiO 2 Slag System

Desulfurization of CaO Al 2 O 3 SiO 2 TiO 2 Slag System , pp. 2248 2254 Desulfurization of CaO Al 2 O 3 SiO 2 TiO 2 Slag System Kai DONG, 1) * Long WU, 2) Wen-juan LIU 3) and Rong ZHU 4) 1) School of Mechanical Engineering, University of Science and Technology

More information

INTERACTION MECHANISM BETWEEN REFRACTORY AND MELTS IN IRON BATH SMELTING REDUCTION PROCESS

INTERACTION MECHANISM BETWEEN REFRACTORY AND MELTS IN IRON BATH SMELTING REDUCTION PROCESS J o u r n a l o f J. Min. Metall. Sect. B-Metall. 46 (2) B (2010) 131-140 M i n i n g a n d M e t a l l u r g y INTERACTION MECHANISM BETWEEN REFRACTORY AND MELTS IN IRON BATH SMELTING REDUCTION PROCESS

More information

Influence of Al 2 O 3 and MgO on the Viscosity and Stability of CaO MgO SiO 2 Al 2 O 3 Slags with CaO/SiO 2 = 1.0

Influence of Al 2 O 3 and MgO on the Viscosity and Stability of CaO MgO SiO 2 Al 2 O 3 Slags with CaO/SiO 2 = 1.0 ISIJ International, Vol. 57 (2017), ISIJ International, No. 6 Vol. 57 (2017), No. 6, pp. 978 982 Influence of Al 2 O 3 and MgO on the Viscosity and Stability of CaO MgO SiO 2 Al 2 O 3 Slags with CaO/SiO

More information

Manganese Furnace Dust: Drying and Reduction of Zinc Oxide by Tar

Manganese Furnace Dust: Drying and Reduction of Zinc Oxide by Tar , pp. 906 911 Manganese Furnace Dust: Drying and Reduction of Zinc Oxide by Tar Tasuku HAMANO, 1) Guangqing ZHANG, 1) Peter BROWN 2) and Oleg OSTROVSKI 1) 1) School of Materials Science and Engineering,

More information

Summary of findings from HYBRIT Pre-Feasibility Study

Summary of findings from HYBRIT Pre-Feasibility Study Fe₂O₃ A joint venture between SSAB, LKAB and Vattenfall H₂O Summary of findings from HYBRIT Pre-Feasibility Study 2016 2017 This work was funded by the Swedish Energy Agency, SSAB, LKAB, and Vattenfall

More information

Melting Rate of Iron Oxide Pellets into Iron Melt*

Melting Rate of Iron Oxide Pellets into Iron Melt* UDC 622.341.1-188:669.046.512:669.162.263.24 Melting Rate of Iron Oxide Pellets into Iron Melt* By Akira SATO,** Ryuichi NAKAGAWA,** Shiro Akira FUKUZAWA** and Tsuyoshi OZAKI** YOSHIMATS U,** Synopsis

More information

Recovery of Molybdenum from Spent Lubricant

Recovery of Molybdenum from Spent Lubricant , pp. 1217 1224 Recovery of Molybdenum from Spent Lubricant Tran Van LONG, 1) Takahiro MIKI, 2) Yasushi SASAKI 3) and Mitsutaka HINO 4) 1) Formerly Graduate Student, Graduate School of Engineering, Tohoku

More information

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach and My Research in General Martin Andersson Division of Heat Transfer, Department of Energy Sciences, Faculty of Engineering (LTH),

More information

In situ studies of carbon formation leading to metal dusting in syngas processes

In situ studies of carbon formation leading to metal dusting in syngas processes In situ studies of carbon formation leading to metal dusting in syngas processes Olle Söderström Department of Chemical Engineering, Lund University February 2010 Abstract Metal dusting corrosion begins

More information

AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES

AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES P. N. Chaudhary & J. Pal Scientists, National Metallurgical Laboratory, Jamshedpur ABSTRACT The steelmaking slag

