Reliability in Large Area Solder Joint Assemblies and Effects of Thermal Expansion Mismatch and Die Sizen

Size: px
Start display at page:

Download "Reliability in Large Area Solder Joint Assemblies and Effects of Thermal Expansion Mismatch and Die Sizen"

Transcription

1 Reliability in Large Area Solder Joint Assemblies and Effects of Thermal Expansion Mismatch and Die Sizen Jun He, W. L. Morris, M. C. Shaw, J. C. Mather* and N. Sridhar Rockwell Science Center 1049 Camino Dos Rios Thousand Oaks, California Phone: / 4504/ 4444/ 4774 Fax: and *Rockwell Collins Inc. 400 Collins Road NE Cedar Rapids, Iowa Phone: Fax: n Best Paper of IMAPS 98 Conference. Abstract Current applications for high power electronic devices such as microprocessors, communications devices and power transistors demand solder joints with well known reliability under a wide range of conditions. This reliability represents a major design challenge requiring detailed information about the constitutive response of the solder joints and the manner in which they impart stress to the overall module assembly. In this paper, the investigators will describe some recent progress on the relationships between CTE mismatch, die size, and the expected reliability of the package. An experimental test matrix has been constructed of specimens comprised of direct die bonded Si test vehicles to include various 1) solder alloys; 2) silicon die sizes; 3) substrate CTEs. The absolute magnitudes and spatial distributions of thermal residual stress in silicon dice are measured directly by Raman piezospectroscopic techniques. The measured stress profiles are critically compared with both analytical models and Finite Element results. Based on these comparisons, a number of common assumptions in stress analyses and their applicability are addressed. Finally, the implications of these findings on the device and the solder joint reliability are discussed. Key words: 1. Introduction Raman Piezospectroscopy, Thermal Stress, Solder Joint, Die Fracture, Finite Element Model, and Reliability. Semiconductor devices capable of dissipating significant power are widely used for computers, power supplies, motor controls, and automotive electronics. All devices have finite on-state voltage drops when conducting the on-state currents and finite switching times during turn-on and turn-off. These effects result in significant power dissipation in the system that needs to be removed through electronic packaging. For example, in a typical IGBT based motor drive, 4% of the controlled power is dissipated as heat within the device, 297

2 Intl. Journal of Microcircuits and Electronic Packaging that is, 1500 W for a 50 Hp drive. Therefore, thermal management is one of the key packaging issues requiring the use of highly thermally conductive substrates and baseplates. Typical substrates may exhibit coefficients of thermal expansion (CTE) that are several times that of silicon and other common semiconductors. As a result, thermal residual stress, r, is developed in the devices, solder interconnections and substrates during package assembly, which typically involves high temperature exposure. Indeed, in cases where high power semiconductor devices are utilized, significant stresses can develop and cause mechanical failure, or lead to changes in the operational characteristics of the device. In addition to the mismatch in CTEs, the maximum thermal stress in the device is also proportional to the die area up to a certain critical size 1. A great deal of study, both analytical and numerical, has been devoted to thermal stress problems in joining materials with different CTEs. Almost all of the research findings are based on the classical work achieved by Timoshenko 2. This theory, however, predicts only the in-plane normal stress in the assembly components, and is based on the assumption that this stress is uniformly distributed over the assembly length. This work has been followed by more sophisticated analyses including the effect of interfacial shear and peeling stresses 3-5. In a direct application to electronic assemblies, Suhir 6 has provided an insightful approximation where all principal stress components can be estimated by very simple closedform formulas. In contrast to the relatively large number of theoretical studies, until recently there has been no experimental comparison available to help validate the solutions. Furthermore, direct experiment data are needed in order to obtain the in-situ constitutive properties of solder and joint materials. In the present paper, the authors describe a systematic study on the reliability of large area die attaches. An experimental test matrix has been constructed of specimens comprised of direct die bonded silicon test vehicles to include various 1) solder alloys; 2) silicon die sizes, 3) substrate CTEs. The detailed distributions of thermal residual stresses in silicon die are measured directly by a novel piezospectroscopic technique based on Raman spectra from silicon 7. Results are then compared to Finite Element analyses as well as Suhir s equations. Based on these comparisons, a number of common assumptions in stress analyses and their applicability are addressed, especially in terms of edge effects and interfacial peeling stresses. These results are then related to the strain distribution within the solder layer utilizing simple micromechanics concepts. Finally, implications on the solder joint reliability are discussed along with a number of different die fracture modes observed during thermal cycling. 2. Theoretical and Experimental Methodology 2.1. Silicon Raman Piezospectroscopy Piezospectroscopy is concerned with the effect of strain on the spectroscopic properties of solids. In a typical measurement, a laser beam is focused on the sample by an optical microscope to obtain a spectral signal (fluorescence or Raman). Analysis of the frequency and the width of intensity peaks in such spectra reveals the local state of stress. The technique is non-destructive and can be used to analyze regions just a few microns in dimension. In the present work, Raman spectra were obtained from silicon surfaces in a backscattering configuration using the nm line of an argon laser and a beam power of 10 mw. The dimensions of the probed region were less than 2 µm in diameter and 20 nm in depth, such that only the near-surface region is investigated. Specimens were moved with an X-Y translation stage in minimum steps of 0.01 mm. The relationship between the Raman frequency shift, Du, and the bi-axial stress state, r xx + r yy, is of the form, Du = S(r xx + r yy ) (1) where S = Rcm -1 /GPa 7. The measured shift is thus proportional to the sum of the two in-plane stress components, r xx + r yy. The Raman signal of a freestanding c-silicon wafer is used as the stress-free standard Specimen Preparation Each test article was fabricated using three square silicon test chips, 0.2, 0.6 and 1.0 inch in dimension (Figure 1). The devices were attached to ¼ inch metal substrates, including copper, mild steel and Kovar, with 50 µm thick continuous solder layers. Die attachment materials included four common solder alloys (Table 2). Soldering was achieved in all cases by heating the test article above the liquidus temperature of the solder alloy (Table 2), in a reducing environment. After bonding, the test articles were cooled to room temperature by controlled nitrogen flow with typical cooling rates of 1 C/s. Following fabrication, the quality of each solder joint was evaluated by a high frequency ultrasonic C-scan imaging technique that confirmed good quality joints with only a relatively small area fraction of disbonds/voids. 298

