related to the welding of aluminium are due to its high thermal conductivity, high

Size: px
Start display at page:

Download "related to the welding of aluminium are due to its high thermal conductivity, high"

Transcription

1 Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint. The main problems related to the welding of aluminium are due to its high thermal conductivity, high chemical reactivity with oxygen, and high hydrogen solubility at evaluated temperature. All these factors lead defects in the weld bead. If fusion welding is performed on aluminium alloy in a normal atmosphere, oxidization readily occurs and this results in both slag inclusion and porosity in the weld, greatly reducing the strength of the joint. TIG welding is one of the most common method used for welding aluminium alloy. This method produces good welds, but more recently solidstate methods for welding the material have been developed, one of these being friction stir welding. So the comparative study conducted for the welding of aluminium alloy 6082 using TIG welding process and then compare mechanical and metallurgical properties of TIG welded joints with the mechanical and metallurgical properties of FS Welded joints is discussed in this chapter. 7.1 Preparation of material It is imperative to carry out welding of aluminium alloy sheet of same grade as was used for friction stir welding. Aluminium alloy plates having dimensions 300 x75 x 6 mm were prepared for joining by TIG process. 7.2 Selection of process parameter and experimentation It was decided to adopt manual welding technique for preparation of test pieces as in actual practice, for welding industry. Before welding all the edges were 164

2 thoroughly cleaned mechanically and chemically in order to avoid any source of contamination like rust, scale, dust, oil, moisture etc. that could creep into the weld metal and later on, could result possibly into a weld defect. The welding parameters selected were based on extensive trials runs. It was found that for sheet of thickness of 6 mm, the current rating may be varied from around 80 Amp to 200 Amp. It was further observed that below 80 Amp, it was difficult to maintain the arc and the joint obtained was poor having uneven height. The current more than 200 Amp caused burn through. So based on extensive trial runs a current range from 120 Amp to 180 Amp was selected. This range will give a steady arc with least spatters. So it was decided to make minimum of four joints within the range of welding current. The experiments were repeated thrice to reduce experimental error. The photo graphs of TIG welded specimens shown in the Figure 7.1. Other details related to the process and procedures used in the present work include:- Weld joint was prepared by using commercial 4043 filler wire whose diameter is 2.4 mm. The chemical composition of the filler wire is presented in the Table 7.1. The commercially available argon was used as shielding gas at flow rate 15 l/min. The electrode was the commercially available Tungsten EW-Th-2 (Thoriated tungsten) of 3 mm diameter. Electrode to work angle was 45º. 7.3 Specimen sampling and testing The specimens for tensile testing, micro hardness testing and microstructural studies were taken from the weld pads as schematically illustrated in Figure 7.2. Sample test pieces were prepared for mechanical and metallurgical testing and tests were conducted as discussed in the chapter

3 7.4 Results and discussion Tensile properties The transverse tensile strength of all the joints prepared using TIG welding process at different welding current conditions was evaluated. In each condition three specimens were tested and the average tensile strength of three specimens and their corresponding percentage elongations thus obtained are mentioned in Table 7.2. The photo graph of some tensile test specimens before fracture is shown in Figure 7.3. The tensile results show that maximum tensile strength of 204 MPa was possessed by the specimens made using 140 Amp current and minimum tensile strength of 161 MPa was possessed using 120 Amp welding current. This indicates that there was a 35% to 49% reduction in the strength due to the change in the micro structure. As shown in Figure 7.5 to 7.8, the micro structures of the weld metal, the dendrite size and cell spacing, indicate that high tensile strength and ductility was possessed by the joints at 140 Amp current. This can be attributed to smaller dendrite sizes and lesser interdendritic spacing in the fusion zone. Relatively lower tensile strength and ductility was possessed by the joints with long dendrite sizes and large inter-dendritic spacing in the fusion zone of the joint welded using higher welding current (180Amp) and lower welding current (120Amp). The joint efficiencies [defined as (UTS weld joint)/(uts base metal) x 100] of 55%, 66%, 59% and 56% were achieved at 120 Amp, 140 Amp, 160Amp and 180 Amp current respectively Comparison of tensile strength of FSW and TIG welded joints The average transverse tensile strength of TIG welded joints is presented in Table 7.2. The tensile strength of base metal was 310 MPa. The maximum tensile strength obtained in TIG welded joint was 204 MPa. This indicates 35% reduction in tensile strength of TIG welded joint. FSW joints showed the highest tensile strength 166

4 of 271 MPa, this indicates 13% reduction in tensile strength. Though the tensile strength of friction stir weld joints and TIG weld joints was lower than the base metal, but tensile strength of friction stir weld joints was 22% higher than TIG welded joints. This suggests that friction stir welded joints were stronger than TIG welded joints. The elongation of parent metal was 14%. The TIG welded joints showed the maximum elongation of 6.5%. This indicates that there was a 50% reduction in ductility in TIG welded joints. The elongation of FSW joints was 9.5%. This indicates that there was a 30% reduction in ductility in FS weld joints. Though, percentage elongations of FS welded joints were lower than the base metal, but were 20% higher than TIG welded joints. The comparative analysis shows that the TIG welding process has strong influence on the tensile strength and elongation which decreases 35% and 50% respectively in comparison to that of the base material. If FSW was applied the tensile strength and percentage elongation of the weld decreases 13% and 30% respectively in comparison to that of the base material. Thus, the tensile strength of aluminium alloy 6082 was affected by both the welding processes but affect is more in the TIG as compared with FS welded joints Impact toughness of TIG welded aluminium alloy The charpy test sample method of impact testing does possess certain advantage, these include ease of preparation, simplicity of test method, and low cost per test. The results of impact tests of TIG weld aluminium alloy 6082 joints are presented in Table 7.2. Impact toughness of base material was 14 J. It was observed that the impact toughness of the TIG welded aluminium alloy joints was lower as compared to the base metal and varied from 4J to 8 J, by changing the welding current as shown in the Table 7.2. Impact strength of TIG welded joints was lower due to larger grain size of the welded joints and precipitate distribution. During the welding, 167

