Thin film PV Technologies Thin film Silicon PV Technology

Size: px
Start display at page:

Download "Thin film PV Technologies Thin film Silicon PV Technology"

Transcription

1 Thin film PV Technologies Thin film Silicon PV Technology Week 5.2 Arno Smets

2 Thin film Silicon solar cell

3 Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb (222) (210) (210) H

4 Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb (222) (210) (210) H

5 Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb (222) (210) (210) H

6 Semiconductor Materials IV semiconductors: Si, Ge Rn Xe Kr Ar Ne He At I Br Cl F Po Te Se S O Bi Sb As P N Pb Sn Ge Si C Tl In Ga Al B Hg Cd Zn Au Ag Cu VlllA VllA VlA VA lva lllva llb lb (222) (210) (210) H

7 Semiconductor Materials IV semiconductors: Si, Ge VlllA 1 H 29 lb Cu llb Zn lllva B Al Ga lva C Si Ge VA N P As VlA O S Se VllA F Cl Br He Ne Ar Kr a- Si x Ge 1- x :H nc- Si x Ge 1- x :H Ag Au Cd Hg In Tl Sn Pb Sb Bi Te Po (210) I At (210) Xe Rn (222)

8 Semiconductor Materials IV semiconductors: Si, Ge VlllA 1 H 29 lb Cu llb Zn lllva B Al Ga lva C Si Ge VA N P As VlA O S Se VllA F Cl Br He Ne Ar Kr a- Si x Ge 1- x :H nc- Si x Ge 1- x :H a-si x C 1-x :H Ag Au Cd Hg In Tl Sn Pb Sb Bi Te Po (210) I At (210) Xe Rn (222)

9 Semiconductor Materials IV semiconductors: Si, Ge VlllA 1 H lb Cu Ag Au llb Zn Cd Hg lllva B Al Ga In Tl lva C Si Ge Sn Pb VA N P As Sb Bi VlA O S Se Te Po (210) 9 VllA F Cl Br I At (210) He Ne Ar Kr Xe Rn (222) a- Si x Ge 1- x :H nc- Si x Ge 1- x :H a- Si x C 1- x :H nc- Si x O 1- x :H

10 Amorphous Network Source:

11 2 Material Phases: amorphous and microcrystalline silicon Several 100nm ~30-50 nm sta[onary columnar growth incuba[on zone substrate

12 Indirect band gap Energy photon phonon Momentum

13 Comparison with c- Si: ladce Wavenlength [micrometers] Absorp[on coefficient [cm - 1 ] a- Si Ge:H c- Si Photon [ev]

14 absorp[on no absorp[on 2.00 alloy Band gap ev P(λ) (x10 9 W m - 2 m - 1 ) AM Wavenlength (x10-9 m)

15 absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h ev ev P(λ) (x10 9 W m - 2 m - 1 ) AM Wavenlength (x10-9 m)

16 absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h a-sige:h ev ev ev P(λ) (x10 9 W m - 2 m - 1 ) AM Wavenlength (x10-9 m)

17 absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h a-sige:h a-sic:h ev ev ev >1.9 ev P(λ) (x10 9 W m - 2 m - 1 ) AM Wavenlength (x10-9 m)

18 absorp[on no absorp[on 2.00 alloy Band gap 1.75 a-si:h a-sige:h a-sic:h nc-sio:h ev ev ev >1.9 ev >2.0 ev P(λ) (x10 9 W m - 2 m - 1 ) AM Wavenlength (x10-9 m)

19 Defects in the ladce

20 An p- i- n juncion Back Reflector TCO Glass

21 : drij mechanism required for transport p- a- SiC:H Intrinsic n- E Fermi

22 Principle of p- i- n juncion p- a- SiC:H Intrinsic n- Conduc[on band E Fermi Valence band

23 A typical p- i- n juncion Back Reflector n i p TCO TCO Glass

24 Spectral Irradiance (W/m 2 /nm) UV O 3 AbsorpIon Visible Solar RadiaIon Spectrum O 2 Infrared Sunlight Top of the Atmosphere H 2 O 5800 K Blackbody Spectrum H 2 O H 2 O Radia[on at Sea Level H 2 O AbsorpIon Bands CO 2 H 2 O Wavelength (nm) Does not cover en[re spectrum! Back Reflector TCO Glass

25 Spectral Irradiance (W/m 2 /nm) Solar RadiaIon Spectrum 2.5 UV Visible Infrared 2 Sunlight Top of the Atmosphere 5800 K Blackbody Spectrum H 2 O Radia[on at Sea Level 0.5 H 2 O AbsorpIon Bands O 2 H 2 O CO O 2 H 2 O 3 H 0 2 O Wavelength (nm) AbsorpIon Does not cover en[re spectrum! Back Reflector TCO Glass