3 h c Stress, σ xx + σ yy Silicon Chip 1/4 inch metal Substrate H Z Y X Solder, h s Table 1. Material properties used in the analyses. Material Modulus E (GPa) CTE α (ppm/k) # Plane Strain Modulus, E/(1-ν) (GPa) Copper Mild steel Kovar Au20Sn within {100} plane within {110} plane Silicon within {111} plane #Values averaging over C Figure 1. Schematic of test article configuration including coordinates and notations. Table 2. Solder constitutive properties in layered joints obtained from analysis of experimental data. Solder Alloys Shear Yield Critical Die Stress Onset Temperature, T* ( C) Liquidus Strength, τy Size #, H* (mm) Isotropic. FEM Modified Suhir Anisotropic. FEM Temperature ( C) 80Au20Sn Sn5Ag Pb1.5AG1Sn Sn37Pb # Based on 200 µm thick device attached to ¼ inch thick copper substrates 2.3. Finite Element Analysis The various stress component values reported below were obtained using elastic Finite Element models of a 1/8 symmetric section of the test sample, meshed with 18,000 elements, primarily bricks (Figure 2). The models included the base plate in full detail, as the silicon baseplate edge spacing was found to affect the calculated stresses slightly. Note the mesh element density is highest near the free edge and corner where large stress gradients are expected. Despite the well-known anisotropy of silicon (Table I), isotropic physical properties have been used in most of the previous investigations with no attempt to qualify this approximation. Therefore, the researchers calculate the stress distribution in the die using an assump- Cosh( kx) σ xx( x) + σ yy ( y) = σ 0 2 (1+ ν ) (2) c H tion of an isotropic modulus as well as cases where they incorporate Cosh k 2 the full stiffness tensor of the silicon. The copper and solder moduli are assumed to be isotropic, with an average value of CTE over the 1 temperature range of interest. and k = ( G ( ) ( ) 2 s 1 νc / Echchs 2. E c and u c are the Young s modulus and Poisson s ratio of the device, respectively. r 0 is the maximum in-plane thermal stress that can be reached in the die. Equa- Solder Die tion (2) can be extended to general cases by simply replacing r 0 and k by Suhir s definition 6. Both equations will be plotted along with the FEM results in comparison with Raman data as described below. Copper The experimentally measured stress distribution along the midplane of the 1 inch square silicon device bonded on ¼ inch copper substrates is shown in Figure 3 for four solder alloys. The device thickness is 200 µm. Experimental results based on Raman piezospectroscopic measurements are shown as points, and the predictions of the numerical models fitted to the data are shown as either solid and dashed lines, based, in turn, on plastic and elastic Figure 2. 1/8 symmetric mesh used in FEM analyses. responses of the solder, respectively. The 80Au20Sn solder follows the elastic behavior predicted by Equation (2), in which the stress 3. Results and Discussion 3.1. Thermal stresses in devices 1) Effects of chemical composition of solder alloy: As demonstrated previously 1,7, the thermal stress distribution in such devices can be divided into two regions, a transient region near the die edge, defined in this case as the shear-lag zone, where the in-plane stress increases with position from the edges, and a central region of constant, spatially-invariant stress (Figure 3), defined in this case as the plateau region. The magnitude and distribution of these thermal stresses are governed by the CTE mismatch, the elastic and the geometric properties of the device, the substrates and most importantly by the solder shear yield strength t y and creep rate. The elastic stress distribution within shear lag zone has been calculated by Suhir 6 under the plane strain approximation, where dimension of y- direction is assumed to be infinite. When the length and width of a device are comparable to each other, such an approximation breaks down and the modified stress distribution at the mid-plane of the device is given under thin film limit 7, 299

4 Intl. Journal of Microcircuits and Electronic Packaging rises rapidly with increasing position from the edges, and the length of elastic shear lag zone is determined to be 2 mm in this case. For most of solder alloys, however, the shear yield strength, which is the maximum sustainable shear stress, is far less than the interfacial shear stress required by the rapid stress buildup near the edge. In these cases, the in-plane stress increases linearly with the distance from the edge before reaching its maximum value as given by Reference 7, σ XX τ ( x) = y ( H / 2 x ) for( H / 2 x ) hc for( H / 2 x) > L σ 0 L where the plastic shear lag zone length L = r 0 h c /t y. Results in Figure 3 clearly demonstrated the plastic response of three solder alloys with the values of t y determined by fitting the data using Equation (3). Thermal Stresses, σ xx +σ yy Sn5Ag 80Au20Sn σ xx 63Sn37Pb 97.5Pb1.5Ag1Sn σyy Position along x axis(mm) Figure 3. Stress distributions in silicon die attach on copper after fabrication. In addition to the shear lag zone size, the solder composition also determines the value of r 0. It is well known that the maximum thermal stress is proportional to DaDT. In this case, Da is the difference in CTE between the substrate and the device and DT is the temperature range over which the stresses develop. Note that DT does not correspond to the difference between the processing temperature and room temperature, T room ; instead DT is defined as, (3) at the center of the 1 inch die to the analytical and FEM models. As shown in Table 2, there is considerable discrepancy in the value of T* using different models. 2) Die size dependence and critical die size: If the lateral dimension of the device, H, is less than twice the elastic or plastic shearlag length, L, the stress within the die never reaches the maximum level, or plateau, dictated by the CTE mismatch between the device/ substrate and the creep of the solder material. That is, the maximum stress thus depends on the device dimension, but only for devices smaller than a critical size. In turn, as shown in Figure 3, this critical size is inversely proportional to the shear strength of specific solder alloy used to attach the device to the substrate. This critical die size H* is equal to twice the length of shear lag zone. It also applies to both stress components, r xx and r yy, below which both the edge and center stresses are less than their peak value. One example of this phenomenon is demonstrated in Figure 4, in which experimentally measured stress distributions are presented from devices of different sizes (0.2, 0.6 and 1.0 square inches) attached to copper by 80Au20Sn eutectic solder (cf. Figure 2). For the 0.6 and 1.0 inch silicon devices, the distributions of residual stress within the elastic shear lag zone are essentially identical. The primary difference is only observed in the differing lengths of the constant stress zone within the device interior. On the other hand, the overall magnitudes of thermal stress in the 0.2 inch device are significantly smaller, indicating that the size of the device is well below H* for 80Au20Sn eutectic solder. Thermal Stress, σ xx +σ yy σ xx σyy Au20Sn h c =500µm Figure 4. Thermal stress in silicon devices attached to copper substrates. DT = T*-T room (4) 3) CTE mismatch of devices and substrates: Both shear lag zone length and maximum thermal stresses have strong dependence on where T* is designated as the stress onset temperature, below which the value of Da. In the present investigation, Kovar, mild steel and the creep of solder alloy is so slow in comparison to cooling rate that copper have been used as substrate materials; the resulting values of there is no notable stress relaxation during subsequent cooling. Due Da are 2.2, 7.8 and 14.3 ppm/k, respectively. The in-plane thermal to the complex nature of solder creep processes and their dependence on the actual processing conditions, the value of T* can be shown in Figure 5. Values for both L and r 0 stresses of 80Au20Sn die attach using these three substrates are decrease dramatically determined only through experiments. In the current study, DT and by lowering the CTE mismatch. T* are determined by matching the experimentally measured r The International Journal of Microcircuits and Electronic xx +r Packaging, yy Volume 21, Number 3, Third Quarter 1998 (ISSN ) 300