5 liquid films were formed at grain boundaries adjacent to the fusion boundary. These liquid films lead to the formation of microscopic inter granular cracks which, after welding may provide path for subsequent brittle inter granular fracture. The variation in the strength values is mainly due to the formation of these micro cracks. Grains of the joint welded at 140 Amp current was uniformly distributed and the spacing between the grains was lower as compared to the other microstructures. It may be the reason of higher impact toughness of the joints welded at 140 Amp current Comparison of Impact strength of FSW and TIG welded joints Friction stir welds showed a very interesting trend on impact toughness. The mean results of the Charpy Impact test of FSW and TIG joints carried out at room temperature are given in Table 7.2. The impact toughness of FSW was greater than TIG joints and base material. In contrary to most of mechanical properties of welds, that were either not altered or slightly deteriorated during FSW of AA 6082-T651 alloy, impact toughness was the property which improved significantly. The measured value of impact toughness base material was 14 Joules, whereas the welds made by FSW process showed impact toughness values much greater than base material (26 J). This situation can be explained with the grain refinement of the stirring effect in the FSW process. The impact toughness of the FSW joint was 48% greater than that of the parent material but impact toughness of TIG weld joints was 40% lesser than that of the base metal. This impact toughness difference is related to the weld structures obtained with FSW and TIG processes. The stirring effect of FSW improves the microstructure of the weld and increases the resistance to impact Micro hardness of TIG welded specimens The micro hardness survey of TIG welded specimens at different welding current from cross section is presented in Figure 7.4. In all the weld joints there was a 168

6 hardness loss in the HAZ, fusion line area and weld zone. The average micro hardness was 48 Hv for 120 Amp current, 58 Hv for 140 Amp current, 53 Hv for 160 Amp current and 49 Hv for 180 Amp current in the weld zone. While moving from the weld centre to base metal, an increasing trend in the order of weld metal, HAZ, unaffected base metal for all the joints made at different welding currents was observed. In all the joints, HAZ area adjacent to the fusion boundary was coarse grained which possessed low hardness whereas the HAZ area adjacent to the base metal was fine grained which possessed high hardness. The reason for this trend of micro hardness in the HAZ of all the joints was that the area adjacent to the weld zone experiences relatively slow cooling rate and hence has coarse grained microstructure, whereas the area adjoining the base metal undergoes high cooling rate due to steeper thermal gradients and consequently has fine grained microstructure. This is evident from the trend depicted by the micro hardness survey within the HAZ of each of these joints Comparison of micro hardness of FSW and TIG welded joints The base metal in its initial condition showed a hardness value of 94 Hv. The hardness was greatly reduced in the weld region of both the welding processes. This was one of the reasons for the location of failure of all the tensile test specimens at the weld region in TIG welding process but in FSW all the tensile test specimens failure location was TMAZ of advancing side. TIG weld joints showed the highest average micro hardness of 58 Hv at weld centre. This indicates that there was 40% reduction in micro hardness in the weld zone due to welding heat. FS weld joint showed highest average micro hardness of 65 Hv at the weld zone and this indicates that there was 30% reduction in the weld zone. Though micro hardness in both welding processes was lower than the base metal, but micro hardness of the friction stir weld joint was 169

7 10% higher than TIG weld joints. However friction stir weld specimens showed higher micro hardness as compared to TIG weld joints and this was due to shear stresses induced by tool motion which leads to generation of very fine grain structure which allows partial recovery of hardness. In case of TIG welding, very high temperature increases the peak temperature of the molten weld pool causing slow cooling rate, in turn causes relatively wider dendritic spacing in the fusion zone. These microstructures generally offer lower resistance to indentation and this may be one of the reason for lower hardness and inferior tensile properties as compared to FSW joints Microstructure of TIG welded specimens Optical micro graphs of the TIG welded joints showing the micro structure of fusion boundary along with HAZ, weld metal and heat affected zone, at different welding currents are shown in Figure 7.5 to Figure 7.8. From the micrographs, it was observed that there was an appreciable difference in grain size of the weld zone and HAZ regions with different welding currents. This may be due to the rapid cooling induced by good thermal conductivity and low thermal capacity of aluminium. The grain size of the fusion zone and HAZ are influenced by the heat input of the welding process. In the HAZ, the grains next to the fusion boundary were found to be grown larger due to the intensive heat and high temperature experienced during welding. Grain structure at the fusion boundary was very coarse and columnar showing that epitaxial growth has taken place. Liquation can be seen along the grain boundary in the region close to the fusion boundary. Fusion zone shows equiaxed grain structure consisting of grains of aluminium solid solution and eutectic mixture and beta phase along the grain boundary [Koteswara et al., 2008]. The fusion zone of TIG welded 170