26 Back Reflector Solar RadiaIon Spectrum 2.5 UV Visible Infrared Spectral Irradiance (W/m 2 /nm) O 3 AbsorpIon A- Si:H O 2 Sunlight Top of the Atmosphere H 2 O 5800 K Blackbody Spectrum H 2 O H 2 O Radia[on at Sea Level H 2 O AbsorpIon Bands CO 2 H 2 O Wavelength (nm) AbsorpIon Beler spectrum coverage! µc- Si:H TCO Glass

27 The / tandem E Fermi nm nm

28 p- a- SiC:H Intrinsic n- p- n- Conduc[on band E Fermi Valence band nm nm

29 Double- juncion approach 30 Single pin 30 Tandem Back Reflector 25 The / Back Reflector 25 J (ma/cm 2 ) TCO Glass flexible substrate J (ma/cm 2 ) ? µc- Si:H TCO Glass Voltage (V) Voltage (V)

30 Double- juncion approach 30 Single pin 30 Tandem Back Reflector 25 The / Back Reflector 25 J (ma/cm 2 ) TCO Glass flexible substrate J (ma/cm 2 ) µc- Si:H TCO Glass Voltage (V) Voltage (V)

31 MulI- juncion based solar cells Ag Ag Ag Ag 180 Ito Ito 160 ΖnΟ Ag Flexible SS / / n- i- p / n- i- p / n- i- p a- Si:Ge:H a- Si:Ge:H ΖnΟ Ag Flexible SS a- Si:Ge:H / a- Si:Ge:H / n- i- p / n- i- p / n- i- p AM 1.5 spectum (mw/(cm 2 μm)) Wavelength (nm)

32 /a- SiGe:H/ mul5- junc5ons United Solar: IniIal efficiency: 16.3 % B. Yan, Appl. Phys. Le1. 99, (2011).

33 MulI- juncion approach 10.1% 12.3% Ag 13.4% 16.3% (ini[al) Ag lto Ito Ito Back Reflector Ag Ag Ag Ag Back Reflector a- Si:Ge:H a- Si:Ge:H a- Si:Ge:H TCO TCO ΖnΟ ΖnΟ ΖnΟ Glass Flexible substrate Glass Ag Flexible SS Ag Flexible SS Ag Flexible SS p- i- n / p- i- n / p- i- n / p- i- n / / n- i- p / n- i- p / n- i- p a- Si:Ge:H / a- Si:Ge:H / n- i- p / n- i- p / n- i- p / a- Si:Ge:H / n- i- p / n- i- p / n- i- p

34 MulI- juncion approach 12.3% Ag 13.4% lto Back Reflector Ag TCO Glass / p- i- n / p- i- n ΖnΟ Ag Flexible SS / / n- i- p / n- i- p / n- i- p

35 MulI- juncion approach 12.3% Ag 13.4% lto Back Reflector Ag TCO Glass / p- i- n / p- i- n ΖnΟ Ag Flexible SS / / n- i- p / n- i- p / n- i- p

36 Glass Front TCO A- Si:H Black metal Encapsulant

37 TF silicon modules manufacturing Glass Front TCO Black metal Encapsulant

38 TF silicon modules manufacturing 1. Glass plates used as substrate carrier Glass

39 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition Glass Front TCO

40 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 Glass Front TCO

41 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition Glass Front TCO

42 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 Glass Front TCO

43 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 Glass Front TCO Black metal 6. Back metal deposition

44 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 Glass Front TCO Black metal 6. Back metal deposition 7. Laser scribing: L3

45 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 6. Back metal deposition Glass Front TCO Black metal Encapsulant 7. Laser scribing: L3 8. Encapsulant

46 TF silicon modules manufacturing 1. Glass plates used as substrate carrier 2. Front TCO deposition 3. Laser scribing: L1 4. Si:H layers deposition 5. Laser scribing: L2 6. Back metal deposition Glass Front TCO Black metal Encapsulant 7. Laser scribing: L3 8. Encapsulant

47 Micromorph Tandem Module

48 HyET Solar Manufacturing sequence: Al foil + TCO + + back contact + carrier foil Al foil + series connect + contact wires + curng + encapsulant

49 Flexible Products

50 Thank you for your azenion!

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator 1 Outline Why thin film Si? Advantages of Si thin film Si thin film vs. other thin film Hydrogenated amorphous silicon Energy gap

More information

Production of PV cells

Production of PV cells Production of PV cells MWp 1400 1200 Average market growth 1981-2003: 32% 2004: 67% 1000 800 600 400 200 0 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 rest 1.0 1.0 1.0 2.0 4.0

