Introduction to Furnace Thermodynamics

Size: px
Start display at page:

Download "Introduction to Furnace Thermodynamics"

Transcription

1 Introduction to Furnace Thermodynamics Kevin Dartt MS: Mechanical Engineering 011 BFA: Sculpture 008 Binghamton University, SUNY

2 Contents Introduction Goals and Motivation Fundamentals of Thermodynamics Iron Melting Process Computational Models Cupollette Model Alternative Fuels Energy Output Alternative Furnace Designs Conclusion

3 Goals and Motivation Intimate Knowledge Better understanding will give more efficient results Goals Develop a computational model of an iron melting furnace Create an optimization program in accessible software Alternative Fueled Furnace Coke becoming a limited resources Safer fuels than coke 3

4 Process Charge material Pieces of iron and limestone Coke Stack Section above the Tuyeres Tuyeres Ports into the furnace for air and viewing Bed Section below the tuyeres Main Sections of a Cupola (1) 4

5 Fundamentals of Thermodynamics Thermodynamics: The study of energy displacement with respect to work and heat that incorporates physics, chemistry and engineering. 1 st Law: Energy Balance A specific amount of matter undergoing any process experiences a change in energy equal to the amount of energy transferred to it. 5

6 Energy Energy (NRG) Ability of a system to do work on other systems Kinetic NRG: Motion Potential NRG: Gravity Internal NRG: Stored Compressed Springs Chemical Reactions Work: External displacement of environment (W) Moving parts Heat: Energy based on temperature change. (Q) Overall NRG equation KE + PE + U = Q W 6

7 Internal NRG Enthalpy The sum of internal energy along with the energy made by the displacement of the products H = U + pv Combustion Enthalpy Internal Pressure Volume NRG Rapid chemical reaction in which combustibles are oxidized resulting in the release of energy and the formation of products. fuel + oxidizer products NRG in the form of heat 7

8 Internal Energy Enthalpy of Formation NRG released or absorbed from the creation of compounds during a chemical reaction at a given temperature and pressure. Expressed in NRG / Mol CO₂ : C₃H₈: 169,300 44,680 Btu lbmol Btu lbmol 393,50 103,850 kj kmol kj kmol Mol Used in chemistry to express amounts of a chemical substance 8

9 Melting Iron Specific Heat Amount of energy per mass required to raise the temperature of a given body Different for every substance Q = mc T NRG in the form of heat Mass Specific Heat Change in Temperature Specific Heat of cast iron: Btu.11 lbf o.46 kj kgk 9

10 Melting Iron Example: Heat 50 lbs of iron to 900 F, how much coke is needed? Free Body Diagram T Exhaust Q Combustion y x Coke Refractory Steel Plate Iron Flow Air Flow TAir TAir T Iron 10

11 Melting Iron Assumptions Ignore potential and kinetic NRG Air is feed into the furnace which is oxygen and nitrogen, nitrogen is inert and combustion is complete The combusting air and products form ideal gases Only concerned with the melt zone All energy is absorbed by the iron No external work is being done Reduced energy equation KE + PE + U = Q W Q: NRG from heat W: NRG from external work KE: Kinetic NRG PE : Potential NRG U: Internal NRG 11

12 Melting Iron Analysis Use specific heat to determine rough estimate for NRG required to melt iron U = Q Q = mc T Q = ( 50lb) (.11 ) (900 60) F Btu lbf o o Q 890Btu 15, = Q: NRG from heat N: mols from combustion h: Enthalpy of Formation c: Specific heat m: mass 1

13 Melting Iron Analysis Cont. Use enthalpy of formation to determine amount of reactants needed At standard temperature and pressure Equal concentrations C + O CO U = n C O h C O n C h C n O h O U = Q Q combustion = n C O h C O n C h C n O h O h n O C = = h n C O = 0 = n C O Q: NRG from heat N: mols from combustion h: Enthalpy of Formation Q combustion = n C h C O 13

14 Melting Iron Analysis Cont. Q = h co n 15,890Btu = 169,300 c Btu lbmol n c.094lbmol = n c M c =1. 01 m c = M c nc m =1. 3lb lb lbmol ( 85 ). 1 Q: NRG from heat N: mols from combustion h: Enthalpy of Formation M: Molar mass m: mass 14

15 Melting Iron Change original assumption Only 5% of combustion goes into melting iron 15,890Btu (.5) 169, 300 Btu lbmol = n c.375lbmol = n c m c = M c nc ( 85 ). 1 M c =1. 01 lb lbmol m = 5. 3lb Still wrong? The reaction does not take place at standard temperature and pressure Does not take into account preheating of iron NRG lose from air and the environment 15

16 Computational Models Solves governing equations Momentum Air flow through the furnace Mass transfer Coke being consumed Energy Temperature field Assumptions Iron is melted predominantly through convection Matlab High-level language for algorithm development Finite difference method A numerical method to approximate the solution to differential equations 16

17 Mathematical Theory 17

18 Matlab Combustion Assumes only a carbon-oxygen reaction, Reaction happens very fast at the surface of coke particle Reaction rate constant effected by: Temperature Air velocity Porosity of coke Size of coke Diffusivity Void fraction Mass transfer coefficient Rate constant Catalyst Effectives Factor Diameter of coke particle Radius inside the catalyst Overall reaction rate Concentration of fluid reactant Density of catalyst particle Transient Term 18