8 joints contain dendrites structure and this may be due to the fast heating of base metal and fast cooling of molten metal due to welding heat [Venugopal et al., 2004] Comparison of microstructure of FSW and TIG welded joints Optical micrographs of the base metal and friction stir welded joints are displayed in Figure The base metal contains coarse and elongated grains in the rolling direction. The weld region of FSW joint contains finer grains compared to TIG welded joints. The weld region of TIG welded joints shows coarse and elongated grains normal to the welding direction. However, the size and distribution of strengthening precipitates are different in TIG welded joints and FSW joints. Fine and evenly distributed precipitates, observed in friction stir welding were one of the reasons for higher strength of the joints. The comparative analysis shows that the weld region of FSW joint contains very fine, equiaxed grains and this may be due to dynamic recrystallisation that occurred during FSW process [Barcellona et al., 2006]. The weld zone of TIG welded joints contain dendritic structure and this may be due to fast heating of base metal and fast cooling of molten metal due to welding heat Fractographic observations of TIG welded joints The fractured surfaces of the tensile specimens were analyzed using SEM and are presented in Figure 7.9 (a) to Figure 7.9 (d). Dimples of varying size and shape were observed in all the fractured surfaces which indicate that major fracturing mechanism was ductile. From Figure 7.9 (b) it was observed that fractured surface of the specimen at 140 Amp current contains a large population of small and shallow dimples which was indicative of its relatively high tensile strength and ductility. From Figure 7.9 (c) and Figure 7.9 (d) it was observed that as heat input increases, coarse and elongated dimples are observed. It is also observed that small dimples are 171

9 surrounded by the large ones in all the specimens and a small quantity of tearing ridge is also present Comparison of fractograph of FSW and TIG welded joints The fracture surface of tensile test specimens, as observed under the Scanning Electron Microscope (SEM) are displayed in Figure 5.50 and Figure 7.9 for FSW and TIG joints. The fractrography consists of dimples, indication the failure of the tensile specimen in a ductile manner under the action of tensile loading both in TIG welding process and FS welding process. An appreciable difference exists in the size and shape of the dimples with respect to welding processes. The dimple size has directly proportional relationship with strength and ductility. If the dimple size is finer, then the strength and ductility of the respective joint is higher. Coarse dimples are seen in TIG joint and fine dimples in FSW joint. Since fine dimples are characteristic feature of ductile failure, FSW joints have shown higher ductility as compared to TIG joints. So the fine dimples in FSW are the reason of higher strength properties as compare to TIG welded joints. 172

10 Table 7.1: Chemical composition of the filler wire 4043 Si Fe Cu Mn Mg Cr Zn Ti Balance Al Table 7.2: TIG welding process parameters and experimental results Specimen Designation Current (Amp) Gas flow {lit/min) Tensile strength (MPa) Impact toughness (J) A A A A Figure 7.1: Photographs of TIG welded specimens 173

11 Figure 7.2: Schematic illustration of the specimen sampling from the weld pads. Figure 7.3: Photographs of some tensile test specimens of TIG welded joints before fracture 174

12 Micro hardness (Hv) 120 Amp 140 Amp 160 Amp 180 Amp BM HAZ Weld metal HAZ BM Distance from the weld centre line (mm) Figure 7.4: Micro hardness profile showing micro hardness of different zones of the weld joints at different welding currents 175

13 (a) Fusion zone (b) weld bead (c) HAZ Figure 7.5: Optical micrograph showing microstructure of TIG welded specimen (a) Fusion boundary (b) centre of the weld (c) HAZ ( 120 Amp, at 200X) 176

14 (a) Fusion zone (b) weld bead (c) HAZ Figure 7.6: Optical micrograph showing microstructure of TIG welded specimen (a) Fusion boundary (b) centre of the weld (c) HAZ (140 Amp, at 200X) 177

15 (a) Fusion zone (b) Weld bead (c) HAZ Figure 7.7: Optical micrograph showing microstructure of TIG welded specimens (a) Fusion boundary (b) centre of the weld (c) HAZ (160 Amp, at 200X) 178

16 (a) Fusion zone (b) Weld bead (c) HAZ Figure 7.8: Optical micrographs showing microstructure of TIG welded specimens (a) Fusion boundary (b) centre of the weld (c) HAZ (180 Amp, 200X) 179

17 Figure 7.9(a): SEM fractograph showing fracture surface of tensile test TIG welded specimen (120) Amp current Figure 7.9 (b): SEM fractograph showing fracture surface of tensile test TIG welded specimen (140) Amp current 180

18 Figure 7.9 (c): SEM fractograph showing fracture surface of tensile test TIG welded specimen (160) Amp current Figure 7.9 (d): SEM fractograph showing fracture surface of tensile test TIG welded specimen (180) Amp current 181

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA Microstructure and Mechanical Property Changes during TIG elding of 31-2 (IS-737) Aluminium Alloy Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology.

More information

EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY

EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY * Venkata Ramana M 1, Sriram P S N 2 and Jayanthi A 3 Department of Automobile Engineering, VNR Vignana Jyothi Institute of Engineering

More information

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 2465 2469 2012 International Workshop on Information and Electronics Engineering (IWIEE) Influence of Shielding Gas on Aluminum

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY

THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY Journal of KONES Powertrain and Transport, Vol. 24, No. 2 2017 THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY Grzegorz Gesella, Mirosław Czechowski

More information

Chapter 30 Fundamentals of Joining. Materials Processing. Topics. MET Manufacturing Processes

Chapter 30 Fundamentals of Joining. Materials Processing. Topics. MET Manufacturing Processes MET 33800 Manufacturing Processes Chapter 30 Fundamentals of Joining Before you begin: Turn on the sound on your computer. There is audio to accompany this presentation. Materials Processing Chapters 11-13

More information

Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy

Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy 614 J. Mater. Sci. Technol., Vol.23 No.5, 2007 Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy L.Karthikeyan 1), V.S.Senthilkumar 2), D.Viswanathan

More information

Gas Tungsten Arc Welding of Copper and Mild Steel

Gas Tungsten Arc Welding of Copper and Mild Steel International Journal of Science and Engineering Investigations vol. 4, issue 45, October 2015 ISSN: 2251-8843 Gas Tungsten Arc Welding of Copper and Mild Steel Daniel Tat 1, Timotius Pasang 2, Maziar

More information

Click to edit Master title style

Click to edit Master title style Click to edit Master title style Zhili Feng, Xinghua Yu, Jeff Bunn, Andrew Payzant- ORNL Demetrios Tzelepis, TARDEC Click to edit Outline Master title style Background Hydrogen Inducted Cracking (HIC)

