Non-Lattice Matched III-V Heterostructures for Ultrahigh Efficiency PV

Size: px
Start display at page:

Download "Non-Lattice Matched III-V Heterostructures for Ultrahigh Efficiency PV"

Transcription

1 Non-Lattice Matched III-V Heterostructures for Ultrahigh Efficiency PV Harry Atwater 1, James Zahler 2, Melissa Griggs 1, Anna F. I. Morral 2, Sean Olson 2, Katsuaki Tanabe 1 1. California Institute of Technology, Pasadena, CA Aonex Corporation, Pasadena, CA A Path to Ultrahigh Efficiency PV Layer Splitting and Heterogeneous Integration Microconcentrator Arrays

2 300x 4J III-V Cell Gemstone Cell FP 3J III-V Cell Area Cost-Efficiency Phase Diagram for Photovoltaic Technology Gratzel In/Organic Films c-si Costs are modules per peak W; installed is $5-10/W; $0.35-$1.5/kW-hr

3 Limits to Efficiency: Spectral Absorption E c Energy Band-to-Band Absorption Hot Carrier Excitation E v Subgap Photon Energy S. M. Sze, Physics of Semiconductor Devices, (Wiley) 1981.

4 III-V Compound Solar Materials Palette A Four Junction Cell: Energy Gap (ev) 6 AlN 0.2 N 5 P As GaN Sb AlP AlAs InN GaP GaAs AlSb Si 1 InP GaSb 1.0 Ge InSb InAs Lattice constant (A) Wavelength (µm) InP Si Substrate GaInP hν = 1.9eV GaAs hν = 1.42eV InGaAsP hν = 1.05eV InGaAs hν = 0.72eV W m -2 µm Wavelength (µm)

5 Detailed Balance Calculations: All photons of energy greater band gap are absorbed to form electron hole pairs. All recombination of carriers occurs radiatively (absorber is a perfect defect-free material). Radiation is non-thermal with a chemical potential equal to the separation of the electron and hole quasi-fermi levels, i.e. the cell operating potential The number of photons absorbed by the cell equals: the number of photons reemitted via radiative recombination plus the number of electron-hole pairs extracted at the cell chemical potential by the contacts. In Layered Multijunction Cells, Solar Irradiance Photo-current: Each above-bandgap photon for subcell under consideration but below the band gap of the subcell above is absorbed to generate an electron-hole pair. Radiative Emission from the subcell above. Radiative recombination in subcell above the subcell under consideration consists entirely of photons in excess of band gap energy of the subcell under consideration. Thus energy that is reemitted into subcell under consideration is perfectly This is a modification of the original Shockley and Quiesser formulation of the detailed-balance model which has been adopted by recent analyses of proposed photon-conversion next-generation solar cells by Green et al..the basis for using this radiation model is described by Würfel as an extension of Plank s law for non-thermal radiation from a two-level photon gas at a chemical potential,

6 Detailed Balance Calculations: Optimal Bandgap Sequence Two- and Three- junction multijunction cells in both parallel and series connected geometries at 300 K 100 sun AM1.5 spectrum Two-junction Tandem Parallel Series Maximum Maximum Ga 0.5 In 0.5 P / GaAs / Ge Bandgap (ev) Cell Cell Efficiency Three-junction Tandem Bandgap (ev) Cell Cell Cell 3 (Ge) Efficiency

7 2.5 Effect of Series vs. Parallel Subcell Connection E1 (ev) 2J w/ parallelconnected subcells at 300 K,100 suns (a) E1 (ev) 2J w/ seriesconnected subcells at 300 K,100 suns (Maximum efficiency for single junction cell on thick substrate is marked by the dashed line) (b) E2 (ev)

8 2.50 Optimal Bandgap Sequence in Triple Junction Cell J w/ parallelconnected subcells, Ge bottom cell, at 300 K,100 suns; E1 (ev) (a) E1 (ev) 3J w/ seriesconnected subcells, Ge bottom cell at 300 K,100 suns (Maximum efficiency for single junction cell on thick substrate is marked by the 1.00 dashed line) 1.00 (b) E2 (ev)

9 Efficiency vs. Bottom Subcell Bandgap Variation in 4 Junction Cell Ge or GaAs bonded to MOCVD InP GaInP 2 hν = 1.9eV GaAs hν = 1.42eV InGaAsP E 3 InGaAs E 4 InP substrate E 3 (ev) E 4 (ev) Iso-effiency plot for the variation of the bottom two subcell bandgaps E 3 and E 4 in a four-junction solar cell operated under 100 sun AM1.5 illumination at 300 K.

10 Efficiency vs. Bandgap Variation in 4 Junction Cell 0.7 n + GaAs Contact Cap 0.6 η = (2.00 ev, 1.49 ev, 1.12 ev, 0.72 ev) n AlGaInP n AlGaInP p AlGaInP Window Emitter Base 0.5 n InGaAsP p InGaAsP p GaAs n Si Tunnel Junction Emitter Base Transferred Layer Bonded Interface Emitter Efficiency E 1 p Si Base 0.2 E 2 p + Si n + Ge p Ge Backside Field Bonded Interface Emitter Base Contact 0.1 E 3 E E (ev) Variation of efficiency of optimal 100 sun AM1.5 series-connected four-junction solar cell with changes of each subcell bandgap. Each subcell is varied independently maintaining the other subcells at their optimum bandgap of 2.00, 1.49, 1.12, and 0.72 ev respectively.