19 Matlab Energy equation Energy released in carbon-oxygen reaction Energy gained from heat of formation Amount of products equals amount of reactants Assumes Reaction is at STP, leaving only carbon dioxide Oxygen becomes limiting factor Enthalpy of formation Molar flow rate 19

20 Matlab Energy generation term Fraction of heat is absorbed by fluid, β Uses an overall heat transfer coefficient between fluid and solid Heat Equation is effected by: Oxygen Concentration Reaction rate Effective heat transfer coefficient Heat transfer coefficient 0

21 Cupollette Model Parameters from existing cupollette Xena, Binghamton s larger iron furnace Same as Mothra Grid spacing: 0.5 cm Table of Cupollette Parameters Parameter Measurement Total Height m Diameter 0.36 m Bed Height 0.18 m Tuyere Diameter 0.05 m Lid Diameter 0.11 m Blast Temp. 89 K Blast Rate (O₂) 0.4 kg/s 1

22 Cupollette Model

23 Cupollette Model Oxygen Concentration 3

24 Cupollette Model 4

25 Alternative Fuels Propane Not as high NRG content Clean burning Expensive but easily obtainable Oil Inexpensive and easily obtainable Dirty oil poses problems Electric High initial Expense Higher maintenance Energy Source Unit Energy Content (Btu) Electricity 1 Kilowatt-hour 341 Coke 1 pound 1500 Crude Oil 1 Barrel - 4 gallons Fuel Oil no. 1 Gallon Fuel Oil no.4 1 Gallon Fuel Oil no.5 1 Gallon Fuel Oil no.6 1 Gallon Diesel Fuel 1 Gallon Gasoline 1 Gallon Natural Gas 1 Cubic Foot Heating Oil 1 Gallon Kerosene 1 Gallon Propane 1 Gallon Propane 1 Cubic Foot 550 Wood - air dried 1 pound

26 Alternative Designs Open Hearth Furnace Predominantly used in steel manufacturing Gas-Air mixture Regenerative firing Time consuming Metalcaster s Reference & Guide 6

27 Alternative Designs Electric Arc Furnace Large amounts of current and voltage passing through electrodes Electric arc between electrodes provide heat Electrodes are slowly used Metalcaster s Reference & Guide 7

28 Alternative Designs Oil / Propane Fired Furnace Similar construction to a cupola Uses a false bed or continuous feed Packing material made of ceramics Ceramic Refractory Iron Flow Burners Burners Steel Plate 8

29 Conclusion Computational model Good start for a simple program Alternative Fuels Pros and Cons Future work Write optimization program in accessible software (ex. Excel, Wolfram Alpha widget) Experiment with multiple furnace designs for batch melting 9

30 Thank you Ken Payne Elena Lourenco Vaughn Randall Roy McGrann Bruce Murray 30

31 References 1. Chastain, Stephen. Iron Melting Cupola Furnaces For the Small Foundry. Jacksonville : Stephen Chastain, Technical Developments including application of computer models to optimize blast furnace operations. Poveromo, Joseph J. 1999, Scandinavian Journal of Metallurgy, pp Levenspiel, Octave. Chemical Reaction Engineering. New York : John Wiley & Sons, Wakao, Noriaki. Heat and mass Transfer in packed beds. London : Gordon and Breach Science Publishers, Three-dimensional Multipahse Mathematical Modeling of the Blast Furnace Based on the Multifluid Model. Adilson de Castro, Jose, Nogami, Hiroshi and Yagi, Jun-ichiro. 00, ISIJ International, pp Transient Mathematical Model of Blast Furnace Based on Multi-fluid Concept, with Application to High PCI Operation. Adilson de Castro, Jose, Nogami, Hiroshi and Yagi, Jun-ichiro. 000, ISIJ International, pp Metalcaster s Reference & Guide, nd Ed American Foundrymen s Societ, Inc

IRONMAKING and THEORY AND PRACTICE. Ahindra Ghosh Amit Chatterjee

IRONMAKING and THEORY AND PRACTICE. Ahindra Ghosh Amit Chatterjee IRONMAKING and STEELMAKING THEORY AND PRACTICE Ahindra Ghosh Amit Chatterjee IRONMAKING AND STEELMAKING IRONMAKING AND STEELMAKING Theory and Practice AHINDRA GHOSH Formerly Professor Materials and Metallurgical

More information

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS CFD MODELLING OF THE STEEL BELT SINTERING PROCESS J. Keihäs, P. Mäkelä, J. Ollila 1 and L. Hekkala 2 Outokumpu Technology Research Centre, P.O. Box 60, FIN-28101 Pori, Finland 1 Outokumpu Technology Oy,

More information

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra CONTROL VOLUME ANALYSIS USING ENERGY 1 By Ertanto Vetra Outlines Mass Balance Energy Balance Steady State and Transient Analysis Applications 2 Conservation of mass Conservation of mass is one of the most

More information

concentration of acid in mol / dm 3 temperature / C ti / min

concentration of acid in mol / dm 3 temperature / C ti / min 1 (a A small piece of marble, calcium carbonate, was added to 5 cm 3 of hydrochloric acid at 25 C. The time taken for the reaction to stop was measured. CaCO 3 (s) + 2HCl(aq) CaCl 2 (aq) + CO 2 (g) + H