5 Thermal Stresses, σ xx +σ yy σ xx Kovar σyy Mild Steel Copper 80Au20Sn h c =500µm Thermal Stresses, σ xx +σ yy µm silicon/80au20sn/1/4 inch copper Anisotropic FEM Modified Suhir He&Sridhar Figure 5. Thermal stress in 1 inch silicon devices attached to 3 different substrates. Figure 6. Comparison of Experimental data and various theoretical models for in-plane stresses Comparison and Verification of Analytical and FEM models All analytical and FEM models compared so far are based on elastic calculations. Therefore, the 80Au20Sn die attach on copper was chosen as the test case in comparing the results of Suhir s equations and FEM analyses to the experimental data. In this thin film limit case (Equation (2)) and Suhir s models, silicon is assumed to be isotropic, so the plane strain modulus, E/(1-m), is taken as the average value of that along [100] and [110] direction (Table 1). In the case of FEM analyses, both isotropic and anisotropic computations are performed. 1) In-plane and interfacial shear stress distribution: The measured distribution of in-plane die stresses (circles) is plotted in Figure 6 along with the predictions based on this thin film limit solution, modified Suhir s equation (Equation (2)) and FEM analysis using the full stiffness tensor for silicon. Note that the value of DT for all three models has been adjusted to match the experimental stress value at the device center. The corresponding value of stress onset temperatures T* are listed in Table 2. All three models predict similar stress profiles; however, Suhir s formula gives a much longer shear lag zone than the experimental data indicates, and this thin film approximation under-predicts the value of L. On the other hand, there is extremely good agreement between the FEM model using the full stiffness tensor and the experiment results. The shear stress at the silicon/solder interfaces t s, or r xz and r yz, is also compared in Figure 7. Both numerical and analytical models predict a monotonic increase of shear stress approaching the free edge. Suhir s formula underestimates the maximum shear stress by more than 50%. The FEM model, assuming isotropic mechanical properties in silicon, predicts in-plane and shear stress distributions very close to those of the full anisotropic model; however, there is a significant discrepancy in peeling stresses as discussed in the next section. Die/Solder Interfacial Shear Stress, τ s Anisotropic FEM Modified Suhir's Equation Figure 7. Comparison of Suhir and FEM predictions of device/solder interfacial shear stresses. 2) Peeling stress: The contribution to the normal or peeling stresses, r zz, from beam bending is given by Suhir s equation. The FEM results given in Figure 8 have been extrapolated to the silicon solder interface from gaussian points in elements at the bottom of the silicon FE mesh. In this case, the normal stress is dominated by an edge effect. The in-plane stress at the solder copper interface causes the silicon to curl down near its edge (Figure 9), producing a vertical displacement vs. position which is almost mirrored by the stresses. The vertical free edge, comprised of end surfaces of solder and silicon, is also bent slightly. This produces a small tensile r zz component along the surface of the free end, which is at its maximum at the silicon free end near its mid thickness in the vertical direction. As a result, the most compressive value of r zz occurs at the solder copper interface at the free edge. The peak r zz stress along the solder silicon interface occurs slightly inwards from the 301

6 Intl. Journal of Microcircuits and Electronic Packaging free edge, giving the curious decrease in the compressive magnitude seen at the free edge in Figure 8. Although the mesh of the FE model used was not sufficiently fine to give an accurate value for this edge stress, the isotropic FEM analysis does capture the nature of the peeling stress distribution. However, it underestimates the magnitude of maximum tensile and compressive normal stresses by 10 to 20%. Interface Peeling Stress, σ zz Isotropic FEM Anisotropic FEM Suhir's Equation Figure 8. Peeling stresses at the silicon/solder interface near the free edge. silicon copper solder Figure 9. Deformed FED mesh near the edge with displacements magnified 40X. In the case of Suhir s formulas, the prediction of normal stresses is rather poor. There is no expectation of compressive normal stresses near the edge due to the fact that the free end boundary condition is not considered and the bend is assumed to be uniform throughout the silicon die. As a result, the maximum peeling stress is only 15% of that predicted by the FEM model. 3) Stress onset temperature T*: The determination of stress onset temperature, T*, is of crucial importance. It is required in order to estimate the stress/strain range imposed upon the solder layers during thermal cycling. Also, information about creep behavior of the solder alloys at high temperature can be obtained by studying the effects of cooling rate following solder reflow on T*. However, the evaluation of T* requires accurate analyses from both experiments and modeling. In Table 2, one can list values of T* predicted by different numerical and analytical models based on comparison with the Raman data for Si/Cu assemblies using different solder alloys. The FEM calculations were performed only on 80Au20Sn solder joint assemblies. The value of DT and T* for other solders are extrapolated based on the ratio of their peak die stresses over that of the Au-Sn eutectic. Both Suhir s formula and isotropic FEM predict a lower value of T* than anisotropic FEM. This is the major discrepancy introduced by assuming that silicon is elastic isotropic. In addition, note that the T* predicted by the full FEM analysis is 22 degrees higher than the melting temperature of the original eutectic gold-tin solder alloy. This is due to the fact that gold-plated copper has been used on silicon device as well as the substrate as solder pads, and they tend to form intermetallic compounds with tin in the solder during reflow. Furthermore, in-situ reflow observation reveals that the solder preform solidifies immediately after melting and remains solid until 330 C. Subsequent chemical composition analysis indicates a notable drop in tin content after this process. Similar results are known to occur if gold coatings dissolves into solder during reflow. As a result, the authors simply note that the thickness and composition of solder pads need to be carefully considered with respect to the physical and mechanical properties of the resultant solder joint Implications on Device and Solder Joint Reliability 1) Interfacial delamination and device fracture: As shown in previous sections, there is a significant driving force for crack growth initiating from interfacial defects near free edges or corners. Cracking processes from such effects in layered systems have been studied extensively in recent years. Also, it is now known 8 that cracks that initiate at such interfaces can either continue to propagate along the interface or deviate into the layer subject to compressive stresses provided its toughness is lower than that of the interface. However, the crack initiation process is rather complicated and depends on the defect distribution in the system. Although detail analyses based on fracture mechanics is beyond the scope of this paper, some general conclusions can be drawn based upon the current results. Since the interfacial shear and peeling stresses are proportional to the solder yield strength, cracks are more likely to grow in assemblies containing hard solders such as Au-Sn alloy than those using soft solders, for a comparably sized defect. Indeed, fractures around the die edge have been observed in some gold-tin solder die attaches. One example is shown in Figure 10, where a crack propagated spontane- 302

7 ously along the solder/silicon interface for a distance of approximately 1-2 die thicknesses. At this point, the crack left the interface to propagate within the silicon creating a conchoidal fracture surface around the device perimeter. This scenario is a clear indication that the adhesion between solder and silicon is very good and, furthermore, is tougher than the toughness of bulk silicon. Finally, one can note that if the silicon was substantially thicker, say 5 or 6 mm, then the crack path within the silicon would eventually rotate and become oriented parallel to the silicon/solder. Figure 10. Top view of a fractured Si/Cu die attach using eutectic gold-tin solder. Although large area solder joint assemblies using soft solder, such as eutectic Pb-Sn, are less likely to induce die fracture around device edges due to local stresses during cooling, they are prone to a different mode of failure. As demonstrated elsewhere 1, 7, there can be significant stress relaxation in a device, even at room temperature for some solder alloys, due to creep of the solder. This can lead to failure of the device during subsequent reheating, whereupon the entire device is placed under tension owing to the greater expansion of the base plate. Fracture of the die can occur before T* is reached. Indeed, a number of die fractures by this mode have been observed during thermal cycling following room temperature aging. One such example is shown in Figure 11. A 15 mm by 10 mm silicon/copper die attach using 97.5Pb/1.5Ag/1Sn solder was aged at room temperature for two weeks. The peak in-plane stresses fell 27%. Upon reheating, at 2 C/s, the die fractured abruptly at 170 C, 35 C below T*. Numerous cleavage cracks appeared, forming a grid pattern through the die center. A crude elastic interpolation gives an estimated peak stress in the die at 170 C of +39 MPa. This is well below the typical tensile strength of silicon die. The cracks could have initiated from cutting damage at the die edge, but the edge 4. Conclusion defect cracks would have needed to be bigger than 100 µm. A simple creep analysis predicts that stresses at and parallel to an edge will fall from the edge center to the die corner much faster than the stresses fall with location from the die center to the die edge. The observed In this paper, the researchers have presented the results from a crack/ die edge intersections lie within a zone along the edge for systematic study on the reliability of large area solder joint assemblies. Specifically, the spatial distributions of stress within silicon which the tensile stresses are barely within 50% of their maximum value. This helps explain why there is no cracking any closer to the devices bonded to substrates with a range of solder alloys have been die corners. But, it also probably means that the true value of the determined. These measurements are obtained directly by a novel peak edge stress is higher than estimated. Also, since small peak piezospectroscopic technique with unprecedented resolution. These stresses will develop, a device smaller than the critical die size H* is data are then related to the strains and corresponding constitutive less likely to fracture upon subsequent heating or power up. behavior of the solder layer. Results are then compared with the predictions of numerical and analytical analyses. Based on these Figure 11. Top view of a fractured Si/Cu die attach using 97.5Pb/1.5Ag/1Sn. 2) Solder joint fatigue life: The critical die size concept also has important effects on solder joint fatigue life. To illustrate this point, one can recall that the number of cycles to failure for a solder joint under thermal-mechanical cycling is believed to be inversely proportional to the plastic strain range experienced during the cycle through a power law as predicted by Coffin-Manson relation 9. For devices that are smaller than the critical die size, the solder joint lifetime is thus predicted to decrease with increasing die size. This fact is due to the increase in shear strain in the solder joint with increase in device dimension, but only until H* is reached. Further increases in die size beyond H* do not change the shear strain distribution in the solder layer since the solder layer is under zero shear strain within the constant stress region. Therefore, the plastic strain range induced by thermal-mechanical cycling remains invariant for device sizes greater than H*. As a result, one can predict that there is no reduction of fatigue lifetime of the joint upon further size increase beyond H*. Furthermore, the value of H* is in turn related to device thickness and solder shear strength. Therefore, one can expect that a relatively thick solder layer with high stiffness and high yield strength, in combination with thin die, will lead to a longer solder joint fatigue life. All testing articles used in current studies are under thermal cycling and preliminary results to support these conclusions. 303