More information

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang Research on high efficiency and low cost thin film silicon solar cells Xiaodan Zhang 2013 China-America Frontiers of Engineering, May 15-17, Beijing, China Institute Institute of of photo-electronics

More information

Silicon thin film e coating per il fotovoltaico

Silicon thin film e coating per il fotovoltaico Silicon thin film e coating per il fotovoltaico Paola Delli Veneri UTTP-Unità Tecnica Tecnologie, Laboratorio Materiali e Dispositivi di Base M.Luisa Addonizio UTTP-Unità Tecnica Tecnologie, Unità Tecnica

More information

1 Introduction 1.1 Solar energy worldwide

1 Introduction 1.1 Solar energy worldwide 1 Introduction 1.1 Solar energy worldwide Solar energy, the earth s source of life, has an enormous potential to also become earth s inexhaustible and clean energy/electricity source. Each year the earth

More information

Polycrystalline and microcrystalline silicon

Polycrystalline and microcrystalline silicon 6 Polycrystalline and microcrystalline silicon In this chapter, the material properties of hot-wire deposited microcrystalline silicon are presented. Compared to polycrystalline silicon, microcrystalline

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

KGC SCIENTIFIC TYPES OF SOLAR CELL

KGC SCIENTIFIC  TYPES OF SOLAR CELL KGC SCIENTIFIC www.kgcscientific.com TYPES OF SOLAR CELL How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free

More information

Thin film solar cells

Thin film solar cells Thin film solar cells pn junction: a:si cells heterojunction cells: CIGS-based CdTe-based 1 Amorphous Si large concentration of defects N T >10 16 cm -3 ( dangling bonds D +, D -, D o ) passivation of

More information

Using Mass Metrology for Process Monitoring and Control During 3D Stacking of IC s

Using Mass Metrology for Process Monitoring and Control During 3D Stacking of IC s Metryx Copyright 1 Using Mass Metrology for Process Monitoring and Control During 3D Stacking of IC s SEMATECH 3D Interconnect Workshop 11 th July 2012 Metryx Copyright 2 Mass Metrology Less Mass More

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Modeling of Tandem solar cell a-si/a-sige using AMPS-1D program

Modeling of Tandem solar cell a-si/a-sige using AMPS-1D program Available online at www.sciencedirect.com Energy Procedia 18 (2012 ) 693 700 Modeling of Tandem solar cell a-si/a-sige using AMPS-1D program A. A. Boussettine a*, Y. Belhadji, A. Benmansour, URMER laboratory

More information

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs STATO E PROSPETTIVE DEL FOTOVOLTAICO IN ITALIA 26 giugno 2014 ENEA Via Giulio Romano n. 41, Roma Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs Anna Battaglia,

More information

Amorphous silicon thin film solar cells

Amorphous silicon thin film solar cells Amorphous silicon thin film solar cells c-si a-si large concentration of intrinsic defects N T >10 16 cm -3 ( dangling bonds D +, D -, D o ) doping more difficult, e.g. if we increase a number of free

More information

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund

Review of Photovoltaic Solar Cells. Op5cs for Energy Course 11/5/13 Liz Lund Review of Photovoltaic Solar Cells Op5cs for Energy Course 11/5/13 Liz Lund Outline Solar electricity produc5on How Photovoltaics (PV) work Types of PV Emerging technologies Solar Electricity Produc5on

More information

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells. Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells. Pratima Agarwal*, H. Povolny, S. Han and X. Deng. Department of Physics and Astronomy, University of Toledo,

More information

HANA BENEŃOVÁ 1, PETR MACH 2

HANA BENEŃOVÁ 1, PETR MACH 2 Wydawnictwo UR 2017 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 3/21/2017 www.eti.rzeszow.pl DOI: 10.15584/eti.2017.3.11 HANA BENEŃOVÁ 1, PETR MACH 2 Suggestion for Modify of

More information

The contemporary Nickel Cycle

The contemporary Nickel Cycle Center for Industrial Ecology Yale School of Forestry & Environmental Studies The contemporary Nickel Cycle (selection only) Barbara Reck April 24, 2006 Note The slides shown hereafter only include a selection

More information

Substrate Temperature Control of Narrow Band Gap Hydrogenated Amorphous Silicon Germanium for Solar Cells

Substrate Temperature Control of Narrow Band Gap Hydrogenated Amorphous Silicon Germanium for Solar Cells Asian J. Energy Environ., Vol. 5, Issue 3, (2004), pp. 211-222 Substrate Temperature Control of Narrow Band Gap Hydrogenated Amorphous Silicon Germanium for Solar Cells Mursal 1), S. Amiruddin 2), I. Usman

More information

Sensors & Transducers 2014 by IFSA Publishing, S. L.