More information

Manufacture of Iron & Steel. Prepared By: John Cawley

Manufacture of Iron & Steel. Prepared By: John Cawley Manufacture of Iron & Steel Prepared By: John Cawley Presentation Objectives Identify the basic steps in the production of steel. Identify the properties and uses of iron ore and pig iron. Differentiate

More information

CHAPTER VII MELTING D-R PELLETS. the volume of gases evolved, the movements of the solid-liquid

CHAPTER VII MELTING D-R PELLETS. the volume of gases evolved, the movements of the solid-liquid CHAPTER VII 172. MELTING D-R PELLETS The mathematical model described in Chapter V is utilized to determine the temperature distribution, the change of chemical composition, the volume of gases evolved,

More information

COMPUTATIONAL MODELING OF BLAST FURNACE COOLING STAVE BASED ON HEAT TRANSFER ANALYSIS

COMPUTATIONAL MODELING OF BLAST FURNACE COOLING STAVE BASED ON HEAT TRANSFER ANALYSIS Materials Physics and Mechanics 15 (2012) 46-65 Received: July 8, 2012 COMPUTATIONAL MODELING OF BLAST FURNACE COOLING STAVE BASED ON HEAT TRANSFER ANALYSIS Anil Kumar 1, Shiv Nandan Bansal 2, Rituraj

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Analysis of Fuel Injection System in Blast Furnace with the Help of CFD Software Approach

Analysis of Fuel Injection System in Blast Furnace with the Help of CFD Software Approach 1 Analysis of Fuel Injection System in Blast Furnace with the Help of CFD Software Approach Gourav Kumar Thakur *, Kawal Lal Kurrey **, Abhishek Bhushan ***, Sandeep kashyap **** * M.tech scholar ccet,

More information

Theory Comparison between Propane and Methane Combustion inside the Furnace

Theory Comparison between Propane and Methane Combustion inside the Furnace International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Theory

More information

Fluid Thrust Chamber Design. Kevin Cavender, Den Donahou, Connor McBride, Mario Reillo, Marshall Crenshaw

Fluid Thrust Chamber Design. Kevin Cavender, Den Donahou, Connor McBride, Mario Reillo, Marshall Crenshaw Kevin Cavender, Den Donahou, Connor McBride, Mario Reillo, Marshall Crenshaw 1 1 2 2 Kevin Cavender, Den Donahou, Connor McBride, Mario Reillo, Marshall Crenshaw 3 3 Fuel Selection Fuel Mixture Ratio Cost

More information

Prima PRO process mass spectrometer

Prima PRO process mass spectrometer APPLICATION NOTE Prima PRO process mass spectrometer Accurate multi-component blast furnace gas analysis maximizes iron production and minimizes coke consumption No.?????? Author: Graham Lewis, Thermo

More information

Splat formation in plasma-spray coating process*

Splat formation in plasma-spray coating process* Pure Appl. Chem., Vol. 74, No. 3, pp. 441 445, 2002. 2002 IUPAC Splat formation in plasma-spray coating process* Javad Mostaghimi and Sanjeev Chandra Centre for Advanced Coating Technologies, University

More information

Performance and Efficiency of a Biogas CHP System Utilizing a Stirling Engine

Performance and Efficiency of a Biogas CHP System Utilizing a Stirling Engine European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information

Table of Contents. Preface...

Table of Contents. Preface... Preface... xi Chapter 1. Metallurgical Thermochemistry... 1 1.1. Introduction... 1 1.2. Quantities characterizing the state of a system and its evolution... 3 1.2.1. The types of operations... 3 1.2.2.

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Model development of a blast furnace stove

Model development of a blast furnace stove Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 1758 1765 The 7 th International Conference on Applied Energy ICAE2015 Model development of a blast furnace stove Jonas

More information

Chapter 2 Electric Arc Furnace as Thermoenergetical Unit

Chapter 2 Electric Arc Furnace as Thermoenergetical Unit Chapter 2 Electric Arc Furnace as Thermoenergetical Unit 2.1 Thermal Performance of Furnace: Terminology and Designations There are different forms of energy. Heat is one of them. Heat is a form of energy

More information

The effect of foamy slag in electric arc furnaces on electric energy consumption

The effect of foamy slag in electric arc furnaces on electric energy consumption University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2002 The effect of foamy slag in electric arc furnaces on electric

More information

Outline CASTING PROCESS - 2. The Mold in Casting. Sand Casting Mold Terms. Assoc Prof Zainal Abidin Ahmad Universiti Teknologi Malaysia

Outline CASTING PROCESS - 2. The Mold in Casting. Sand Casting Mold Terms. Assoc Prof Zainal Abidin Ahmad Universiti Teknologi Malaysia Outline CASTING PROCESS - 2 Assoc Prof Zainal Abidin Ahmad Universiti Teknologi Malaysia Casting Molds Gating system pouring basin, sprue, runner, gate Riser Core Heating and melting Melting furnaces Pouring

More information

MICROWAVES AS AN ENERGY SOURCE FOR PRODUCING MAGNESIA - ALUMINA SPINEL

MICROWAVES AS AN ENERGY SOURCE FOR PRODUCING MAGNESIA - ALUMINA SPINEL MICROWAVES AS AN ENERGY SOURCE FOR PRODUCING MAGNESIA - ALUMINA SPINEL JUAN A. AGUILAR MARIO GONZALEZ IDALIA GOMEZ Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica Apartado

More information

(3) The compound boron nitride (BN) has a high melting point (2967 ºC), high density, and is very hard. What is the best classification of this solid?