8 Intl. Journal of Microcircuits and Electronic Packaging comparisons, a number of common assumptions in stress analyses and their applicability are addressed and related to the reliability of the solder joint, especially in terms of edge effects and interfacial peeling stresses. References 1. Jun He, M.C. Shaw, J. C. Mather, and R.C. Addison, Jr., Direct Measurement and Analysis of the Time-Dependent Evolution of Stress in Silicon Devices and Solder Interconnections in Power Assemblies, Proceedings of IEEE Industry Application Society Conference, San Louis, Missouri, October 12-15, pp , S. P. Timoshenko, Analysis of Bi-Metal Thermostats, Journal of the Optical Society of America, Vol. 11, pp , M. S. Hess, The End Problem for a Laminated Elastic Strip- II. Differential Expansion Stresses, Journal of Composite Materials, Vol. 3, pp , D. Bogy, On the Problem of Edge-Bonded Elastic Quarter- Planes Loaded at the Boundary, International Journal of Solids and Structures, Vol. 6, pp , W. T. Chen and C. W. Nelson, Thermal Stress in Bonded Joints, IBM Journal of Research & Development, Vol. 23, pp , March E. Suhir, Stresses in Adhesively Bonded Bi-material Assemblies used in Electronic Packaging, Proceedings of the Electronic Packaging Materials Science Symposium II, Palo Alto, California, April 15-18, pp , Jun He, M. C. Shaw, N. Sridhar, B. N. Cox and D. R. Clarke, Direct Measurements of Thermal Stress Distributions in Large Die Bonds for Power Electronics, Proceedings of the Electronic Packaging Materials Science Symposium X, San Francisco, California, April 14-16, pp , J. W. Hutchinson and Z. Suo, Mixed Mode Cracking in Layered Materials, Advance in Applied Mechanics, Vol. 29, pp , S. S. Manson, Thermal Stress and Low Cycle Fatigue, McGraw-Hill Publishers, New York, About the authors Jun He is a Member of Technical Staff in the Design and Reliability Department at the Rockwell Science Center. He received his B. S. Degree in Physics (1991) and Ph.D. in Materials Science (1996) from the University of California, Santa Barbara. His primary research areas are in thermomechanical behavior as well as the reliability of electronic packages and composite materials. Since joined Rockwell in 1997, he has been working on advanced packaging, thermal management, and reliability aspects of power assemblies. Dr. He is the author or co-author of 9 technical papers. He is a member of IMAPS Society. Winfred L. Morris is a Member of Technical Staff in the Design and Reliability Department at the Rockwell Science Center. He earned his Ph. D. Degree in experimental physics from Northwestern University in 1968 and joined Rockwell in His expertise is in modeling the thermomechanical behavior of materials and structures. Lately, his research includes the development of advanced reliability modeling techniques in the electronics, power modules, and cooled IR-focal plane array areas. A good part of his work is currently directly on design support for new products. Dr. Morris has more than 100 publications and 3 patents. Dr. Shaw is the Manager of a Design and Reliability Department, Rockwell Science Center, Thousand Oaks, California. He received the Ph.D. Degree in Materials Engineering from the University of California, Santa Barbara, in 1993, an M.S. Degree in Ceramic Engineering from the Ohio State University in 1986, and a B.S. Degree in Materials Science and Engineering from the University of California, Berkeley in He first joined the Rockwell Science Center in His expertise lies in developing and experimentally validating structural models for the response of materials/architectures to applied stimuli, including statistical effects. He has 28 publications. Dr. Shaw is a member of the IMAPS Society. 304

9 John C. Mather is a Principal Engineer at Rockwell Collins Inc., in Cedar Rapids, Iowa. Mr. Mather holds Degrees in Mechanical Engineering and in Metallurgy. During the past twenty-plus years, he has made numerous innovative and technical contributions to Rockwell Collins and to the electronics industry in several areas, including printed wiring board construction and processing, electronics manufacturing technologies, and next-generation interconnect and packaging technologies. He received Rockwell s prestigious Engineer of the Year award in 1996, for distinguished contributions and outstanding leadership in developing advanced interconnect and packaging technology for electronic products. Mr. Mather holds several patents, and has published numerous technical papers on topics related to electronic packaging. Sridhar Narayanaswamy is a Member of the Technical Staff in the Materials Science Division since July He obtained his B. Tech. Degree (Metallurgy, 1991) from India, M.S.(Materials Science, 1993), M.S. (Mechanical Engineering, 1995) and Ph.D. (Materials Science, 1996) Degrees, all from the University of Michigan, Ann Arbor. His primary research areas are in the mechanics of structural materials, fracture mechanics, composite design and reliability, and computational materials science. He has authored or co-authored around 15 research publications. 305

CHARACTERISATION OF INTERFACIAL CRACKING IN MICROELECTRONIC PACKAGING

CHARACTERISATION OF INTERFACIAL CRACKING IN MICROELECTRONIC PACKAGING CHARACTERISATION OF INTERFACIAL CRACKING IN MICROELECTRONIC PACKAGING Ian McEnteggart Microelectronics Business Manager Instron Limited, Coronation Road, High Wycombe, Buckinghamshire HP12 3SY www.instron.com/microelectronics

More information

Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications

Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications M. Gonzalez 1, B. Vandevelde 1, Jan Vanfleteren 2 and D. Manessis 3 1 IMEC, Kapeldreef 75, 3001, Leuven,

More information

Available online at ScienceDirect. Procedia Engineering 79 (2014 )

Available online at  ScienceDirect. Procedia Engineering 79 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 79 (2014 ) 333 338 37th National Conference on Theoretical and Applied Mechanics (37th NCTAM 2013) & The 1st International Conference