Sensors & Transducers 2014 by IFSA Publishing, S. L. Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Investigation of Performance Silicon Heterojunction Solar Cells Using a-si: H or a-sic: H at Emitter Layer Through AMPS-1D

More information

Evidence of Performance regarding the requirements for float glass according to EN 572

Evidence of Performance regarding the requirements for float glass according to EN 572 Evidence of Performance regarding the requirements for float glass according to EN 572 Test Report 605 32401 Client Noval Glass Industrial Group (China) Co., Ltd. Noval Glass Industiral Zone Qingdao, 523965

More information

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells

Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells Two-dimensional Computer Modeling of Single Junction a-si:h Solar Cells Changwoo Lee, Harry Efstathiadis, James E. Raynolds, Pradeep Haldar Energy and Environmental Applications Center (E2TAC) College

More information

13.4 Chalcogenide solar cells Chalcopyrite solar cells

13.4 Chalcogenide solar cells Chalcopyrite solar cells 13. Thin-Film Solar Cells 201 Figure 13.19: The crystal structure of copper indium diselenide, a typical chalcopyrite. The colors indicate copper (red), selenium (yellow) and indium (blue). For copper

More information

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP im- PHYSICSOF SOLARCELLS Jenny Nelson Imperial College, UK ICP Imperial College Press Contents Preface v Chapter 1 Introduction 1 1.1. Photons In, Electrons Out: The Photovoltaic Effect 1 1.2. Brief History

More information

Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans

Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans Where do we start? ocreate the Universe oform the Earth and elements omove the elements into their correct positions obuild the atmosphere and oceans 1 The BIG BANG The Universe was created 13.8 billion

More information

Thin film CdS/CdTe solar cells: Research perspectives

Thin film CdS/CdTe solar cells: Research perspectives Solar Energy 80 (2006) 675 681 www.elsevier.com/locate/solener Thin film CdS/CdTe solar cells: Research perspectives Arturo Morales-Acevedo * CINVESTAV del IPN, Department of Electrical Engineering, Avenida

More information

Temperature dependence of the optical absorption coefficient of microcrystalline silicon

Temperature dependence of the optical absorption coefficient of microcrystalline silicon Published in Journal of Non-Crystalline Solids 338-340, 222-227, 2004 which should be used for any reference to this work 1 Temperature dependence of the optical absorption coefficient of microcrystalline

More information

7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors

7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors 7 µc-si:h n-i-p solar cells on textured Ag ZnO:Al back reflectors 7.1 Introduction The present study on ZnO:Al and textured Ag back reflectors is aimed at application in thin film µc-si n-i-p solar cells.

More information

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells

Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells Transparent oxides for selective contacts and passivation in heterojunction silicon solar cells Francesca Menchini Photovoltaic Technologies Laboratory, ENEA Casaccia LIMS 2018 17-18 maggio 2018 Outline

More information

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation Thin-Film Silicon Technology and Manufacturing Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight Xunlight products and installations

More information

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element 1 Name: Period: Date: KIPP NYC College Prep General Chemistry UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element Do Now: By the end of today, you will have an answer to: How do you know

More information

THIN FILM SILICON PV TECHNOLOGY

THIN FILM SILICON PV TECHNOLOGY Journal of ELECTRICAL ENGINEERING, VOL. 61, NO. 5, 2010, 271 276 THIN FILM SILICON PV TECHNOLOGY Miroslav Zeman Thin-film silicon solar cell technology is one of the promising photovoltaic technologies

More information

PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts

PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts Laure-Emmanuelle Perret-Aebi, Christophe Ballif April 11 th 2014 Congrès Photovoltaïque National 2014, Lausanne

More information

Crystalline Silicon Solar Cells

Crystalline Silicon Solar Cells 12 Crystalline Silicon Solar Cells As we already discussed in Chapter 6, most semiconductor materials have a crystalline lattice structure. As a starting point for our discussion on crystalline silicon

More information

Thin Film PV Transparent Conductive Oxide History, Functions, and Developments. Chris Cording AGC Flat Glass North America

Thin Film PV Transparent Conductive Oxide History, Functions, and Developments. Chris Cording AGC Flat Glass North America Thin Film PV Transparent Conductive Oxide History, Functions, and Developments Chris Cording AGC Flat Glass North America Introduction Thin-film modules often require a front Transparent Conductive Oxide

More information

E3 Redox: Transferring electrons. Session one of two First hour: Discussion (E1) 2nd and 3rd hour: Lab (E3, Parts 1 and 2A)

E3 Redox: Transferring electrons. Session one of two First hour: Discussion (E1) 2nd and 3rd hour: Lab (E3, Parts 1 and 2A) E3 Redox: Transferring electrons Session one of two First hour: Discussion (E) 2nd and 3rd hour: Lab (E3, Parts and 2A) Oxidation-Reduction (Redox) Reactions involve electron transfer. Change in charge