(3) The compound boron nitride (BN) has a high melting point (2967 ºC), high density, and is very hard. What is the best classification of this solid? Solids and Liquids Name: Period: (1) Identify the type of solid formed by each compound. (a) Ag (b) CO 2 (c) SiO 2 (d) wax (e) MgCl 2 (f) Fe (g) graphite (h) SO 2 (i) CaCO 3 (j) I 2 (k) rubber (l) SiC

More information

RTO OR RCO FOR VOC CONTROL: HOW TO DECIDE

RTO OR RCO FOR VOC CONTROL: HOW TO DECIDE RTO OR RCO FOR VOC CONTROL: HOW TO DECIDE INTRODUCTION Regenerative thermal oxidizers (RTOs) are widely accepted for the control of volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions.

More information

GASOGENS. Original report dated Information Reviewed and Reaffirmed. July 1982 #4 3. n Cooperation with the University of Wisconsin

GASOGENS. Original report dated Information Reviewed and Reaffirmed. July 1982 #4 3. n Cooperation with the University of Wisconsin #4 3 GASOGENS Original report dated 1944 Information Reviewed and Reaffirmed July 1982 1111111111111rh wril! 1 [111110 1111 w. FOREST PRODUCTS LABORATORY MADISON 5 WISCONSIN ' UNITED STATES DEPARTMENT

More information

Lecture 11 Combustion Processes

Lecture 11 Combustion Processes CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 11 Combustion Processes LECTURE 11. Combustion Processes A Combustion Process 2 Chemical Reactiions Associated with Combustion Processes

More information

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process

Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process , pp. 413 418 Conversion of CO 2 Gas to CO Gas by the Utilization of Decarburization Reaction during Steelmaking Process Hiroyuki MATSUURA* and Fumitaka TSUKIHASHI Department of Advanced Materials Science,

More information

SUBJECT: Integrated Science TEACHER: Mr. S. Campbell DATE: GRADE: 7 DURATION: 2 wks GENERAL TOPIC: The Sun As The Main Source Of Energy / Fuels and

SUBJECT: Integrated Science TEACHER: Mr. S. Campbell DATE: GRADE: 7 DURATION: 2 wks GENERAL TOPIC: The Sun As The Main Source Of Energy / Fuels and SUBJECT: Integrated Science TEACHER: Mr. S. Campbell DATE: GRADE: 7 DURATION: 2 wks GENERAL TOPIC: The Sun As The Main Source Of Energy / Fuels and their uses in the home. The Sun As The Main Source Of

More information

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Akira Nakamura*, Toshihiko Iwasaki**, Takashi Noto*, Hisanao Hashimoto***, Nobuyuki Sugiyama**** and Masahiro Hattori***** *

More information

Geothermic Fuel Cell Applications in Coal Coal Gasification---Coal to Liquids (Summary Highlights)

Geothermic Fuel Cell Applications in Coal Coal Gasification---Coal to Liquids (Summary Highlights) Geothermic Fuel Cell Applications in Coal Coal Gasification---Coal to Liquids (Summary Highlights) Introduction Historically, capital costs of Fischer-Tropsch (FT) coal-to-liquids projects have been high.

More information

RELEASE POINT TYPE Enter or select one of the following stack/emission point release orientation: downward

RELEASE POINT TYPE Enter or select one of the following stack/emission point release orientation: downward EMISSION SOURCE (Internal Combustion Engines) Instructions for Form B2-G Form B2-G should be completed for all generators. Make as many copies of the form as necessary. Attach all calculations and assumptions

More information

Proposed Guidelines for the Reduction of Nitrogen Oxide Emissions from Natural Gas fuelled Stationary Combustion Turbines

Proposed Guidelines for the Reduction of Nitrogen Oxide Emissions from Natural Gas fuelled Stationary Combustion Turbines Proposed Guidelines for the Reduction of Nitrogen Oxide Emissions from Natural Gas fuelled Stationary Combustion Turbines Environment and Climate Change Canada May 2016 Table of Contents 1. Foreword...

More information

Chemistry CH1HP. (Jan13CH1Hp01) General Certificate of Secondary Education Higher Tier January Unit Chemistry C1. Unit Chemistry C1 TOTAL

Chemistry CH1HP. (Jan13CH1Hp01) General Certificate of Secondary Education Higher Tier January Unit Chemistry C1. Unit Chemistry C1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Science A Unit Chemistry C1 Chemistry Unit Chemistry C1 Monday 14 January 2013 For this paper

More information

Heat Storage Performance of a Honeycomb Ceramic Monolith

Heat Storage Performance of a Honeycomb Ceramic Monolith Send Orders for Reprints to reprints@benthamscience.ae The Open Fuels & Energy Science Journal, 2014, 7, 113-120 113 Heat Storage Performance of a Honeycomb Ceramic Monolith Xiaoni Qi * and Yongqi Liu

More information

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. A.(16) An electrochemical cell is prepared with a strip of manganese metal dipping in to a 1.0 M MnSO 4 solution