More information

3D FRACTURE MECHANICS ANALYSIS OF UNDERFILL DELAMINATION FOR FLIP CHIP PACKAGES

3D FRACTURE MECHANICS ANALYSIS OF UNDERFILL DELAMINATION FOR FLIP CHIP PACKAGES 3D FRACTURE MECHANICS ANALYSIS OF UNDERFILL DELAMINATION FOR FLIP CHIP PACKAGES Zhen Zhang, Charlie J Zhai, and Raj N Master Advanced Micro Devices, Inc. 1050 E. Arques Ave., Sunnyvale, CA 94085, USA Phone:

More information

Effects of Bi Content on Mechanical Properties and Bump Interconnection Reliability of Sn-Ag Solder Alloys

Effects of Bi Content on Mechanical Properties and Bump Interconnection Reliability of Sn-Ag Solder Alloys Effects of Bi Content on Mechanical Properties and Bump Interconnection Reliability of Sn-Ag Solder Kazuki Tateyama, Hiroshi Ubukata*, Yoji Yamaoka*, Kuniaki Takahashi*, Hiroshi Yamada** and Masayuki Saito

More information

Reliability Evaluation of CIF (chip-in-flex) and COF (chip-on-flex) packages

Reliability Evaluation of CIF (chip-in-flex) and COF (chip-on-flex) packages Reliability Evaluation of CIF (chip-in-flex) and COF (chip-on-flex) packages Jae-Won Jang* a, Kyoung-Lim Suk b, Kyung-Wook Paik b, and Soon-Bok Lee a a Dept. of Mechanical Engineering, KAIST, 335 Gwahangno

More information

Introduction to Joining Processes

Introduction to Joining Processes 4. TEST METHODS Joints are generally designed to support a load, and must be tested to evaluate their load-supporting capabilities. However, it is also important to evaluate, not the joint, but rather

More information

System Level Effects on Solder Joint Reliability

System Level Effects on Solder Joint Reliability System Level Effects on Solder Joint Reliability Maxim Serebreni 2004 2010 Outline Thermo-mechanical Fatigue of solder interconnects Shear and tensile effects on Solder Fatigue Effect of Glass Style on

More information

curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015)

curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015) curamik CERAMIC SUBSTRATES AMB technology Design Rules Version #04 (09/2015) Content 1. Geometric properties 1.01. Available ceramic types / thicknesses... 03 1.02. thicknesses (standard)... 03 3. Quality

More information

Measurement of Residual Stress by X-ray Diffraction

Measurement of Residual Stress by X-ray Diffraction Measurement of Residual Stress by X-ray Diffraction C-563 Overview Definitions Origin Methods of determination of residual stresses Method of X-ray diffraction (details) References End Stress and Strain

More information

Simulation of Embedded Components in PCB Environment and Verification of Board Reliability

Simulation of Embedded Components in PCB Environment and Verification of Board Reliability Simulation of Embedded Components in PCB Environment and Verification of Board Reliability J. Stahr, M. Morianz AT&S Leoben, Austria M. Brizoux, A. Grivon, W. Maia Thales Global Services Meudon-la-Forêt,

More information

Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions

Low Cycle Fatigue Testing of Ball Grid Array Solder Joints under Mixed-Mode Loading Conditions Tae-Sang Park Mechatronics & Manufacturing Technology Center, Corporate Technology Operations, Samsung Electronics Co., LTD, 416, Maetan-3Dong, Yeongtong-Gu, Suwon-City, Gyeonggi-Do, 443-742, Korea e-mail:

More information

Parametric Design and Reliability Analysis of Wire Interconnect Technology Wafer Level Packaging

Parametric Design and Reliability Analysis of Wire Interconnect Technology Wafer Level Packaging Y. T. Lin Graduate Assistant C. T. Peng Graduate Assistant K. N. Chiang Associate Professor e-mail: Knchiang@pme.nthu.edu.tw Dept. of Power Mechanical Engineering, National Tsing Hua University, HsinChu

More information

DURABILITY OF PRESSURE SENSITIVE ADHESIVE JOINTS

DURABILITY OF PRESSURE SENSITIVE ADHESIVE JOINTS DURABILITY OF PRESSURE SENSITIVE ADHESIVE JOINTS Paul Ludwig Geiss, Daniel Vogt Kaiserslautern University of Technology, Faculty Mechanical and Process Engineering, Workgroup Materials and Surface Technologies

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

EFFECT OF Ag COMPOSITION, DWELL TIME AND COOLING RATE ON THE RELIABILITY OF Sn-Ag-Cu SOLDER JOINTS. Mulugeta Abtew

EFFECT OF Ag COMPOSITION, DWELL TIME AND COOLING RATE ON THE RELIABILITY OF Sn-Ag-Cu SOLDER JOINTS. Mulugeta Abtew EFFECT OF Ag COMPOSITION, DWELL TIME AND COOLING RATE ON THE RELIABILITY OF Sn-Ag-Cu SOLDER JOINTS Mulugeta Abtew Typical PCB Assembly Process PCB Loading Solder Paste Application Solder Paste Inspection

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards Stefano Sciolè BDM I.M.S.

Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards Stefano Sciolè BDM I.M.S. Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards Stefano Sciolè BDM I.M.S. Henkel Electronic Materials Agenda 1. Introduction 2. Motivation 3. Interconnect

More information

Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages

Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages Bhavesh Varia 1, Xuejun Fan 1, 2, Qiang Han 2 1 Department of Mechanical Engineering Lamar

More information

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with Comsol.

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with Comsol. Excerpt from the Proceedings of the COMSOL Conference 21 Paris Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with Comsol. A.T. Vermeltfoort 1 and A.W.M. Van Schijndel 2 1 Eindhoven University

More information

NANOFIBER NANOCOMPOSITE FOR STRENGTHENING NOBLE LIGHTWEIGHT SPACE STRUCTURES

NANOFIBER NANOCOMPOSITE FOR STRENGTHENING NOBLE LIGHTWEIGHT SPACE STRUCTURES NANOFIBER NANOCOMPOSITE FOR STRENGTHENING NOBLE LIGHTWEIGHT SPACE STRUCTURES N.M. Awlad Hossain Assistant Professor Department of Engineering and Design EASTERN WASHINGTON UNIVERSITY Cheney, WA 99004 Email:

More information

Field Condition Reliability Assessment for SnPb and SnAgCu Solder Joints in Power Cycling Including Mini Cycles

Field Condition Reliability Assessment for SnPb and SnAgCu Solder Joints in Power Cycling Including Mini Cycles Field Condition Reliability Assessment for SnPb and SnAgCu Solder Joints in Power Cycling Including Mini Cycles Min Pei 1, Xuejun Fan 2 and Pardeep K. Bhatti 2 1 Georgia Tech, 801 Ferst Dr. NW, Atlanta,

More information

BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION. S. Sood and A. Wong

BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION. S. Sood and A. Wong 10.1149/1.2982882 The Electrochemical Society BONDING OF MULTIPLE WAFERS FOR HIGH THROUGHPUT LED PRODUCTION S. Sood and A. Wong Wafer Bonder Division, SUSS MicroTec Inc., 228 SUSS Drive, Waterbury Center,

More information

BENDING STRENGTH OF SOLDER JOINTS AS A FUNCTION OF JOINT LENGTH

BENDING STRENGTH OF SOLDER JOINTS AS A FUNCTION OF JOINT LENGTH As originally published in the SMTA Proceedings. BENDING STRENGTH OF SOLDER JOINTS AS A FUNCTION OF JOINT LENGTH Saeed Akbari, Amir Nourani, Jan K. Spelt University of Toronto Toronto, ON, Canada spelt@mie.utoronto.ca

More information

FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT

FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT Ryohei Maruyama*, Tomohiro Yokozeki **, Toshio Ogasawara***,

More information

International Conference on Mechanics and Civil Engineering (ICMCE 2014)

International Conference on Mechanics and Civil Engineering (ICMCE 2014) International Conference on Mechanics and Civil Engineering (ICMCE 2014) Interface Fracture Models of Concrete Externally Reinforced by FRP Plates Lei ZHANG 1,a,*, Ping-Hu LIU 2,b, Xiao-Peng GUO 2,c, Yong

More information

M3 Review Automated Nanoindentation

M3 Review Automated Nanoindentation M3 Review Automated Nanoindentation Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.