More information

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY Meijun Lu 1,2, Ujjwal Das 1, Stuart Bowden 1, and Robert Birkmire 1,2 1 Institute of Energy

More information

The Potential of Photovoltaics

The Potential of Photovoltaics The Potential of Photovoltaics AIMCAL 2008 2008 Fall Conference Vacuum Web Coating Brent P. Nelson October 22, 2008 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

More information

Solar cell technologies present and future

Solar cell technologies present and future Solar cell technologies present and future Joachim LUTHER, Armin ABERLE and Peter Wuerfel Solar Energy Research Institute of Singapore (SERIS) Nature Photonics Technology Conference, Tokyo, Japan 20 October

More information

A ZnOS Demonstrator Solar Cell and its Efficiency

A ZnOS Demonstrator Solar Cell and its Efficiency Performance Enhancement of Large Area Solar cells by incorporating Nanophosphors: 1 A ZnOS Demonstrator Solar Cell and its Efficiency High quality ternary ZnO 1-x S x (0 x 1.0) nanocrystals in the whole

More information

CHM101 SECOND EXAM 162. Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017

CHM101 SECOND EXAM 162. Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017 Chemistry 101 SECOND Exam (162) Name: Date: 30/4/2017 Student no. Section: Useful Information:Gas Constant R= 0.08206 L.atm/K.mol, Specific heat of H 2 O=4.18 J/g. C 1 atm. = 760 mmhg. H 1 He 2 1.000 4

More information

New Materials from Mathematics Real and Imagined

New Materials from Mathematics Real and Imagined New Materials from Mathematics Real and Imagined Richard James University of Minnesota Thanks: John Ball, Kaushik Bhattacharya, Jun Cui, Traian Dumitrica, Stefan Müller, Ichiro Takeuchi, Rob Tickle, Manfred

More information

Crystal Structure. Insulin crystals. quartz. Gallium crystals. Atoms are arranged in a periodic pattern in a crystal.

Crystal Structure. Insulin crystals. quartz. Gallium crystals. Atoms are arranged in a periodic pattern in a crystal. Crystal Structure Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material. Many important materials (silicon, steel) are crystals

More information

PHOTOVOLTAIC CELLS

PHOTOVOLTAIC CELLS www.ljuhv.com PHOTOVOLTAIC CELLS How Photovoltaic Cell Work When sunshine that contain photon strike the panel, semiconductor material will ionized Causing electron to break free from their bond. Due to

More information

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool

Lecture 8 : Solar cell technologies, world records and some new concepts. Prof Ken Durose University of Liverpool Lecture 8 : Solar cell technologies, world records and some new concepts Prof Ken Durose University of Liverpool Review papers on PV there are lots do read one or two! Materials Today 2007 NREL efficiency

More information

Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation

Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation 182 Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation Oday A. Hamadi, Khaled Z. Yahia, and Oday N. S. Jassim Abstract In this work, thermal evaporation system was

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 7: Chemical systems

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 7: Chemical systems CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 7: Chemical systems MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Thermophotovoltaic Cells Based on Low-Bandgap Compounds

Thermophotovoltaic Cells Based on Low-Bandgap Compounds Thermophotovoltaic Cells Based on Low-Bandgap Compounds V.P.Khvostikov, V.D.Rumyantsev, O.A.Khvostikova, M.Z.Shvarts P.Y.Gazaryan, S.V.Sorokina, N.A.Kaluzhniy, V.M.Andreev Ioffe Physico-Technical Institute,

More information

systematic table of elements

systematic table of elements systematic table of elements increasing num mber of electrons increasin ng atomar mass Be B C N O F Ne hydrogen (1 electron) helium (2 electrons) lithium (3 electrons) beryllium (4 electrons) boron (5

More information

Nanoparticle generation using sputtering plasmas

Nanoparticle generation using sputtering plasmas NCCAVS Joint Users Group Technical Symposium Nanomaterials for Energy, Biomedical, and Electronic Devices In Conjunction with the NCCAVS 35th Annual Equipment Exhibition Nanoparticle generation using sputtering

More information

Chem : Oct. 1 - Oct. 7

Chem : Oct. 1 - Oct. 7 Chem. 125-126: Oct. 1 - Oct. 7 Preparation Pre-lab Report (p.90) for E3 completed Discussion Presentation for E2 completed Pre-lab reading and studies for E3 completed Agenda One hour discussion of E2(Questions,

More information

Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides

Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides Precursors with Metal-Nitrogen Bonds for ALD of Metals, Nitrides and Oxides Abstract Roy Gordon Gordon@chemistry.harvard.edu, Cambridge, MA To achieve ALD s unique characteristics, ALD precursors must