More information

Hot-crack test for aluminium alloys welds using TIG process

Hot-crack test for aluminium alloys welds using TIG process EPJ Web of Conferences 6, 07001 (2010) DOI:10.1051/epjconf/20100607001 Owned by the authors, published by EDP Sciences, 2010 Hot-crack test for aluminium alloys welds using TIG process A. Niel,a, F. Deschaux-beaume,

More information

Available online at Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010

Available online at  Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010 Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 2 (2010) 00 (2009) 697 705 000 000 Procedia Engineering www.elsevier.com/locate/procedia Fatigue 2010 Fatigue behaviour

More information

Study on Microstructure, Tensile Test and Hardness 316 Stainless Steel Jointed by TIG Welding

Study on Microstructure, Tensile Test and Hardness 316 Stainless Steel Jointed by TIG Welding Study on Microstructure, Tensile Test and Hardness 316 Stainless Steel Jointed by TIG Welding M.sc Halil İbrahim KURT Gaziantep Vocational High School Gaziantep University Gaziantep, 27310, Turkey hiakurt@gmail.com

More information

9. Welding Defects 109

9. Welding Defects 109 9. Welding Defects 9. Welding Defects 109 Figures 9.1 to 9.4 give a rough survey about the classification of welding defects to DIN 8524. This standard does not classify existing welding defects according

More information

FRICTION STIR WELDING PROCESS PARAMETERS FOR JOINING DISSIMILAR ALUMINUM ALLOYS

FRICTION STIR WELDING PROCESS PARAMETERS FOR JOINING DISSIMILAR ALUMINUM ALLOYS International Journal Journal of Mechanical of Mechanical Engineering Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online)

More information

Influence of Post Weld Heat Treatment on the HAZ of Low Alloy Steel Weldments

Influence of Post Weld Heat Treatment on the HAZ of Low Alloy Steel Weldments Influence of Post Weld Heat Treatment on the HAZ of Low Alloy Steel Weldments S. Rasool Mohideen* and A.M. Ahmad Zaidi Faculty of Mechanical and Manufacturing Engineering, UTHM *Corresponding email: rasool

More information

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE Superalloys 2004 Edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston TMS (The Minerals, Metals & Materials Society), 2004 DEVELOPMENT OF Ni BASE SUPERALLOY

More information

Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082 AA6061 in T 6 condition produced by FSW

Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082 AA6061 in T 6 condition produced by FSW H.S. Patil et alii, Frattura ed Integrità Strutturale, 24 (2013) 151-160; DOI: 10.3221/IGF-ESIS.24.16 Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082 AA6061

More information

EXPERIMENTAL STUDY OF ELECTRODE SELECTION EFFECTS ON MECHANICAL PROPERTIES OF UNDERWATER WET WELDED-JOINTS

EXPERIMENTAL STUDY OF ELECTRODE SELECTION EFFECTS ON MECHANICAL PROPERTIES OF UNDERWATER WET WELDED-JOINTS EXPERIMENTAL STUDY OF ELECTRODE SELECTION EFFECTS ON MECHANICAL PROPERTIES OF UNDERWATER WET WELDED-JOINTS Nur Syahroni 1, Imam Rochani 1 and Harfian Nizar 2 1 Faculty Staff in Department of Ocean Engineering,

More information

Arc welding SMAW. CTU in Prague Faculty of Mechanical Engineering

Arc welding SMAW. CTU in Prague Faculty of Mechanical Engineering 1st semester 2015/2016 Arc welding SMAW CTU in Prague Faculty of Mechanical Engineering Ing. Petr Vondrouš, PhD., IWE SMAW welding Method no. standardized acc. ČSN EN ISO 4063 111 (Metal arc welding with

More information

Effect of the plasma arc welding procedure on mechanical properties of DP700 steel

Effect of the plasma arc welding procedure on mechanical properties of DP700 steel Available online at www.sciencedirect.com Procedia Materials Science 1 (2012 ) 50 57 11 th International Congress on Metallurgy & Materials SAM/CONAMET 2011. Effect of the plasma arc welding procedure

More information

Welding Inspection Defects/Repairs Course Reference WIS 5

Welding Inspection Defects/Repairs Course Reference WIS 5 Copy from Welding Inspection Defects/Repairs Course Reference WIS 5 Weld Defects Defects which may be detected by visual inspection can be grouped under five headings Cracks Surface irregularities Contour

More information

Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain

Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain A. Cantrell, K. Gangwar, and M. Ramulu University of Washington Dan Sanders The Boeing Company 7th

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Chapter 12. Flux Cored Arc Welding Equipment, Setup, and Operation Delmar, Cengage Learning

Chapter 12. Flux Cored Arc Welding Equipment, Setup, and Operation Delmar, Cengage Learning Chapter 12 Flux Cored Arc Welding Equipment, Setup, and Operation Objectives Explain the FCA welding process Describe what equipment is needed for FCA welding List the advantages of FCA welding, and explain

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Characterization of Fusion Welded Joint: A Review

Characterization of Fusion Welded Joint: A Review Pertanika J. Sci. & Technol. 17 (2): 201 210 (2009) ISSN: 0128-7680 Universiti Putra Malaysia Press Review Paper Characterization of Fusion Welded Joint: A Review Nur Azida Che Lah *, Aidy Ali and Napsiah

More information

CHARACTERIZATION OF THE DISSIMILAR WELDING - AUSTENITIC STAINLESS STEEL WITH FILLER METAL OF THE NICKEL ALLOY

CHARACTERIZATION OF THE DISSIMILAR WELDING - AUSTENITIC STAINLESS STEEL WITH FILLER METAL OF THE NICKEL ALLOY 2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 CHARACTERIZATION OF