More information

Composition/wt% Bal SA2 (SABI) Bal SA3 (SABI + Cu) Bal

Composition/wt% Bal SA2 (SABI) Bal SA3 (SABI + Cu) Bal Improving Thermal Cycle and Mechanical Drop Impact Resistance of a Lead-free Tin-Silver-Bismuth-Indium Solder Alloy with Minor Doping of Copper Additive Takehiro Wada 1, Seiji Tsuchiya 1, Shantanu Joshi

More information

Study on Mixed Mode Crack-tip Plastic Zones in CTS Specimen

Study on Mixed Mode Crack-tip Plastic Zones in CTS Specimen Proceedings of the World Congress on Engineering Vol II WCE, July -,, London, U.K. Study on Mixed Mode Crack-tip Plastic Zones in Specimen C. M. Sharanaprabhu, S. K. Kudari Member, IAENG Abstract The studies

More information

A Solder Joint Reliability Model for the Philips Lumileds LUXEON Rebel LED Carrier Using Physics of Failure Methodology

A Solder Joint Reliability Model for the Philips Lumileds LUXEON Rebel LED Carrier Using Physics of Failure Methodology A Solder Joint Reliability Model for the Philips Lumileds LUXEON Rebel LED Carrier Using Physics of Failure Methodology Rudi Hechfellner 1, Michiel Kruger 1, Tewe Heemstra 2 Greg Caswell 3, Nathan Blattau

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

EDGE CHIPPING RESISTANCE USING MACROINDENTATION TESTING

EDGE CHIPPING RESISTANCE USING MACROINDENTATION TESTING EDGE CHIPPING RESISTANCE USING MACROINDENTATION TESTING Prepared by Ali Mansouri 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials.

More information

Investigation of Interface Delamination of EMC-Copper Interfaces in Molded Electronic packages

Investigation of Interface Delamination of EMC-Copper Interfaces in Molded Electronic packages Agenda Investigation of Interface Delamination of EMC-Copper Interfaces in Molded Electronic packages A.Yadur 1,2, P. Gromala 2, Dipl.-Ing. Axel Mueller 3 1Robert Bosch Engineering and Business Solutions

More information

Packaging Technologies for SiC Power Modules

Packaging Technologies for SiC Power Modules Packaging Technologies for SiC Power Modules Masafumi Horio Yuji Iizuka Yoshinari Ikeda ABSTRACT Wide bandgap materials such as silicon carbide (SiC) and gallium nitride (GaN) are attracting attention

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard

More information

Reflow Profiling: Time a bove Liquidus

Reflow Profiling: Time a bove Liquidus Reflow Profiling: Time a bove Liquidus AIM/David Suraski Despite much research and discussion on the subject of reflow profiling, many questions and a good deal of confusion still exist. What is clear

More information

A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures

A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures Transactions, SMiRT-23 Division IX, Paper ID 612 (inc. assigned division number from I to X) A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures

More information

Effects of strain rate in laser forming

Effects of strain rate in laser forming Effects of strain rate in laser forming Wenchuan Li and Y. Lawrence Yao Department of Mechanical Engineering, Columbia University New York, New York 127, USA Abstract Experimental investigation and numerical

More information

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method American Journal of Materials Science 2015, 5(3C): 7-11 DOI: 10.5923/c.materials.201502.02 Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

More information

Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis

Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Determination of Failure Strength of Flat Plate Weld Joint Using Finite Element Analysis M. V. Dalvi 1, Mrs.

More information

Manufacturing and Reliability Modelling

Manufacturing and Reliability Modelling Manufacturing and Reliability Modelling Silicon Chip C Bailey University of Greenwich London, England Printed Circuit Board Airflow Temperature Stress at end of Reflow Stress Product Performance in-service

More information

Joining of Dissimilar Automotive Materials

Joining of Dissimilar Automotive Materials Joining of Dissimilar Automotive Materials P.K. Mallick William E. Stirton Professor of Mechanical Engineering Director, Center for Lighweighting Automotive Materials and Processing University of Michigan-Dearborn

More information

Reliability Challenges for 3D Interconnects:

Reliability Challenges for 3D Interconnects: Reliability Challenges for 3D Interconnects: A material and design perspective Paul S. Ho Suk-Kyu Ryu, Kuan H. (Gary) Lu, Qiu Zhao, Jay Im and Rui Huang The University of Texas at Austin 3D Sematech Workshop,

More information

Micro-tube insertion into aluminum pads: Simulation and experimental validations

Micro-tube insertion into aluminum pads: Simulation and experimental validations Micro-tube insertion into aluminum pads: Simulation and experimental validations A. Bedoin, B. Goubault, F. Marion, M. Volpert, F. Berger, A. Gueugnot, H. Ribot CEA, LETI, Minatec Campus 17, rue des Martyrs

More information

EFFECT OF BODY GEOMETRY AND MATERIAL PROPERTIES ON RESIDUAL STRESS DISTRIBUTION ON ARRESTING CRACK HOLES.

EFFECT OF BODY GEOMETRY AND MATERIAL PROPERTIES ON RESIDUAL STRESS DISTRIBUTION ON ARRESTING CRACK HOLES. EFFECT OF BODY GEOMETRY AND MATERIAL PROPERTIES ON RESIDUAL STRESS DISTRIBUTION ON ARRESTING CRACK HOLES. C. Rubio-González a, G. Mesmacque b, J. Santos-García b, A. Amrouche b a Centro de Ingeniería y

More information

Technical Report Documentation Page 2. Government 3. Recipient s Catalog No.