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

Polycrystalline CdS/CdTe solar cells

Polycrystalline CdS/CdTe solar cells Polycrystalline CdS/CdTe solar cells Al Compaan Distinguished University Professor of Physics, Emeritus (Lecture for Heben/Ellingson solar cells class) March 3, 2011 1 Absorption spectra of various semiconductors

More information

FRONT END PROCESSES - CLEANING, LITHOGRAPHY, OXIDATION ION IMPLANTATION, DIFFUSION, DEPOSITION AND ETCHING

FRONT END PROCESSES - CLEANING, LITHOGRAPHY, OXIDATION ION IMPLANTATION, DIFFUSION, DEPOSITION AND ETCHING Manufacturing, Cleaning, Gettering - Chapter 4 FRONT END PROCESSES - CLEANING, LITHOGRAPHY, OXIDATION ION IMPLANTATION, DIFFUSION, DEPOSITION AND ETCHING Over the next several weeks, we ll study front

More information

Introduction of the a-sic:h/a-si:h heterojunction solar cell and update on thin film Si:H solar modules

Introduction of the a-sic:h/a-si:h heterojunction solar cell and update on thin film Si:H solar modules Philosophical Magazine ISSN: 1478-6435 (Print) 1478-6443 (Online) Journal homepage: https://www.tandfonline.com/loi/tphm20 Introduction of the a-sic:h/a-si:h heterojunction solar cell and update on thin

More information

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Erten Eser, Steven S. Hegedus and Wayne A. Buchanan Institute of Energy Conversion University of Delaware, Newark,

More information

Chemistry*120* * Name:! Rio*Hondo*College* * * EXAMPLE*EXAM*1*!

Chemistry*120* * Name:! Rio*Hondo*College* * * EXAMPLE*EXAM*1*! Chemistry*120* * Name: EXAMPLE*EXAM*1* Exam)#1 100)points) Directions:)Answereachquestionbelowtothebestofyourability.Showallworkwherecalculations arerequired.aninformationsheetwithaperiodictableisattachedtothebackoftheexam;youmay

More information

Chem : Feb.12-17

Chem : Feb.12-17 Chem. 25-26: Feb.2-7 Preparation Pre-lab Report (p.90) for E3 completed Discussion Presentation for E2 completed Pre-lab reading and studies for E3 completed Lab Agenda One hour discussion of E 2(Questions,

More information

Hybrid sputtering/evaporation deposition of Cu(In,Ga)Se 2 thin film solar cells

Hybrid sputtering/evaporation deposition of Cu(In,Ga)Se 2 thin film solar cells Available online at www.sciencedirect.com Energy Procedia 10 (2011 ) 138 143 European Materials Research Society Conference Symp. Advanced Inorganic Materials and Concepts for Photovoltaics Hybrid sputtering/evaporation

More information

New Applications of Old Materials From Paint to Solar Cells

New Applications of Old Materials From Paint to Solar Cells New Applications of Old Materials From Paint to Solar Cells Peter Peumans Integrated Circuits Lab, Stanford University ppeumans@stanford.edu Sponsored by NSF Solar Energy At earth s surface average solar

More information

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers supplementary material Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and

More information

Grid-Tied PV System with Energy Optimization

Grid-Tied PV System with Energy Optimization International Journal of Engineering Works Kambohwell Publisher Enterprises Vol. 4, Issue 10, PP. 184-189, October 2017 www.kwpublisher.com Grid-Tied PV System with Energy Optimization Maryam Shahjehan,

More information

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K.

Winter College on Optics and Energy February Thin Film Technologies. D. Bagnall Southampton University U.K. 2132-6 Winter College on Optics and Energy 8-19 February 2010 Thin Film Technologies D. Bagnall Southampton University U.K. Thin Film Technologies Professor Darren Bagnall Electronics and Computer Science,

More information

Available online at ScienceDirect. Energy Procedia 102 (2016 ) 64 69

Available online at   ScienceDirect. Energy Procedia 102 (2016 ) 64 69 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 2 (2016 ) 64 69 E-MRS Spring Meeting 2016 Symposium T - Advanced materials and characterization techniques for solar cells III, 2-6

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Complementary Metal-Oxide-Semiconductor Very Large-Scale Integrated Circuit Design

Complementary Metal-Oxide-Semiconductor Very Large-Scale Integrated Circuit Design Complementary Metal-Oxide-Semiconductor Very Large-Scale Integrated Circuit Design Bradley A. Minch Mixed Analog-Digital VLSI Circuits and Systems Lab Cornell University Ithaca, NY 14853 5401 minch@ece.cornell.edu

More information

Introduction. 1.1 Solar energy

Introduction. 1.1 Solar energy 1 Introduction This chapter provides a general background on solar cells. In particular, the necessity of developing thin-film silicon tandem solar cells is discussed. The working principles of two different