More information

Equilibrium Relationships between Oxide Compounds in MgO Ti 2 O 3 Al 2 O 3 with Iron at K and Variations in Stable Oxides with Temperature

Equilibrium Relationships between Oxide Compounds in MgO Ti 2 O 3 Al 2 O 3 with Iron at K and Variations in Stable Oxides with Temperature , pp. 2012 2018 Equilibrium Relationships between xide Compounds in 2 3 2 3 with Iron at 1 873 K and Variations in Stable xides with Temperature Hideki N 1) and Toshio IBUTA 2) 1) Division of Materials

More information

International Conference on Material Science and Application (ICMSA 2015)

International Conference on Material Science and Application (ICMSA 2015) International Conference on Material Science and Application (ICMSA 2015) Influence of Er on Microstructure and Properties of Al-0.2%Zr-0.06%B Heat-resistant Alloy Conductor Prepared by Continuous ECAE

More information

The use of coal in a solid phase reduction of iron oxide

The use of coal in a solid phase reduction of iron oxide IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The use of coal in a solid phase reduction of iron oxide To cite this article: O I Nokhrina et al 2015 IOP Conf. Ser.: Mater.

More information

Study of Calcination-Carbonation of Calcium Carbonate in Different Fluidizing Mediums for Chemical Looping Gasification in Circulating Fluidized Beds

Study of Calcination-Carbonation of Calcium Carbonate in Different Fluidizing Mediums for Chemical Looping Gasification in Circulating Fluidized Beds Engineering Conferences International ECI Digital Archives 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 Refereed Proceedings Spring 5-2-2011 Study of

More information

Growth Rate and Phase Composition of Oxide Scales during Hot Rolling of Low Carbon Steel

Growth Rate and Phase Composition of Oxide Scales during Hot Rolling of Low Carbon Steel , pp. 1554 1559 Growth Rate and Phase Composition of Oxide Scales during Hot Rolling of Low Carbon Steel Vladimir V. BASABE and Jerzy A. SZPUNAR Department of Mining, Metals and Materials Engineering,

More information

The Novel Design of an IGCC System with Zero Carbon Emissions

The Novel Design of an IGCC System with Zero Carbon Emissions 1621 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

Methods for Calculating Energy Requirements for Processes in Which a Reactant Is Also a Fuel: Need for Standardization

Methods for Calculating Energy Requirements for Processes in Which a Reactant Is Also a Fuel: Need for Standardization JOM, Vol. 66, No. 9, 2014 DOI: 10.1007/s11837-014-1120-y Ó 2014 The Minerals, Metals & Materials Society Methods for Calculating Energy Requirements for Processes in Which a Reactant Is Also a Fuel: Need

More information

Decomposition of Li 2 CO 3 in existence of SiO 2 in mould flux of steel casting

Decomposition of Li 2 CO 3 in existence of SiO 2 in mould flux of steel casting KIM, J-W., LEE, Y-D., KANG, Y-D and LEE, H-G. Decomposition of Li 2 CO 3 in existence of SiO 2 in mould flux of steel casting. VII International Conference on Molten Slags Fluxes and Salts, The South African

More information

Oxidation of Graphite and Metallurgical Coke

Oxidation of Graphite and Metallurgical Coke DEGREE PROJECT IN MATERIALS DESIGN AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 Oxidation of Graphite and Metallurgical Coke A Numerical Study with an Experimental Approach YOUSEF AHMAD

More information

Reduction of FeO in Molten Slags by Solid Carbon in. the Electric Arc Furnace Operation*

Reduction of FeO in Molten Slags by Solid Carbon in. the Electric Arc Furnace Operation* Reduction of FeO in Molten Slags by Solid Carbon in the Electric Arc Furnace Operation* By Masatoshi OZA WA, * * Syuzo KI TAGA WA, * * Suguru NAKA YAMA* * and Yoshinori TAKESONO * * Synopsis In the course