More information

APPLICATION OF NEW GMAW WELDING METHODS USED IN PREFABRICATION OF P92 (X10CRWMOVNB9-2) PIPE BUTT WELDS

APPLICATION OF NEW GMAW WELDING METHODS USED IN PREFABRICATION OF P92 (X10CRWMOVNB9-2) PIPE BUTT WELDS APPLICATION OF NEW GMAW WELDING METHODS USED IN PREFABRICATION OF P92 (X10CRWMOVNB9-2) PIPE BUTT WELDS ABSTRACT Michael URZYNICOK ZELKOT, Koszęcin, POLAND Krzysztof KWIECIŃSKI, Jacek SŁANIA INSTITUTE OF

More information

High Carbon Steel Welding. A Quick Insight Into Problems When Welding High Carbon Steels Mike Doyle

High Carbon Steel Welding. A Quick Insight Into Problems When Welding High Carbon Steels Mike Doyle High Carbon Steel Welding A Quick Insight Into Problems When Welding High Carbon Steels Mike Doyle CARBON STEELS WHAT IS CARBON STEEL? Carbon Steel is principally a mixture (or Alloy) of Iron and Carbon

More information

MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS

MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS Jennifer Hyde Supervisor: Dr. McDermid MATLS 701 Seminar Feb 17, 2012 Outline 2 Motivation Background/Literature Review Project

More information

A Study of Influence of Parameters of Dissimilar Materials Joining on Friction Stir Welding Process by Design of Experimental

A Study of Influence of Parameters of Dissimilar Materials Joining on Friction Stir Welding Process by Design of Experimental Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 129 A Study of Influence of Parameters of Dissimilar Materials

More information

15 Cr-Cb ULTRA FORM STAINLESS STEEL

15 Cr-Cb ULTRA FORM STAINLESS STEEL 15 Cr-Cb ULTRA FORM STAINLESS STEEL P R O D U C T D ATA B U L L E T I N Good Elevated Temperature Strength Weldable Oxidation Resistance Resistant to Intergranular Corrosion Fine Uniform Formable Grain

More information

Impact 7 Steel. A Durable, Dependable Steel Solution For Harsh Environments. Technical Data. Alloy Description. Alloy Type. Typical Applications

Impact 7 Steel. A Durable, Dependable Steel Solution For Harsh Environments. Technical Data. Alloy Description. Alloy Type. Typical Applications Impact 7 Steel Technical Data A Durable, Dependable Steel Solution For Harsh Environments Alloy Description As a world leader in steel manufacturing, TimkenSteel specializes in providing custom steel solutions

More information

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 213 217. Indian Academy of Sciences. XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel LI YAJIANG*, WANG

More information

Intergranular Corrosion (IGC)

Intergranular Corrosion (IGC) Intergranular Corrosion (IGC) Microstructure of metals and alloys is made up of grains (separated by grain boundaries) Intergranular corrosion is a localized attack along the grain boundaries, or immediately

More information

Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum

Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 12, DECEMBER 2013 ISSN 2277-8616 Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure

More information

441 STAINLESS STEEL. Good High-Temperature Oxidation Resistance. Applications Potential

441 STAINLESS STEEL. Good High-Temperature Oxidation Resistance. Applications Potential 441 STAINLESS STEEL P R O D U C T D ATA B U L L E T I N Equiaxed Microstructure Good High-Temperature Strength Good High-Temperature Oxidation Resistance Applications Potential AK Steel 441 is used in

More information

Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding

Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding Materials Transactions, Vol. 46, No. 4 (2005) pp. 835 to 841 #2005 The Japan Institute of Metals Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding Kittipong Kimapong* and Takehiko

More information

Friction Stir Welding of AA2024-T3 plate the influence of different pin types

Friction Stir Welding of AA2024-T3 plate the influence of different pin types Mech. Sci., 6, 5155, 2015 doi:10.5194/ms-6-51-2015 Author(s) 2015. CC Attribution 3.0 License. Friction Stir Welding of AA2024-T3 plate the influence of different pin types D. Trimble, H. Mitrogiannopoulos,

More information

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat Lecture 23 Chapter 30 Fusion Welding Processes Introduction Fusion welding Two pieces are joined together by the application of heat Melting and fusing the interface Filler metal Extra metal added (melted)

More information

Cast Steel Propellers W27. (May 2000) (Rev.1 May 2004)

Cast Steel Propellers W27. (May 2000) (Rev.1 May 2004) (May 2000) (Rev.1 May 2004) Cast Steel Propellers 1. Scope 1.1 These unified requirements are applicable to the manufacture of cast steel propellers, blades and bosses. 1.2 Where the use of alternative

More information

RULES FOR THE CLASSIFICATION OF SHIPS

RULES FOR THE CLASSIFICATION OF SHIPS RULES FOR THE CLASSIFICATION OF SHIPS 2009 Part 26 - WELDING Amendments No.1 CROATIAN REGISTER OF SHIPPING Hrvatska (Croatia) 21000 Split Marasovićeva 67 P.O.B. 187 Tel.: (...) 385 (0)21 40 81 11 Fax.:

More information

Lecture 13 Submerged Arc Welding 13.1 Introduction 13.2 Components of SAW System

Lecture 13 Submerged Arc Welding 13.1 Introduction 13.2 Components of SAW System Lecture 13 Submerged Arc Welding This chapter presents the principle of submerged arc welding process besides methods of manufacturing and characteristics of different types of fluxes used in this process.