More information

Solar Cell: From Research to Manufacture

Solar Cell: From Research to Manufacture Solar Cell: From Research to Manufacture Mater. Res. Soc. Symp. Proc. Vol. 1245 2010 Materials Research Society 1245-A01-01 Thin Film Silicon Photovoltaic Technology - From Innovation to Commercialization

More information

Marina Foti IMS R&D. Convegno su Tecnologie, tecniche impiantistiche e mercato del fotovoltaico. 15 Ottobre2012 Mondello(PA)

Marina Foti IMS R&D. Convegno su Tecnologie, tecniche impiantistiche e mercato del fotovoltaico. 15 Ottobre2012 Mondello(PA) R&D sul fotovoltaico in STM Marina Foti IMS R&D STMicroelctronics Convegno su Tecnologie, tecniche impiantistiche e mercato del fotovoltaico 15 Ottobre2012 Mondello(PA) Outline Thin film module technology

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

The Laser Ablation as a perspective technique for the deposition of metal-silicide nanoparticles in situ embedded in PECVD of Si:H thin films

The Laser Ablation as a perspective technique for the deposition of metal-silicide nanoparticles in situ embedded in PECVD of Si:H thin films Proc. Int. Conf. and Summer School on Advanced Silicide Technology 2014 JJAP Conf. Proc. 3 (2015) 011302 2015 The Japan Society of Applied Physics The Laser Ablation as a perspective technique for the

More information

State-of-the-art Flame Synthesis of Nanoparticles

State-of-the-art Flame Synthesis of Nanoparticles Verbrennung und chemisch reaktive Prozesse in der Energie- und Materialtechnik State-of-the-art Flame Synthesis of Nanoparticles Dr. Frank Ernst ernst@ptl.mavt.ethz.ch 200 nm Particle Technology Laboratory,

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.9, No.01 pp , 2016 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.01 pp 185-191, 2016 Study and Optimization Optical and Electrical properties of the p, i and n- Layers of Single

More information

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839)

Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Photovoltaic cells from the experiment of Bequerel to the dye-sensitized solar cell (DSSC) Diagram of apparatus described by Becquerel (1839) Sample geometry used by Adams and Day (1876) for the investigation

More information

Gallium Arsenide monocrystalline

Gallium Arsenide monocrystalline Gallium Arsenide CMK manufacture Semi-insulating and Semiconducting Gallium Arsenide wafers and ingots by LEC (Liquid Encapsulated Czochralsky) or VGF (Vertical Gradient Freeze) growth method. Required

More information

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS Emmanuelle ROUVIERE CEA Grenoble (France) emmanuelle.rouviere@cea.fr Outline Introduction Photovoltaic technologies and market Applications Promising Thin

More information

Thin-film Silicon Photovoltaics Miro Zeman

Thin-film Silicon Photovoltaics Miro Zeman Thin-film Silicon Photovoltaics Miro Zeman Delft University of Technology, Photovoltaic Materials and Devices group Outline 1. Introduction 2. Cost and performance 3. Key challenge: Increasing efficiency

More information

Introduction to Solar Cell Materials-I

Introduction to Solar Cell Materials-I Introduction to Solar Cell Materials-I 23 July 2012 P.Ravindran, Elective course on Solar Rnergy and its Applications Auguest 2012 Introduction to Solar Cell Materials-I Photovoltaic cell: short history

More information

Li Mass = 7 amu Melting point C Density 0.53 g/cm 3 Color: silvery

Li Mass = 7 amu Melting point C Density 0.53 g/cm 3 Color: silvery Blackline Master B02: Mendeleev s Element Cards H Mass = 1 amu Melting point -259 0 C Density 0.0909 g/cm 3 Color: colorless Li Mass = 7 amu Melting point 180.5 0 C Density 0.53 g/cm 3 Be Mass = 9 amu

More information

New Materials from Mathematics Real and Imagined

New Materials from Mathematics Real and Imagined New Materials from Mathematics Real and Imagined on the occasion of the 10 th anniversary of the Max Planck Institute for Mathematics in the Sciences Richard D. James MIS-MPI and the University of Minnesota

More information

ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL

ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL ROLL TO ROLL FABRICATION PROCESS OF THIN FILM SILICON SOLAR CELLS ON STEEL FOIL B.B. Van Aken, M. Dörenkämper, C. Devilee, M.C.R. Heijna, J. Löffler and W.J. Soppe ECN Solar Energy, P.O. Box 1, 1755 ZG

More information

Material Needs for Thin-Film and Concentrator Photovoltaic Modules

Material Needs for Thin-Film and Concentrator Photovoltaic Modules Material Needs for Thin-Film and Concentrator Photovoltaic Modules NREL Sarah Kurtz CDMA Conference: Opportunities for Chemicals and Materials in Wind and Solar Energy December 4, 2009 Philadelphia, PA