More information

A laboratory study of the reduction of iron oxides by hydrogen

A laboratory study of the reduction of iron oxides by hydrogen A laboratory study of the reduction of iron oxides by hydrogen D. Wagner, O. Devisme, F. Patisson, D. Ablitzer To cite this version: D. Wagner, O. Devisme, F. Patisson, D. Ablitzer. A laboratory study

More information

Never Stand Still Faculty of Science Materials Science and Engineering

Never Stand Still Faculty of Science Materials Science and Engineering ECIC - 2016 A STUDY OF GASEOUS REDUCTION OF MAGNETITE ORE IN A FIXED-BED REACTOR AND USING IN-SITU HIGH-TEMPERATURE XRD ANALYSIS Never Stand Still Faculty of Science Yury Kapelyushin 1, Yasushi Sasaki

More information

The MIDREX Process - The world s most reliable and productive Direct Reduction Technology

The MIDREX Process - The world s most reliable and productive Direct Reduction Technology The MIDREX Process - The world s most reliable and productive Direct Reduction Technology Designed for Today, Engineered for Tomorrow CONTENTS 2 THE MIDREX PROCESS 3 MIDREX DIRECT REDUCTION FLEXIBILITY

More information

Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process

Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process International Journal of Minerals, Metallurgy and Materials Volume 24, Number 9, September 2017, Page 991 DOI: 10.1007/s12613-017-1487-1 Basic characteristics of Australian iron ore concentrate and its

More information

Study on the Induration Cycle During Pelletization of Goethitic Iron Ore

Study on the Induration Cycle During Pelletization of Goethitic Iron Ore Study on the Induration Cycle During Pelletization of Goethitic Iron Ore Golap Md. Chowdhury*, C. Ram, Ratnesh Ram and S K Pan R&D Centre for Iron and Steel, SAIL, Ranchi, Jharkhand Email : golapmd@sail-rdcis.com

More information

Production and Development of Large Blast Furnaces from 2011 to 2014 in China

Production and Development of Large Blast Furnaces from 2011 to 2014 in China Review ISIJ International, Vol. 55 (2015), ISIJ International, No. 12 Vol. 55 (2015), No. 12, pp. 2519 2524 Production and Development of Large Blast Furnaces from 2011 to 2014 in China Dong-dong ZHOU,

More information

Brimacombe Lecture. Research on Sustainable Steelmaking

Brimacombe Lecture. Research on Sustainable Steelmaking Brimacombe Lecture Research on Sustainable Steelmaking R. J. Fruehan Center for Iron and Steelmaking Research Materials Science and Engineering Department Carnegie Mellon University Pittsburgh PA Tel:

More information

Viscosity and flow behaviour of TiO 2 -containing blast furnace slags under reducing conditions

Viscosity and flow behaviour of TiO 2 -containing blast furnace slags under reducing conditions XIE, D., MAO, Y. and ZHU, Y. Viscosity and flow behaviour of TiO 2 -containing blast furnace slags under reducing conditions. VII International Conference on Molten Slags Fluxes and Salts, The South African

More information

DRI Direct Reduced Iron

DRI Direct Reduced Iron DRI Direct Reduced Iron What is DRI? Sponge iron/dri has gained great prominence in world as a substitute of steel scrap (partially) in steel making in electric arc furnace and in induction furnace. Direct

More information

Application of waste plastics to electric furnaces for steel making as thermal and carbon sources

Application of waste plastics to electric furnaces for steel making as thermal and carbon sources Application of waste plastics to electric furnaces for steel making as thermal and carbon sources I. Naruse 1, T. Kameshima 1 & H. Omori 2 1 Department of Ecological Engineering, Toyohashi University of

More information

Kinetics of the Volatilization Removal of Zinc from Manganese Dust

Kinetics of the Volatilization Removal of Zinc from Manganese Dust Materials Transactions, Vol. 51, No. 7 (21) pp. 1313 to 1318 #21 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Kinetics of the Volatilization Removal of Zinc from Manganese Dust Byung-Su Kim 1;

More information

Trial to Evaluate Wettability of Liquid Zn with Steel Sheets Containing Si and Mn