More information

Development of the Process for Producing Pre-reduced Agglomerates

Development of the Process for Producing Pre-reduced Agglomerates Development of the Process for Producing Pre-reduced Agglomerates JFE TECHNICAL REPORT No. 13 (May 9) MACHIDA Satoshi *1 SATO Hideaki * TAKEDA Kanji *3 Abstract: The Japanese steel industry, accounting

More information

2015 O LEVEL CHEMISTRY 5073/02

2015 O LEVEL CHEMISTRY 5073/02 OF SCIENCE 2015 O LEVEL CHEMISTRY 5073/02 SECTION A 1. The table shows some common oxidation states for some elements in their compounds. element common oxidation states metal / non-metal A 2 non-metal

More information

Calculation and Analysis the Influence on the Cooling Water Velocity and Hot Metal Circulation to the Long Life Blast Furnace

Calculation and Analysis the Influence on the Cooling Water Velocity and Hot Metal Circulation to the Long Life Blast Furnace Journal of Materials Science and Engineering B 5 (1-2) (2015) 36-41 doi: 10.17265/2161-6221/2015.1-2.003 D DAVID PUBLISHING Calculation and Analysis the Influence on the Cooling Water Velocity and Hot

More information

GCSE BITESIZE Examinations

GCSE BITESIZE Examinations GCSE BITESIZE Examinations General Certificate of Secondary Education AQA SCIENCE A CHY1A Unit Chemistry C1a (Products from Rocks) AQA Chemistry Unit Chemistry C1a (Products from Rocks) FOUNDATION TIER

More information

Information modeling system for blast furnace control

Information modeling system for blast furnace control IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Information modeling system for blast furnace control Recent citations - Thermal physics as the basis for energy and resource

More information

PRIMARY OR ALTERNATIVE OPERATING SCENARIO

PRIMARY OR ALTERNATIVE OPERATING SCENARIO EMISSION SOURCE (Fuel Combustion Source) Instructions for Form B2 Form B2 should be completed for all fuel combustion emission sources (e.g., generators, boilers, burn-off ovens, bakeon ovens, bakery ovens,

More information

Energy Efficient Process Heating: Managing Air Flow

Energy Efficient Process Heating: Managing Air Flow Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock Department of Mechanical and Aerospace Engineering University of Dayton 300 College Park Dayton, OH 45469-0210 Phone:

More information

Safer, More Efficient Combustion Control for Fired Heaters

Safer, More Efficient Combustion Control for Fired Heaters Safer, More Efficient Combustion Control for Fired Heaters By Julie Valentine, Emerson Electric, Inc. Introduction Fired Heaters are devices used for high-temperature heating. A fired heater is used in

More information

Ethylene Production Plant Design

Ethylene Production Plant Design Cooper Union for the Advancement of Science and Art Che 161.2: Process Evaluation and Design II Ethylene Production Plant Design Authors: Ghazal Erfani Ciera Lowe Joshua Mayourian Instructor: Professor

More information

STEEL PROCESSING AND METALLURGY

STEEL PROCESSING AND METALLURGY 91 STEEL PROCESSING AND METALLURGY TERÄKSEN VALMISTUS https://www.virtuaaliamk.fi/opintojaksot/030501/1132142124407/1133882334271/1134466052703/113628 7571230.html.stx Opiskelija perehtyy teräksen valmistukseen

More information

INSULATION AGING & GREEN FOAM

INSULATION AGING & GREEN FOAM INSULATION AGING & GREEN FOAM William R. Harris, P.E. What is green foam and why is it good for my next insulated piping system project? Green foam is light cream in color and if you placed a chunk of

More information

Chapter 2.7: Cogeneration

Chapter 2.7: Cogeneration Chapter 2.7: Cogeneration Part-I: Objective type questions and answers 1. In cogeneration, the system efficiencies can go up to ------ a) 70% b) 80% c) 90% d) 60% 2. Cogeneration is the simultaneous generation

More information

Void Formation and Breaking in a Packed Bed

Void Formation and Breaking in a Packed Bed , pp. 153 160 Void Formation and Breaking in a Packed Bed G.S.S.R.K. SASTRY, G.S. GUPTA and A.K. LAHIRI Department of Metallurgy, Indian Institute of Science, Bangalore -560 012, India. E-mail: govind@metalrg.iisc.ernet.in

More information

Lecture 14 Modern trends in BOF steelmaking

Lecture 14 Modern trends in BOF steelmaking Lecture 14 Modern trends in BOF steelmaking Contents: Post combustion Technology of post combustion Potential post combustion issues Slag splashing What is required for slag splashing Liquidus temperature

More information

Heat Engines and Refrigerators

Heat Engines and Refrigerators Heat Engines and Refrigerators In this chapter, we combine and apply all that we have learned in chapters 18, 19, & 20 to analyze some practical devices that can only be understood through Thermodynamics.