More information

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding EML 2322L -- MAE Design and Manufacturing Laboratory Welding Intro to Welding A weld is made when separate pieces of material to be joined combine and form one piece when heated to a temperature high enough

More information

IMPACT. Chemical composition For the chemical composition of the ladle analysis the following limits are applicable (in %):

IMPACT. Chemical composition For the chemical composition of the ladle analysis the following limits are applicable (in %): IMPACT Wear resistant steel Material data sheet, edition April 2016 1 DILLIDUR IMPACT is a wear resistant steel with a nominal hardness of 340 HBW in delivery condition. DILLIDUR IMPACT is not a constructional

More information

Heat treatment and effects of Cr and Ni in low alloy steel

Heat treatment and effects of Cr and Ni in low alloy steel Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1439 1445. Indian Academy of Sciences. Heat treatment and effects of Cr and Ni in low alloy steel MOHAMMAD ABDUR RAZZAK Materials and Metallurgical

More information

Finite element analysis of residual stress in the welded zone of a high strength steel

Finite element analysis of residual stress in the welded zone of a high strength steel Bull. Mater. Sci., Vol. 27, No. 2, April 2004, pp. 127 132. Indian Academy of Sciences. Finite element analysis of residual stress in the welded zone of a high strength steel LI YAJIANG*, WANG JUAN, CHEN

More information

Ageing Behavior of Friction Stir Welding AA7075-T6 Aluminum Alloy

Ageing Behavior of Friction Stir Welding AA7075-T6 Aluminum Alloy Ageing Behavior of Friction Stir Welding AA7075-T6 Aluminum Alloy T. AZIMZADEGAN*, GH.KHALAJ*, M.M. KAYKHA**, A.R.HEIDARI*** *Department of Materials Science and Engineering, Saveh branch, Islamic Azad

More information

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at 41 CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES 3.0. INTRODUCTION Welding is the process of coalescing more than one material part at their surface of contact by the suitable

More information

Study of forming and Welding performance of Y-shaped transition ring for large launch vehicle tank

Study of forming and Welding performance of Y-shaped transition ring for large launch vehicle tank MATEC Web of Conferences 21, 11003 (2015) DOI: 10.1051/matecconf/20152111003 C Owned by the authors, published by EDP Sciences, 2015 Study of forming and Welding performance of Y-shaped transition ring

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN 1530 Component Crack Analysis of high pressure die casting aluminum alloy (Alsi9cu ) Satish kumar Manocha Designation Dy. Manager Department - R&D Name of industries Rico auto industries ABSTRACT: Crack

More information

9. Welding Defects 108

9. Welding Defects 108 9. Welding Defects 9. Welding Defects 108 Figures 9.1 to 9.4 give a rough survey about the classification of welding defects to DIN 8524. This standard does not classify existing welding defects according

More information

Mohammad Anwar Karim Id :

Mohammad Anwar Karim Id : Department of Mechanical and Industrial Engineering ME 8109 Casting and Solidification of Materials EFFECTS OF RAPID SOLIDIFICATION ON MICROSTRUCTURE AND PROPERTIES OF AL, MG & TI ALLOYS Winter 2012 Presented

More information

PROPERTIES OF FREE MACHINING ALUMINIUM ALLOYS AT ELEVATED TEMPERATURES. Ji í Faltus, Petr Homola, Peter Sláma

PROPERTIES OF FREE MACHINING ALUMINIUM ALLOYS AT ELEVATED TEMPERATURES. Ji í Faltus, Petr Homola, Peter Sláma PROPERTIES OF FREE MACHINING ALUMINIUM ALLOYS AT ELEVATED TEMPERATURES Ji í Faltus, Petr Homola, Peter Sláma VÚK Panenské B e any a.s., Panenské B e any 50, 250 70 Odolena Voda E-mail: faltus@vukpb.cz

More information

MAG wire. Welding Consumables Selection. MAG MIG wire/rod. Welding Consumables Selection. Specifi cation AWS JIS. Product name

MAG wire. Welding Consumables Selection. MAG MIG wire/rod. Welding Consumables Selection. Specifi cation AWS JIS. Product name Welding Consumables Selection Product name S-4 S-6 Shielding gas Property description Better deoxidation effect than ER70S-3, no charpy impact requirement. Available for single and multipasses, good anti-rust

More information

HYDROGEN EMBRITTLEMENT AND LOW TEMPERATURE EFFECTS ON CARBON STEELS

HYDROGEN EMBRITTLEMENT AND LOW TEMPERATURE EFFECTS ON CARBON STEELS HYDROGEN EMBRITTLEMENT AND LOW TEMPERATURE EFFECTS ON CARBON STEELS LAURA VERGANI Politecnico di Milano, Department of Mechanical Engineering, Milano, Italy CHIARA COLOMBO Politecnico di Milano, Department

More information

REPAIR WELDING AND METALLURGY OF HP-MODIFIED ALLOY AFTER LONG TERM OPERATION

REPAIR WELDING AND METALLURGY OF HP-MODIFIED ALLOY AFTER LONG TERM OPERATION REPAIR WELDING AND METALLURGY OF HP-MODIFIED ALLOY AFTER LONG TERM OPERATION Katsunobu Hasegawa Idemitsu Engineering Co. Ltd, 37-24 Shinden-cho, Chuo-ku, Chiba 260-0027, Japan (currently on secondment

More information

Nickel Based Superalloy Incoloy 800 (UNS N08800)

Nickel Based Superalloy Incoloy 800 (UNS N08800) Nickel Based Superalloy Incoloy 800 (UNS N08800) Nickel-Iron-Chromium alloy Incoloy 800 has fine strength and suitable resistance to oxidation and carburization at high temperatures. It offers elevated

More information

Titanium Welding Technology

Titanium Welding Technology UDC 669. 295 : 621. 791. 754 Titanium Welding Technology Tadayuki OTANI* 1 Abstract In order to establish titanium welding technology TIG arc weldability and MIG arc weldability were surveyed. For TIG

More information

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions D. P. Myriounis, S.T.Hasan Sheffield Hallam

More information

71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding. Weld Metal - Chemistry

71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding. Weld Metal - Chemistry Flux Cored Wire 71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding Description: Provides a stable arc, low spatter, easy to remove slag, and neat weld metal.