Trial to Evaluate Wettability of Liquid Zn with Steel Sheets Containing Si and Mn Title Author(s) Citation Trial to Evaluate Wettability of Liquid Zn with Steel Sheets Containing Si and Mn Shimada, Shunsuke; Takada, Yoshihisa; Lee, Joonho; Tanaka, Toshihiro ISIJ International. 48(9)

More information

Effect of Al 2 O 3 or MgO on Liquidus Line in the FeO X Corner of FeO X -SiO 2 -CaO System at 1523 K under Various Oxygen Partial Pressures

Effect of Al 2 O 3 or MgO on Liquidus Line in the FeO X Corner of FeO X -SiO 2 -CaO System at 1523 K under Various Oxygen Partial Pressures High Temp. Mater. Proc., Vol. 30 (2011), pp. 333 338 Copyright 2011 De Gruyter. DOI 10.1515/HTMP.2011.053 Effect of Al 2 O 3 or MgO on Liquidus Line in the FeO X Corner of FeO X -SiO 2 -CaO System at 1523

More information

Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed

Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed K.H. Ji 1, B.H. Song *1, Y.J. Kim 1, B.S. Kim 1, W. Yang 2, Y.T. Choi 2, S.D. Kim 3 1 Department of

More information

INVESTIGATION OF THE WETTING CHARACTERISTICS OF LIQUID Fe-19%Cr-10%Ni ALLOYS ON THE ALUMINA AND DOLOMITE SUBSTRATES AT 1873 K

INVESTIGATION OF THE WETTING CHARACTERISTICS OF LIQUID Fe-19%Cr-10%Ni ALLOYS ON THE ALUMINA AND DOLOMITE SUBSTRATES AT 1873 K INVESTIGATION OF THE WETTING CHARACTERISTICS OF LIQUID Fe-19%Cr-10%Ni ALLOYS ON THE ALUMINA AND DOLOMITE SUBSTRATES AT 1873 K Joonho Lee & Minsoo Shin Korea University, Korea Joo-Hyun Park University of

More information

Effect of Chromium on Nitrogen Solubility in Liquid Fe Cr Alloys Containing 30 mass% Cr

Effect of Chromium on Nitrogen Solubility in Liquid Fe Cr Alloys Containing 30 mass% Cr ISIJ International, Vol. 49 (009), No., pp. 668 67 Effect of Chromium on Nitrogen Solubility in Liquid Fe Alloys Containing 30 mass% Wan-Yi KIM, ) Chang-Oh LEE, ) Chul-Wook YUN ) and Jong-Jin PAK ) ) Formerly

More information

Carbothermal Reduction of Boron-bearing Iron Concentrate and Melting Separation of the Reduced Pellet

Carbothermal Reduction of Boron-bearing Iron Concentrate and Melting Separation of the Reduced Pellet , pp. 751 757 Carbothermal Reduction of Boron-bearing Iron Concentrate and Melting Separation of the Reduced Pellet Guang WANG, Qingguo XUE, Xuefeng SHE and Jingsong WANG* State Key Laboratory of Advanced

More information

MODELLING COMBUSTION AND THERMAL NO X FORMATION IN ELECTRIC ARC FURNACES FOR THE PRODUCTION OF FERRO-SILICON AND SILICON-METAL

MODELLING COMBUSTION AND THERMAL NO X FORMATION IN ELECTRIC ARC FURNACES FOR THE PRODUCTION OF FERRO-SILICON AND SILICON-METAL MODELLING COMBUSTION AND THERMAL NO X FORMATION IN ELECTRIC ARC FURNACES FOR THE PRODUCTION OF FERRO-SILICON AND SILICON-METAL B. Ravary, C. Colomb 1 and S. T. Johansen 2 ERAMET Norway AS, c/o SINTEF Materials,

More information

Continuous Monitoring of Oxygen Chemical Potential at the Surface of Growing Oxide Scales during High Temperature Oxidation of Metals