More information

Design and distribution of air nozzles in the biomass boiler assembly

Design and distribution of air nozzles in the biomass boiler assembly TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 125, 2013, 13 28 KAROL RONEWICZ, TOMASZ TURZYŃSKI, DARIUSZ KARDAŚ Design and distribution of air nozzles in the biomass boiler assembly The Szewalski

More information

Experiment 30A ENERGY CONTENT OF FUELS

Experiment 30A ENERGY CONTENT OF FUELS Experiment 30A ENERGY CONTENT OF FUELS FV 12/10/2012 MATERIALS: 12-oz. aluminum beverage can with top cut out and holes on side, thermometer, 100 ml graduated cylinder, 800 ml beaker, long-stem lighter,

More information

Modelling of the off-gas exit temperature and slag foam depth. of an Electric Arc Furnace

Modelling of the off-gas exit temperature and slag foam depth. of an Electric Arc Furnace odelling of the off-gas exit temperature and slag foam depth of an Electric Arc Furnace Daniël Jacobus Oosthuizen ), Johannes Henning Viljoen ), Ian Keith Craig ), Petrus Christiaan Pistorius 2) ) Department

More information

Advanced Master Course Process Technology of Metals

Advanced Master Course Process Technology of Metals Institut für Eisenhüttenkunde Rheinisch-Westfälische Technische Hochschule Aachen Advanced Master Course Process Technology of Metals (Part: Ferrous Process Metallurgy) Prof. Dr.-Ing. D. Senk 16-04-2010

More information

E. CHAN, M. RILEY, M. J. THOMSON 1) and E. J. EVENSON 2)

E. CHAN, M. RILEY, M. J. THOMSON 1) and E. J. EVENSON 2) , pp. 429 438 Nitrogen Oxides (NOx) Formation and Control in an Electric Arc Furnace (EAF): Analysis with Measurements and Computational Fluid Dynamics (CFD) Modeling E. CHAN, M. RILEY, M. J. THOMSON 1)

More information

Separations and Reactors. Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene

Separations and Reactors. Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene Separations and Reactors Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene Process Information Background Acrylic acid (AA) is used as a precursor for a wide variety of chemicals

More information

Dust Recycling System by the Rotary Hearth Furnace

Dust Recycling System by the Rotary Hearth Furnace UDC 669. 054. 83 : 66. 041. 49 Dust Recycling System by the Rotary Hearth Furnace Hiroshi ODA* 1 Tetsuharu IBARAKI* 1 Youichi ABE* 2 Abstract Dust recycling technology by the rotary hearth furnace has

More information

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL AND CHEMICAL PROPERTIES 2 SECTION OXYGEN FUEL IGNITION PHYSICAL AND CHEMICAL PROPERTIES OF PROPANE 10 OBJECTIVES SECTION 2 Physical and Chemical Properties of Propane 1) List the two major flammable gases used in the Liquefied

More information

Regenerative Firing vs. Oxy Fuel Firing: An Applications Approach Steven J. O Connor Senior Applications Engineer, Bloom Engineering Company

Regenerative Firing vs. Oxy Fuel Firing: An Applications Approach Steven J. O Connor Senior Applications Engineer, Bloom Engineering Company Regenerative Firing vs. Oxy Fuel Firing: An Applications Approach Steven J. O Connor Senior Applications Engineer, Bloom Engineering Company KEY WORDS Combustion Oxy Fuel Regenerative Burners Reheat Furnace

More information

Technical Information

Technical Information General Applications Process Applications Determining Heat Energy Lost The objective of any heating application is to raise or maintain the temperature of a solid, liquid or gas to or at a level suitable

More information

Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS

Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS Copyright The McGraw-Hill Companies,

More information

Energy Sector March 2016, Maseru, Lesotho Pavel Shermanau, IPCC TFI TSU

Energy Sector March 2016, Maseru, Lesotho Pavel Shermanau, IPCC TFI TSU Energy Sector Africa Regional Workshop on the Building of Sustainable National Greenhouse Gas Inventory Management Systems, and the Use of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

More information

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Y. Wang *1,2, J. Kowal 1,2 and D. U. Sauer 1,2,3 1 Electrochemical Energy Conversion and Storage Systems Group, Institute for Power

More information

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant

Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant International Journal of Engineering and Technology Volume 3 No. 1, January, 2013 Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant Wordu, A. A, Peterside, B Department

More information

IRISH CEMENT PLATIN INVESTING IN OUR FUTURE

IRISH CEMENT PLATIN INVESTING IN OUR FUTURE IRISH CEMENT PLATIN INVESTING IN OUR FUTURE INTRODUCTION Investing in our future. The next phase of investment in Platin will see further energy efficiency improvements with on site electricity generation

More information

Potentials and Limitations with respect to NO x -Reduction of Coke Plants

Potentials and Limitations with respect to NO x -Reduction of Coke Plants Potentials and Limitations with respect to NO x -Reduction of Coke Plants NEUWIRTH, Ralf 1, HUHN, Friedrich 1, KIM, Ronald 1, GORSKI, Arkadius 1 (1. ThyssenKrupp Industrial Solution AG, BU Process Technologies,

More information

Brimacombe Lecture. Research on Sustainable Steelmaking

Brimacombe Lecture. Research on Sustainable Steelmaking Brimacombe Lecture Research on Sustainable Steelmaking R. J. Fruehan Center for Iron and Steelmaking Research Materials Science and Engineering Department Carnegie Mellon University Pittsburgh PA Tel:

More information

Chemistry CH1FP. (Jun15CH1FP01) General Certificate of Secondary Education Foundation Tier June Unit Chemistry C1. Unit Chemistry C1 TOTAL

Chemistry CH1FP. (Jun15CH1FP01) General Certificate of Secondary Education Foundation Tier June Unit Chemistry C1. Unit Chemistry C1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Chemistry C1 Chemistry Unit Chemistry C1 Tuesday 9 June 2015 General