Technical Report Documentation Page 2. Government 3. Recipient s Catalog No. 1. Report No. FHWA/TX-08/0-5549-1 Technical Report Documentation Page 2. Government 3. Recipient s Catalog No. Accession No. 4. Title and Subtitle Horizontal Cracking in Portland Cement Concrete Pavements:

More information

New Technology of Laser Parallel Thermocracking of Brittle Materials

New Technology of Laser Parallel Thermocracking of Brittle Materials Optics and Photonics Journal, 2013, 3, 6-10 doi:10.4236/opj.2013.32b002 Published Online June 2013 (http://www.scirp.org/journal/opj) New Technology of Laser Parallel Thermocracking of Brittle Materials

More information

Power Cycling Test

Power Cycling Test 390 11 Packaging and Reliability of Power Devices The SAM images of the chip-to-substrate interface show no indications of any fatigue in the chip solder interfaces, but it presents black areas in the

More information

Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study. Krzysztof Dabrowiecki Jörg Behr

Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study. Krzysztof Dabrowiecki Jörg Behr Experience in Applying Finite Element Analysis for Advanced Probe Card Design and Study Krzysztof Dabrowiecki Jörg Behr Overview A little bit of history in applying finite element analysis for probe card

More information

An Advanced Reliability Improvement and Failure Analysis Approach to Thermal Stress Issues in IC Packages

An Advanced Reliability Improvement and Failure Analysis Approach to Thermal Stress Issues in IC Packages An Advanced Reliability Improvement and Failure Analysis Approach to Thermal Stress Issues in IC Packages Michael Hertl 1, Diane Weidmann 1, and Alex Ngai 2 1 Insidix, 24 rue du Drac, F-38180 Grenoble/Seyssins,

More information

Advanced Power Module Packaging for increased Operation Temperature and Power Density

Advanced Power Module Packaging for increased Operation Temperature and Power Density 15th International Power Electronics and Motion Control Conference, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia Advanced Power Module Packaging for increased Operation Temperature and Power Density Peter

More information

Lecture Notes. Elasticity, Shrinkage and Creep. Concrete Technology

Lecture Notes. Elasticity, Shrinkage and Creep. Concrete Technology Lecture Notes Elasticity, Shrinkage and Creep Concrete Technology Here the following three main types of deformations in hardened concrete subjected to external load and environment are discussed. Elastic

More information

NPL Manual. Modelling Creep in Toughened Epoxy Adhesives

NPL Manual. Modelling Creep in Toughened Epoxy Adhesives NPL Manual Modelling Creep in Toughened Epoxy Adhesives This Electronic Guide was produced as part of the Measurements for Materials System Programme on Design for Fatigue and Creep in Joined Systems Introduction

More information

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 5 Fatigue Dr. Hodge Jenkins Mercer University Introduction to Fatigue in Metals Cyclic loading produces stresses that are variable, repeated, alternating, or fluctuating

More information

Laser Soldered Eutectic Die-Bonding Processes in LED Packaging

Laser Soldered Eutectic Die-Bonding Processes in LED Packaging Sensors and Materials, Vol. 28, No. 5 (216) 49 42 MYU Tokyo 49 S & M 1192 Laser Soldered Eutectic Die-Bonding Processes in LED Packaging Te-Ching Hsiao, Ah-Der Lin, 1* and Wei-Yi Chan 2 Department of Mechanical

More information

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening 2016 International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016) ISBN: 978-1-60595-364-9 Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

More information

Topography and Deformation Measurement and FE Modeling Applied to substrate-mounted large area wafer-level packages (including stacked dice and TSVs)

Topography and Deformation Measurement and FE Modeling Applied to substrate-mounted large area wafer-level packages (including stacked dice and TSVs) Topography and Deformation Measurement and FE Modeling Applied to substrate-mounted large area wafer-level packages (including stacked dice and TSVs) M. Hertl Insidix, 24 rue du Drac, 38180 Grenoble/Seyssins,

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Thermal Symposium August Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics

Thermal Symposium August Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics Thermal Symposium August 9-10 2017 Minteq International, Inc. Pyrogenics Group A Thermal Management Solution for State-of-the-Art Electronics Mark Breloff Technical Sales Manager 1 Electronics power requirements

More information

Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation.

Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation. Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation. B. Salam +, N. N. Ekere, D. Rajkumar Electronics Manufacturing Engineering

More information

Application of the modified split-cantilever beam for mode-iii toughness measurement

Application of the modified split-cantilever beam for mode-iii toughness measurement Fourth International Conference on FRP Composites in Civil Engineering (CICE008) -4July 008, Zurich, Switzerland Application of the modified split-cantilever beam for mode-iii toughness measurement A.

More information

Plasma for Underfill Process in Flip Chip Packaging

Plasma for Underfill Process in Flip Chip Packaging Plasma for Underfill Process in Flip Chip Packaging Jack Zhao and James D. Getty Nordson MARCH 2470-A Bates Avenue Concord, California 94520-1294 USA Published by Nordson MARCH www.nordsonmarch.com 2015

More information

Jeong et al.: Effect of the Formation of the Intermetallic Compounds (1/7)

Jeong et al.: Effect of the Formation of the Intermetallic Compounds (1/7) Jeong et al.: Effect of the Formation of the Intermetallic Compounds (1/7) Effect of the Formation of the Intermetallic Compounds between a Tin Bump and an Electroplated Copper Thin Film on both the Mechanical

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

Numerical Modeling of Slab-On-Grade Foundations

Numerical Modeling of Slab-On-Grade Foundations Numerical Modeling of Slab-On-Grade Foundations M. D. Fredlund 1, J. R. Stianson 2, D. G. Fredlund 3, H. Vu 4, and R. C. Thode 5 1 SoilVision Systems Ltd., 2109 McKinnon Ave S., Saskatoon, SK S7J 1N3;

More information

Numerical Analysis of the Influence of Geometry of Ceramic Units (Blocks) on Structural Walls

Numerical Analysis of the Influence of Geometry of Ceramic Units (Blocks) on Structural Walls Journal of Civil Engineering and Architecture 1 (216) 44-52 doi: 1.17265/1934-7359/216.1.5 D DAVID PUBLISHING Numerical Analysis of the Influence of Geometry of Ceramic Units (Blocks) on Structural Walls

More information

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING FE MODELING OF STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING H. R. C. S. Bandara (Email: chinthanasandun@yahoo.com) J. C. P. H. Gamage (Email: kgamage@uom.lk)

More information

MEASUREMENT OF THE MECHANICAL PROPERTIES OF A CARBON REINFORCED BISMALEIMIDE OVER A WIDE RANGE OF TEMPERATURES

MEASUREMENT OF THE MECHANICAL PROPERTIES OF A CARBON REINFORCED BISMALEIMIDE OVER A WIDE RANGE OF TEMPERATURES Revista da Associação Portuguesa de Análise Experimental de Tensões ISSN 66-778 MEASUREMENT OF THE MECHANICAL PROPERTIES OF A CARBON REINFORCED BISMALEIMIDE OVER A WIDE RANGE OF TEMPERATURES L. F. M. da

More information

Avatrel Stress Buffer Coatings: Low Stress Passivation and Redistribution Applications

Avatrel Stress Buffer Coatings: Low Stress Passivation and Redistribution Applications Avatrel Stress Buffer Coatings: Low Stress Passivation and Redistribution Applications Ed Elce, Chris Apanius, Jeff Krotine, Jim Sperk, Andrew Bell, Rob Shick* Sue Bidstrup-Allen, Paul Kohl Takashi Hirano,

More information

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste

Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste SEMIKRON Pty Ltd 8/8 Garden Rd Clayton Melbourne 3168 VIC Australia Power Electronics Packaging Revolution Module without bond wires, solder and thermal paste For some years now, the elimination of bond

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

1E5 Advanced design of glass structures. Martina Eliášová

1E5 Advanced design of glass structures. Martina Eliášová 1E5 Advanced design of glass structures Martina Eliášová List of lessons 1) History, chemical, production 2) Glass as a material for load bearing structures 3) Design of laminated plates 4) Design of glass

More information

ESECMASE - SHEAR TEST METHOD FOR MASONRY WALLS WITH REALISTIC BOUNDARY CONDITIONS

ESECMASE - SHEAR TEST METHOD FOR MASONRY WALLS WITH REALISTIC BOUNDARY CONDITIONS ESECMASE - SHEAR TEST METHOD FOR MASONRY WALLS WITH REALISTIC BOUNDARY CONDITIONS E. FEHLING Professor of Civil Engineering Institute of Structural Engineering Chair of Structural Concrete University of