More information

DEPTH SELECTIVE LASER SCRIBING OF THIN FILMS FOR ROLL-TO-ROLL PRODUCTION OF SILICON SOLAR CELLS Paper M902

DEPTH SELECTIVE LASER SCRIBING OF THIN FILMS FOR ROLL-TO-ROLL PRODUCTION OF SILICON SOLAR CELLS Paper M902 DEPTH SELECTIVE LASER SCRIBING OF THIN FILMS FOR ROLL-TO-ROLL PRODUCTION OF SILICON SOLAR CELLS Paper M902 Jochen Löffler, Laurie Wipliez, Martijn de Keijzer, Johan Bosman, Wim Soppe ECN, Solar Energy,

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

Available online at ScienceDirect. Energy Procedia 84 (2015 ) 17 24

Available online at  ScienceDirect. Energy Procedia 84 (2015 ) 17 24 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 84 (2015 ) 17 24 E-MRS Spring Meeting 2015 Symposium C - Advanced inorganic materials and structures for photovoltaics Annealing

More information

From theoretical chemistry to nuclear physics and back

From theoretical chemistry to nuclear physics and back From theoretical chemistry to nuclear physics and back H. Haas CICECO, Universidade de Aveiro, 381-193 Aveiro, Portugal and CERN/PH-IS, CH-1211 Geneve-23, Switzerland Nuclear quadrupole interaction p-electron

More information

Families on the Periodic Table

Families on the Periodic Table Families on the Periodic Table Elements on the periodic table can be grouped into families based on their chemical properties. Each family has a specific name to differentiate it from the other families

More information

5 Stability of a-sige:h as material, single junction and tandem solar cells

5 Stability of a-sige:h as material, single junction and tandem solar cells 5 Stability of a-sige:h as material, single junction and tandem solar cells 5.1 Introduction Although a-si:h is an inexpensive material for large area applications, suitable for very diverse fields, the

More information

Amorphous Silicon Based Solar Cells

Amorphous Silicon Based Solar Cells Syracuse University SURFACE Physics College of Arts and Sciences 2003 Amorphous Silicon Based Solar Cells Xunming Deng University of Toledo Eric A. Schiff Syracuse University Follow this and additional

More information

Summary and Scope for further study

Summary and Scope for further study Chapter 6 Summary and Scope for further study 6.1 Summary of the present study Transparent electronics is an emerging science and technology field concentrated on fabricating invisible electronic circuits

More information

Lecture 10: Semiconductors

Lecture 10: Semiconductors Lecture 10: Semiconductors Definitions Band structure, band gap Basic principles Doping Electrical properties Important semiconductor materials Main group semiconductors Transition metal main group SCs

More information

Solar electricity from and for buildings

Solar electricity from and for buildings Solar electricity from and for buildings Solar electricity from and for buildings The silent revolution of photovoltaic technology Wim C. Sinke ECN Solar Energy, Utrecht University & European Photovoltaic

More information

Si Quantum Dots for Solar Cell Applications

Si Quantum Dots for Solar Cell Applications IRCC Award Talk Si Quantum Dots for Solar Cell Applications 18th Aug. 2010 Chetan S. Solanki Department of Energy Science and Engineering Indian Institute of Technology Acknowledgements Dr. Ashish Panchal

More information

Growth and Characterization of Thin Film Nanocrystalline Silicon Materials and Solar Cells

Growth and Characterization of Thin Film Nanocrystalline Silicon Materials and Solar Cells Growth and Characterization of Thin Film Nanocrystalline Silicon Materials and Solar Cells Solomon Nwabueze Agbo Growth and Characterization of Thin Film Nanocrystalline Silicon Materials and Solar Cells

More information

Insights to high efficiency CIGS thin-film solar cells and tandem devices with Perovskites

Insights to high efficiency CIGS thin-film solar cells and tandem devices with Perovskites Insights to high efficiency CIGS thin-film solar cells and tandem devices with Perovskites Dr. Stephan Buecheler Contact: stephan.buecheler@empa.ch Direct: +4158 765 6107 Laboratory for Thin Films and

More information

Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium

Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium Technologie Evolutives et Disruptives pour les prochaines générations de cellules solaires Silicium M. Despeisse, on behalf of CSEM and EPFL/pvlab research teams pictures 6 cm high at 11 cm vertical Swiss

More information

Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical. Vapour Deposition at low temperature (<150 ºC)

Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical. Vapour Deposition at low temperature (<150 ºC) Amorphous silicon thin film solar cells deposited entirely by Hot-Wire Chemical Vapour Deposition at low temperature (

More information