Continuous Monitoring of Oxygen Chemical Potential at the Surface of Growing Oxide Scales during High Temperature Oxidation of Metals Materials Transactions, Vol. 49, No. 3 (2008) pp. 629 to 636 #2008 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Continuous Monitoring of Oxygen Chemical Potential at the Surface of Growing Oxide

More information

of Iron Oxide Concentrate University of Utah PI: H. Y. Sohn Postdoc: G. Han (1 st 1.5 yrs.) Lab Assts: M.E. Choi, Y.

of Iron Oxide Concentrate University of Utah PI: H. Y. Sohn Postdoc: G. Han (1 st 1.5 yrs.) Lab Assts: M.E. Choi, Y. 9953 - Suspension Hydrogen Reduction of Iron Oxide Concentrate University of Utah PI: H. Y. Sohn Postdoc: G. Han (1 st 1.5 yrs.) Lab Assts: M.E. Choi, Y. Zhang, Josh Ramos Partner Companies Dofasco Inc.,

More information

PYROMETALLURGY OF IRON

PYROMETALLURGY OF IRON Kwame Nkrumah University of Science & Technology, Kumasi, Ghana Pyrometallurgy of Iron Common sources of iron-bearing ores: PYROMETALLURGY OF IRON Oxide Ores Stoicheometry Iron Content (wt%) Magnetite

More information

Reaction Mechanism and Thermodynamics of Segregation Roasting of Iron Oxide

Reaction Mechanism and Thermodynamics of Segregation Roasting of Iron Oxide International Journal of Mineral Processing and Extractive Metallurgy 2016; 1(5): 64-69 http://www.sciencepublishinggroup.com/j/ijmpem doi: 10.11648/j.ijmpem.20160105.13 Reaction Mechanism and Thermodynamics

More information

Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al

Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al , pp. 223 2238 Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al Akifumi HARADA, 1) Gaku MIYANO, 2) Nobuhiro MARUOKA, 3) Hiroyuki SHIBATA 3) and Shin-ya KITAMURA 3) * 1) Graduate Student,

More information

Formation of Cementite from Titanomagnetite Ore

Formation of Cementite from Titanomagnetite Ore , pp. 641 646 Formation of Cementite from Titanomagnetite Ore Raymond James LONGBOTTOM, 1) Oleg OSTROVSKI 2) and Eungyeul PARK 2) 1) Formerly at School of Materials Science and Engineering, University

More information

Oxidation of Iron, Silicon and Manganese

Oxidation of Iron, Silicon and Manganese 08 Oxidation of Iron, Silicon and Manganese AkMB Rashid Professor, Department of MME BUET, Dhaka Today s Topics Oxidation of iron Oxidation and reduction of silicon Oxidation and reduction of manganese

More information

THERMO-CHEMICAL SURFACE HARDENING TREATMENT OF STEELS

THERMO-CHEMICAL SURFACE HARDENING TREATMENT OF STEELS THERMO-CHEMICAL SURFACE HARDENING TREATMENT OF STEELS P.K. AGARWAL Senior Engineer, TELCO, Jamshedpur CASE CARBURISING Case Carburising is a process in which austenised ferrous metal is brought into contact

More information

Reactor design and optimization V. Spallina, F. Gallucci, M.C. Romano, P. Chiesa, G. Lozza, M. van Sint Annaland

Reactor design and optimization V. Spallina, F. Gallucci, M.C. Romano, P. Chiesa, G. Lozza, M. van Sint Annaland CCS Conference 2013 Antwerp (B) 28-29 th 2013 Reactor design and optimization V. Spallina, F. Gallucci, M.C. Romano, P. Chiesa, G. Lozza, M. van Sint Annaland Outline Packed Bed Reactors (PBRs) for CLC

More information

Production and storage of hydrogen from methane by applying the redox of iron oxide

Production and storage of hydrogen from methane by applying the redox of iron oxide Proceedings of International Symposium on EcoTopia Science 7, ISETS7 (7) Production and storage of hydrogen from methane by applying the redox of iron oxide Fumio Okada, Masakatsu Morioki, Yoshito Umeda,

More information