More information

Submerged Arc Welding: A discussion of the welding process and how welding parameters affect the chemistry ofcorrosion Resistant Overlays (CRO)

Submerged Arc Welding: A discussion of the welding process and how welding parameters affect the chemistry ofcorrosion Resistant Overlays (CRO) Submerged Arc Welding: A discussion of the welding process and how welding parameters affect the chemistry ofcorrosion Resistant Overlays (CRO) 1 Submerged Arc Welding (SAW) Part 1 The SAW welding process

More information

THE ROLE OF NIOBIUM IN LOW CARBON BAINITIC HSLA STEEL. Klaus Hulka Niobium Products Company GmbH, Düsseldorf, Germany

THE ROLE OF NIOBIUM IN LOW CARBON BAINITIC HSLA STEEL. Klaus Hulka Niobium Products Company GmbH, Düsseldorf, Germany THE ROLE OF NIOBIUM IN LOW CARBON BAINITIC HSLA STEEL Klaus Hulka Niobium Products Company GmbH, Düsseldorf, Germany ABSTRACT With higher strength, weight reduction can be achieved. Besides the required

More information

Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using Orbital Welding Machine

Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using Orbital Welding Machine Research Reviews: Journal of Material Science DOI: 10.4172/2321-6212.1000201 e-issn: 2321-6212 www.rroij.com Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using

More information

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications.

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications. ATI 17-4 Precipitation Hardening Stainless Steel (UNS S17400) INTRODUCTION ATI 17-4 precipitation hardening stainless steel (S17400), Type 630, is a chromium-nickel-copper precipitation hardening stainless

More information

41003 STAINLESS STEEL

41003 STAINLESS STEEL 41003 STAINLESS STEEL D ATA S H E E T Formable and Weldable in Heavy Sections Refined Grain Structure Leads to Good Toughness Ferritic as Annealed Low Cost AK Steel 41003 is an economical ferritic stainless

More information

Rapidly Solidified Fe-Mn-based Shape Memory Alloys P. Donner, E. Hornbogen, Institut fur Werkstoffe, Ruhr-Universität Bochum, D Bochum

Rapidly Solidified Fe-Mn-based Shape Memory Alloys P. Donner, E. Hornbogen, Institut fur Werkstoffe, Ruhr-Universität Bochum, D Bochum 267 Rapidly Solidified Fe-Mn-based Shape Memory Alloys P. Donner, E. Hornbogen, Institut fur Werkstoffe, Ruhr-Universität Bochum, D - 4630 Bochum Introduction Meltspinning is a method well suited to obtain

More information

Gases for welding carbon and low-alloy steels.

Gases for welding carbon and low-alloy steels. Carbon & low alloy steels - New Zealand edition Shielding gas. Gases for welding carbon and low-alloy steels. 03 Steel forms the largest and most widely used group of structural and engineering alloys

More information

Defects and Discontinuities. Tim Turner Elizabethtown Technical College

Defects and Discontinuities. Tim Turner Elizabethtown Technical College Defects and Discontinuities Tim Turner Elizabethtown Technical College Defect A flaw or flaws that by nature or accumulated effect render a part or product unable to meet minimum applicable acceptance

More information

Aluminium Alloys for Hull Construction and Marine Structure

Aluminium Alloys for Hull Construction and Marine Structure (May 1998) (Rev.1 May 2004) (Rev.2 Dec 2004) (Rev.3 May 2006) (Rev.4 Dec 2011) (Rev.5 June 2014) Aluminium Alloys for Hull Construction and Marine Structure TABLE OF CONTENTS 1. Scope 2. Approval 3. Aluminium

More information

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties Stainless steel describes a family of steels highly resistant to tarnishing and rusting that contain at least two

More information

Improving the Fatigue Resistance of Thermite Railroad Rail Weldments. F. V. Lawrence Y-R. Chen J. P. Cyre

Improving the Fatigue Resistance of Thermite Railroad Rail Weldments. F. V. Lawrence Y-R. Chen J. P. Cyre Improving the Fatigue Resistance of Thermite Railroad Rail Weldments F. V. Lawrence Y-R. Chen J. P. Cyre 1 Outline! Fatigue problems with thermite welds! Improving the rail head! Improving the rail web

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

Arch. Metall. Mater. 62 (2017), 3,

Arch. Metall. Mater. 62 (2017), 3, Arch. Metall. Mater. 62 (2017), 3, 1615-1624 DOI: 10.1515/amm-2017-0247 M. UHRÍČIK* #, P. PALČEK*, M. CHALUPOVÁ*, M. ORAVCOVÁ*, M. FRKÁŇ* THE INFLUENCE OF THE STRUCTURE ON THE FATIGUE PROPERTIES OF Al-Mg

More information

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Takashi CHODA *1, Dr. Hideto OYAMA *2, Shogo MURAKAMI *3 *1 Titanium Research & Development Section, Titanium Div., Iron & Steel

More information

Flux-cored Wire Electrode for Ar+CO 2 Gas Shielded Arc Welding. "DWA-81Ni1" Productivity through filler metal selection

Flux-cored Wire Electrode for Ar+CO 2 Gas Shielded Arc Welding. DWA-81Ni1 Productivity through filler metal selection DOC.No.723-U47 Jun.23 Flux-cored Wire Electrode for Ar+CO 2 Gas Shielded Arc Welding "DWA-81Ni1" Doc.No.723-U47 Flux-cored Wire Electrode for Ar+CO2 Gas Shielded Arc Welding "DWA-81Ni1" AWS A5.29-1998