More information

Materials engineering. Iron and steel making

Materials engineering. Iron and steel making Materials engineering Iron and steel making Metals: rarely exist in pure state mostly in ores Ore: Metallic and other compounds, mostly oxides Metallic content: Iron ores: 30-70% Fe Copper ores: 0.1-0.8

More information

Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview

Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview 47 th International Energy Agency Fluidized bed conversion (IEA- FBC) meeting, on October 13-14 th, 2003 in Zlotniki,

More information

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting joe.poveromo@rawmaterialsiron.com DR Pellet Quality & MENA Applications Chemistry Considerations direct reduction processes: chemical

More information

COMBUSTION OF LIQUID FUELS COMBUSTION AND FUELS

COMBUSTION OF LIQUID FUELS COMBUSTION AND FUELS COMBUSTION OF LIQUID FUELS PHASES OF LIQUID FUEL BURNING Two phases of liquid fuel burning: a) phase of liquid evaporation, b) phase of vapour burning. Cloud of vapour Droplet of fuel DOMINATING FACTORS

More information

Parameters Affecting the Production of High Carbon Ferromanganese in Closed Submerged Arc Furnace

Parameters Affecting the Production of High Carbon Ferromanganese in Closed Submerged Arc Furnace jmmce.org Journal of Minerals & Materials Characterization & Engineering, Vol. 11, No.1, pp.1-2, 212 Printed in the USA. All rights reserved Parameters Affecting the Production of High Carbon Ferromanganese

More information

Oxidation of Graphite and Metallurgical Coke

Oxidation of Graphite and Metallurgical Coke DEGREE PROJECT IN MATERIALS DESIGN AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 Oxidation of Graphite and Metallurgical Coke A Numerical Study with an Experimental Approach YOUSEF AHMAD

More information

ELECTRIC INDUCTION FURNACE

ELECTRIC INDUCTION FURNACE ELECTRIC INDUCTION FURNACE The electric induction furnace is a type of melting furnace that uses electric currents to melt metal. Induction furnaces are ideal for melting and alloying a wide variety of

More information

Oxy-fuel combustion integrated with a CO 2 processing unit

Oxy-fuel combustion integrated with a CO 2 processing unit POLISH STRATEGIC PROGRAM ADVANCED TECHNOLOGIES FOR ENERGY GENERATION Oxy-fuel combustion integrated with a CO 2 processing unit coordinator: Wojciech Nowak AGH University of Science and Technology Kraków,

More information

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes International Journal of Emerging Engineering Research and Technology Volume 3, Issue 9, September, 2015, PP 1-7 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design of a Small Scale CFB Boiler Combustion

More information

Chapter 2.6: FBC Boilers

Chapter 2.6: FBC Boilers Part-I: Objective type questions and answers Chapter 2.6: FBC Boilers 1. In FBC boilers fluidization depends largely on --------- a) Particle size b) Air velocity c) Both (a) and (b) d) Neither (a) nor

More information

Furnace Monitoring and Billet Cutting System

Furnace Monitoring and Billet Cutting System International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 15 No. 1 May 2015, pp. 175-179 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

Introduction. 1. MIDREX R process

Introduction. 1. MIDREX R process Kobe Steel, along with MIDREX Technologies, is the world leader in direct reduction (DR) technologies. Kobe Steel has developed a coal based DR process which utilizes non-coking coal as a reductant instead

More information

Energy Saving & Breakthrough Technologies. Dr Ladislav Horvath Zhang Jiagang, Jiangsu, China, August 1, 2013

Energy Saving & Breakthrough Technologies. Dr Ladislav Horvath Zhang Jiagang, Jiangsu, China, August 1, 2013 Energy Saving & Breakthrough Technologies Dr Ladislav Horvath Zhang Jiagang, Jiangsu, China, August 1, 2013 Disclaimer text For presentations to the general public: This document is protected by copyright.

More information

THE THERMOVISION MEASUREMENT OF TEMPERATURE IN THE IRON-ORE SINTERING PROCESS WITH THE BIOMASS

THE THERMOVISION MEASUREMENT OF TEMPERATURE IN THE IRON-ORE SINTERING PROCESS WITH THE BIOMASS Acta Metall. Slovaca Conf. 56 THE THERMOVISION MEASUREMENT OF TEMPERATURE IN THE IRON-ORE SINTERING PROCESS WITH THE BIOMASS Jaroslav Legemza 1)*, Mária Fröhlichová 1), Robert Findorák 1) 1) Department

More information

Fluidised bed for stripping sand casting process. Guido Belforte, Massimiliana Carello, Vladimir Viktorov

Fluidised bed for stripping sand casting process. Guido Belforte, Massimiliana Carello, Vladimir Viktorov Fluidised bed for stripping sand casting process Guido Belforte, Massimiliana Carello, Vladimir Viktorov Dipartimento di Meccanica - Politecnico di Torino C.so Duca degli Abruzzi, 24 10129 Torino Italy

More information

Energy saving Opportunities in Steel Reheating Furnaces

Energy saving Opportunities in Steel Reheating Furnaces Energy saving Opportunities in Steel Reheating Furnaces S. M. Ahuja Associate Professor, Department of Chemical Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab,