More information

The fundamentals of weld joint design

The fundamentals of weld joint design The fundamentals of joint design The performance of joints is determined by not only the load resisting cross sectional area of joint but also properties of region close to the metal i.e. heat affected

More information

A PRODUCT FROM KANTAFLEX (INDIA) PVT LIMITED

A PRODUCT FROM KANTAFLEX (INDIA) PVT LIMITED ELASTOMERIC BRIDGE BEARING TO LATEST IRC: 83-015 (PART - II) Kanta System of Elastomeric bridge bearing is made out of Poly chloroprene rubber having low crystallization rates and adequate shelf life,

More information

Validation of VrHeatTreat Software for Heat Treatment and Carburization

Validation of VrHeatTreat Software for Heat Treatment and Carburization Validation of VrHeatTreat Software for Heat Treatment and Carburization John Goldak a, Jianguo Zhou a, Stanislav Tchernov a, Dan Downey a, a Goldak Technologies Inc, Ottawa, Canada December 12, 2007 1

More information

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS Novel Material for Improved Quality of RF-PA in Base-Station Applications Co-Authored by Nokia Research Center and Freescale Semiconductor Presented at 10 th International Workshop on THERMal INvestigations

More information

RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS

RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS Filomeno Martina a,, Matthew Roy b, Paul Colegrove a, Stewart W. Williams a a Welding Engineering

More information

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals Materials Engineering 272-C Fall 2001, Lectures 9 & 10 Introduction to Mechanical Properties of Metals From an applications standpoint, one of the most important topics within Materials Science & Engineering

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

Vibration Analysis of Propeller Shaft Using FEM.

Vibration Analysis of Propeller Shaft Using FEM. Vibration Analysis of Propeller Shaft Using FEM. 1 Akshay G. Khande, 2 Shreyash A. Sable, 3 Vaibhav R. Bidwai, 4 Chandrasekhar B. Aru, 5 Brahmanand S.Jadhav 12345 Mechanical Engineering Department, Babasahebh

More information

Choosing the Correct Capillary Design for Fine Pitch, BGA Bonding

Choosing the Correct Capillary Design for Fine Pitch, BGA Bonding Choosing the Correct Capillary Design for Fine Pitch, BGA Bonding Lee Levine, Principal Engineer phone 215-784-6036, fax 215-784-6402, email: llevine@kns.com and Michael J. Sheaffer, Director Technical

More information

SCV Chapter, CPMT Society, IEEE September 14, Voids at Cu / Solder Interface and Their Effects on Solder Joint Reliability

SCV Chapter, CPMT Society, IEEE September 14, Voids at Cu / Solder Interface and Their Effects on Solder Joint Reliability Voids at / Solder Interface and Their Effects on Solder Joint Reliability Zequn Mei, Mudasir Ahmad, Mason Hu, Gnyaneshwar Ramakrishna Manufacturing Technology Group Cisco Systems, Inc. Acknowledgement:

More information

, 29, , (1995). ABSTRACT

, 29, , (1995). ABSTRACT 1 Brodt, M. and Lakes, R. S., "Composite materials which exhibit high stiffness and high viscoelastic damping", adapted from J. Composite Materials, 29, 1823-1833, (1995). ABSTRACT Composite micro-structures

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals 1496T_c06_131-173 11/16/05 17:06 Page 166 166 Chapter 6 / Mechanical Properties of Metals IMPORTANT TERMS AND CONCEPTS Anelasticity Design stress Ductility Elastic deformation Elastic recovery Engineering

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society. Constraint Effects on Cohesive Failures in Low-k Dielectric Thin Films

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society. Constraint Effects on Cohesive Failures in Low-k Dielectric Thin Films Mater. Res. Soc. Symp. Proc. Vol. 863 2005 Materials Research Society B4.. Constraint Effects on Cohesive Failures in Low-k Dielectric Thin Films Ting Y. Tsui, Andrew J. McKerrow, and Joost J. Vlassak

More information

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains Introduction In the previous lecture we have introduced the needs, background and societies for mechanical testing of composites. In this lecture and subsequent lectures we will see principles for the

More information

Bearing and Delamination Failure Analysis of Pin Loaded Composite Laminates

Bearing and Delamination Failure Analysis of Pin Loaded Composite Laminates Volume 6, No. 2, February 217 1 Bearing and Delamination Failure Analysis of Pin Loaded Composite Laminates V. Dinesh Babu, Professor, Nehru Institute of Engineering and Technology, Coimbatore T. Sivagangai,

More information

Mechanical Properties of Materials

Mechanical Properties of Materials INTRODUCTION Mechanical Properties of Materials Many materials, when in service, are subjected to forces or loads, it is necessary to know the characteristics of the material and to design the member from

More information

MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES

MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES C. L. Bowman 1, G. D. Roberts 1, M. S. Braley 2, M. Xie 3 & M. J. Booker 4 1 NASA Glenn Research Center, Cleveland OH 44135 2 A&P Technology,

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

Nonlinear Analysis of Reinforced Concrete Column with ANSYS

Nonlinear Analysis of Reinforced Concrete Column with ANSYS Nonlinear Analysis of Reinforced Concrete Column with ANSYS V. S. Pawar 1, P. M. Pawar 2 1P.G. Student, Dept. Of civil Engineering, SVERI s College of Engineering Pandharpur, Maharashtra, India 2Professor,

More information

New Pb-Free Solder Alloy for Demanding Applications. Presented by Karl Seelig, VP Technology, AIM

New Pb-Free Solder Alloy for Demanding Applications. Presented by Karl Seelig, VP Technology, AIM New Pb-Free Solder Alloy for Demanding Applications Presented by Karl Seelig, VP Technology, AIM Why REL? The evolution and expansion of electronics into more harsh operating environments performing more

More information

Interface Degradation of Al Heavy Wire Bonds on Power Semiconductors during Active Power Cycling measured by the Shear Test

Interface Degradation of Al Heavy Wire Bonds on Power Semiconductors during Active Power Cycling measured by the Shear Test Interface Degradation of Heavy Wire Bonds on Power Semiconductors during Active Power Cycling measured by the Shear Test Jens Goehre, Fraunhofer IZM, Berlin, Germany Martin Schneider-Ramelow, Fraunhofer

More information

Study of Roll Forming Bending in Different Temperature

Study of Roll Forming Bending in Different Temperature International Journal of Materials Science and Applications 2016; 5(3): 129-135 http://www.sciencepublishinggroup.com/j/ijmsa doi: 10.11648/j.ijmsa.20160503.13 ISSN: 2327-2635 (Print); ISSN: 2327-2643

More information

LED Die Attach Selection Considerations

LED Die Attach Selection Considerations LED Die Attach Selection Considerations Gyan Dutt & Ravi Bhatkal Alpha, An Alent plc Company Abstract Die attach material plays a key role in performance and reliability of mid, high and super-high power

More information

DETERMINATION OF FAILURE STRENGTH OF CURVED PLATE WELD JOINT USING FINITE ELEMENT ANALYSIS

DETERMINATION OF FAILURE STRENGTH OF CURVED PLATE WELD JOINT USING FINITE ELEMENT ANALYSIS Int. J. Mech. Eng. & Rob. Res. 2012 Chetan S Baviskar et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved DETERMINATION OF FAILURE STRENGTH

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the

More information