More information

EFFECT OF REINFORCED PARTICULATES (SiC and Al 2 O 3 ) ON FRICTION STIR WELDED JOINT OF MAGNESIUM ALLOY AZ91

EFFECT OF REINFORCED PARTICULATES (SiC and Al 2 O 3 ) ON FRICTION STIR WELDED JOINT OF MAGNESIUM ALLOY AZ91 International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1219 EFFECT OF REINFORCED PARTICULATES (SiC and Al 2 O 3 ) ON FRICTION STIR WELDED JOINT OF MAGNESIUM ALLOY AZ91

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

FRICTION STIR OVERLAP WELDING OF 2124 ALUMINIUM PLATE

FRICTION STIR OVERLAP WELDING OF 2124 ALUMINIUM PLATE FRICTION STIR OVERLAP WELDING OF 2124 ALUMINIUM PLATE W. Van Haver 1, A. Geurten 2, B. de Meester 3 and J. Defrancq 4 1 Belgian Welding Institute, Belgium 2 CEWAC, Belgium 3 UCL-PRM, Belgium 4 Ghent University,

More information

LASER SURFACE MELTING OF 17-4 PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 1203

LASER SURFACE MELTING OF 17-4 PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 1203 LASER SURFACE MELTING OF 7- PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 0 Zhichao Cheng, Chi Tat Kwok, Kin Ho Lo, Department of Electromechanical Engineering, University of Macau, Taipa, Macau Abstract

More information

Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique

Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique Lingam Satyavinod 1, R Harikishore 2 1 Student, Department of Mechanical Engineering, DNREng College, Bhimavaram,

More information

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder M. Y. Anwar 1, M. Ajmal 1, M. T. Z. Butt 2 and M. Zubair 1 1. Department of Met. & Materials Engineering, UET Lahore. 2. Faculty of Engineering

More information

Effect of Precipitation Hardening on Microstructural Characteristics of 15-5 Ph Steel

Effect of Precipitation Hardening on Microstructural Characteristics of 15-5 Ph Steel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 1 (November 2013), PP. 22-26 Effect of Precipitation Hardening on Microstructural

More information

Application of aluminum alloy castings in aerospace

Application of aluminum alloy castings in aerospace February 2010 Research & Development Effect of returns on microstructure and mechanical properties of Al-Cu based alloys *Li Min, Wang Hongwei, Wei Zunjie, Zhu Zhaojun (School of Materials Science and

More information

Texture Characterization of Autogenous Nd:YAG Laser Welds in AA5182-O and AA6111-T4 Aluminum Alloys

Texture Characterization of Autogenous Nd:YAG Laser Welds in AA5182-O and AA6111-T4 Aluminum Alloys Texture Characterization of Autogenous Nd:YAG Laser Welds in AA5182-O and AA6111-T4 Aluminum Alloys L.G. Hector, Jr. and Yen-Lung Chen Materials and Processes Lab GM Research Center 30500 Mound Road Warren,

More information

Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine

Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine Abhimanyu Chauhan M Tech. Scholar Production Engineering, Marudhar Engineering College, Bikaner, Rajasthan, India,

More information

Solid-State Welding Processes

Solid-State Welding Processes Solid-State Welding Processes Text Reference: Manufacturing Engineering and Technology, Kalpakjian & Schmid, 6/e, 2010 Chapter 31 Solid-State State Welding Processes Joining takes place without fusion

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

Requirements for Welding Consumables for Aluminium Alloys

Requirements for Welding Consumables for Aluminium Alloys (July, 1999) (Rev.1 June 2005) Requirements for Welding Consumables for Aluminium Alloys 1. General 1.1 Scope 1.1.1 hese requirements give the conditions of approval and inspection of welding consumables

More information

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205) ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogen-enhanced duplex stainless steel alloy. The nitrogen serves to significantly

More information

Resistance Spot Welding of Coated High Strength Dual Phase Steels

Resistance Spot Welding of Coated High Strength Dual Phase Steels Resistance Spot Welding of Coated High Strength Dual Phase Steels Murali D. Tumuluru United States Steel Corporation Research and Technology Center Monroeville, Pa Topics Introduction Dual Phase Steels

More information

Effect of Stress Relieving on Mechanical and Metallurgical Properties of Shielded Metal Arc Welded Joints of A517 Steel

Effect of Stress Relieving on Mechanical and Metallurgical Properties of Shielded Metal Arc Welded Joints of A517 Steel R. Sepehrzad et al. / International Journal of ISSI. Vol. 12 (2015), No.1, pp. 21-27 Effect of Stress Relieving on Mechanical and Metallurgical Properties of Shielded Metal Arc Welded Joints of A517 Steel

More information

Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys

Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys Mahmoud M. Tash, S. Alkahtani Abstract The present study was undertaken to investigate the effect of pre-aging and aging parameters (time

More information

Stephen Cater FRIN MEI Friction and Forge Processes Department Joining Technologies Group

Stephen Cater FRIN MEI Friction and Forge Processes Department Joining Technologies Group Title: Authors: Friction stir welding of steel for marine applications Athanasios Toumpis a, Alexander Galloway a, Stephen Cater b, Paul Burling b Chris Stanhope b a University of Strathclyde, Glasgow,

More information

Wear-resistant steels. Technical terms of delivery for heavy plates. voestalpine Grobblech GmbH

Wear-resistant steels. Technical terms of delivery for heavy plates. voestalpine Grobblech GmbH Wear-resistant steels Technical terms of delivery for heavy plates voestalpine Grobblech GmbH www.voestalpine.com/grobblech Wear-resistant steels durostat durostat 400 durostat 450 durostat 500 durostat

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

Multi-layers castings

Multi-layers castings A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Issue 1/2010 181 186 31/1

More information