More information

Downsizing a Claus Sulfur Recovery Unit

Downsizing a Claus Sulfur Recovery Unit INFRASTRUCTURE MINING & METALS NUCLEAR, SECURITY & ENVIRONMENTAL Downsizing a Claus Sulfur Recovery Unit OIL, GAS & CHEMICALS By Charles L. Kimtantas and Martin A. Taylor ckimtant@bechtel.com & mataylo1@bechtel.com

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Laboratory Investigations of the Electrical Resistivity of Cokes and Smelting Charge for Optimizing Operation in Large Ferrochrome Furnaces

Laboratory Investigations of the Electrical Resistivity of Cokes and Smelting Charge for Optimizing Operation in Large Ferrochrome Furnaces Southern African Pyrometallurgy 2006, Edited by R.T. Jones, South African Institute of Mining and Metallurgy, Johannesburg, 5-8 March 2006 Laboratory Investigations of the Electrical Resistivity of Cokes

More information

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Investigators Reginald E., Associate Professor, Mechanical Engineering; Paul A. Campbell and Liqiang Ma, Graduate Researchers

More information

Technical Notes for Biomass and Air Quality Guidance

Technical Notes for Biomass and Air Quality Guidance Technical Notes for Biomass and Air Quality Guidance Appendix 1 Restricted Commercial AEA/ED45645/Draft 1 Unit conversion tool Introduction In order to assess the impact of a combustion appliance on air

More information

Heat Transfer Modeling of Tubular Reforming Reactor

Heat Transfer Modeling of Tubular Reforming Reactor Heat Transfer Modeling of Tubular Reforming Reactor Carlos Gonçalo Ferreira 1 1 IST Instituto Superior Técnico, Lisbon, Portugal Keywords: Steam reforming, numerical simulation, methane, methanol, temperature,

More information

Final Technical Report. Project Title: Melting Efficiency Improvement. Award Number: DE-FC36-04GO Project Period: (January 2004 June 2012)

Final Technical Report. Project Title: Melting Efficiency Improvement. Award Number: DE-FC36-04GO Project Period: (January 2004 June 2012) Final Technical Report Project Title: Melting Efficiency Improvement Award Number: DE-FC36-04GO14230 Project Period: (January 2004 June 2012) Principal Investigator: Kent Peaslee, 573-341-4714, kpeaslee@mst.edu

More information

Optimization of Firing Temperature for Hematite Pellets

Optimization of Firing Temperature for Hematite Pellets , pp. 1673 1682 Optimization of Firing Temperature for Hematite Pellets Tekkalakote UMADEVI,* Naveen Frank LOBO, Sangamesh DESAI, Pradipta Chandra MAHAPATRA, Rameshwar SAH and Manjunath PRABHU JSW Steel

More information

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL Dong HU 1 Pei-Xiao LIU 2 Shao-Jun CHU 1 1 School of Metallurgical and Ecological Engineering, University of Science

More information

GAS METAL ARC WELDING (GMAW)

GAS METAL ARC WELDING (GMAW) GAS METAL ARC WELDING (GMAW) INTRODUCTION Gas Metal Arc Welding (GMAW) is also called Metal Inert Gas (MIG) arc welding. It uses consumable metallic electrode. There are other gas shielded arc welding

More information

Steam Power Station (Thermal Station)

Steam Power Station (Thermal Station) Steam Power Station (Thermal Station) A generating station which converts heat energy into electrical energy through turning water into heated steam is known as a steam power station. A steam power station

More information

Steel Industry Technology Roadmap. Barriers and Pathways for Yield Improvements. by Energetics, Inc. for the American Iron and Steel Institute

Steel Industry Technology Roadmap. Barriers and Pathways for Yield Improvements. by Energetics, Inc. for the American Iron and Steel Institute Steel Industry Technology Roadmap Barriers and Pathways for Yield Improvements by Energetics, Inc. for the American Iron and Steel Institute October 7, 2003 Table of Contents Executive Summary...ii 1 Modeling,

More information

Environmental Life Cycle Assessment PSE 476/FB 576

Environmental Life Cycle Assessment PSE 476/FB 576 Environmental Life Cycle Assessment PSE 476/FB 576 Lecture 4: Life Cycle Inventory: Units and Material and Energy Balances Fall 2016 Richard A. Venditti Forest Biomaterials North Carolina State University

More information

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation

Prediction of Pollutant Emissions from Industrial Furnaces Using Large Eddy Simulation Paper # B03 Topic: Turbulent Flames 5 th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March 25-28, 2007.

More information

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE W.S.51. Chemical reactions. All of the different materials around us have been formed by chemical reactions from about one hundred simple elements. The diagram below shows a chemical reaction between the

More information

SOME EXPERIMENTAL STUDIES OF COAL INJECTION INTO SLAGS

SOME EXPERIMENTAL STUDIES OF COAL INJECTION INTO SLAGS (Published in 6 th EAF Conference Proceedings, USA, Nov. 1-13, 22, pp.511-524.) SOME EXPERIMENTAL STUDIES OF COAL INJECTION INTO SLAGS F. Ji, M. Barati, K. Coley and G.A. Irons Steel Research Centre, Department

More information

EU market for process heat applications

EU market for process heat applications EU market for process heat applications 4 April 2013 OECD, Paris Workshop on "Technical and Economic Assessment of Non Electric Applications of Nuclear Energy Vincent Chauvet vincent.chauvet@lgi consulting.com

More information