11 Four-junction 40% efficiency solar cell Proposed four-junction solar cell : 40% efficiency Lattice mismatched band gap selection avoids use of InGaAsN Bonding processes enable materials integration: InP to Si epitaxial template for InGaAs / InGaAsP structure Ge or GaAs to InP epitaxial template for GaAs / GaInP 2 potential for >4-junction band gap optimized solar cell Ge or GaAs bonded to MOCVD InP Si Substrate GaInP 2 hν = 1.9eV GaAs hν = 1.42eV InGaAsP hν = 1.05eV InGaAs hν = 0.72eV InP bonded to Si substrate *Sharps, P. et al. 26 th IEEE PVSC (1997).

12 Lattice-Mismatched Materials Integration via Hydrophobic Wafer Bonding/ Layer Transfer 1. H-implant of donor substrate to desired peak range 3. Room temperature bond initiation ~1MPa H + Donor Substrate Donor Substrate Handle Substrate Clean, hydrophobic surface 2. Hydrophobic surface passivation 4. Wafer bonding and layer splitting: Pressure to accommodate thermomechanical stress Temperature to blister and form covalent bonds O O 3 O 3 CO 2 O CO 2 Pressure, Temperature Micro-crack formation and layer transfer 5. Wafer bonded heterostructure ~1 µm film

13 Structure and Formation of Hydrophobic Bond Room temperature >400 C >600 C = Ge = Si = H Conceptual approach: room temperature weak van der Waals forces >400 C desorption and diffusion of H Reduction of hydration >600 C formation of covalent bonds Ohmic, metal free contact Source: Weldon et al., J. Vac. Sci. Tech. B 1996, 14(4)

14 JZ8 Exfoliation: TEM 1x10 17 cm -2, un-annealed 1x10 17 cm -2, 250ºC [100] 300 nm 300 nm 25 nm [100] 25 nm [100] Animate magnified view

15 Slide 14 JZ8 TEM images of defect microstructure as a function of temperature. Important points: - Dense defect network near peak range - Defects consist of platelet structures and extended defects - Upon annealing cracks begin to form in the peak damage region and travel predominantly along the (100) plane James Zahler, 4/8/2004

16 JZ9 Experimental procedure: MIT-FTIR MIR prism geometry MIT realized: d/λ = Ge-H modes = cm -1 Implant depth (range ± straggle) = nm Estimated enhancement: Parallel, I/I x = Parallel, I/I y = Perpendicular, I/I z = Spectra processed with an un-implanted reference z Detector p-polarized y x s-polarized θ = 45 o

17 Slide 15 JZ9 Discuss expected enhancement due to MIT measurement. James Zahler, 4/8/2004

18 JZ11 FTIR: low temperature features Ge-H 2 * Bending mode 765 cm -1 Stretch mode 1774 cm -1 Stretch mode 1989 cm -1 Nielsen et al. Phys. Rev. B 54 (8) Un-annealed 57 o C 129 o C 170 o C 1763 cm Un-annealed 57 o C 129 o C 170 o C 2050 cm -1 Absorbance Absorbance cm cm cm cm cm cm cm Wave Number (cm -1 ) Wave Number (cm -1 )

19 Slide 16 JZ11 Comment on presence of discrete defects observable at low temperatures, in particular H2*. James Zahler, 4/8/2004

20 FTIR: 5x10 16 cm -2 un-annealed spectra 1.2 P-polarization S-polarization cm Wave Absorbance 1923 cm cm cm cm cm cm cm -1 Absorbance 1870 cm cm cm cm Number (cm -1 ) Wave Number (cm -1 ) 2050 cm-1 platelet? Anneal Temperature ( o C)

21 FTIR: 5x10 16 cm ºC anneal 1.2 P-polarization S-polarization cm 1923 cm cm cm -1 Absorbance 1816 cm cm cm cm cm cm cm ve Number (cm -1 ) Wave Number (cm -1 ) Anneal Temperature ( o C) Wa Absorbance -1

22 FTIR: 5x10 16 cm ºC anneal 1.2 P-polarization S-polarization 2050 cm cm cm cm cm -1 Absorbance Wave Number (cm -1 ) Wave Number (cm -1 ) Absorbance 1845 cm cm cm cm -1 Cartoons? Anneal Temperature ( o C)

23 FTIR: 5x10 16 cm ºC anneal Absorbance cm -1 P-polarization 2026 cm Wave Number (cm -1 ) Absorbance cm cm cm cm Wave Number (cm -1 ) S-polarization 2031 interacting (100) monohydride 2050 consumed platelets in the formation of monohydride Anneal Temperature ( o C)

24 FTIR: 5x10 16 cm ºC anneal Absorbance cm cm cm -1 P-polarization S-polarization Wave Number (cm -1 ) Absorbance cm cm cm Wave Number (cm -1 ) 2008 cm-1 possibly (111) platelets or interacting defects Anneal Temperature ( o C)

25 FTIR: 5x10 16 cm ºC anneal 1.2 P-polarization S-polarization 500 Absorbance cm cm Wave Number (cm -1 ) Absorbance cm cm cm cm Wave Number (cm -1 ) Anneal Temperature ( o C)

26 FTIR: 5x10 16 cm ºC anneal Absorbance P-polarization 1955 cm cm cm Wave Number (cm -1 ) Absorbance cm cm Wave Number (cm -1 ) S-polarization Ge-H physical mechanism understood: *Platelet nucleation Separation of interacting Ge(100) monohydride surfaces Coalescing of H 2 in defects Pressure induced crack opening (100) free surfaces Anneal Temperature ( o C)

27 Layer Transfer of Ge on Si (IR transmission image) Conditions: Low power fast O2 +N2 plasma, 900mbar pressure Long pre-anneal, graphite sheet on top

28 Split Ge interface and surface morphology x-axis (µ m) z-axis (Å) y-axis (µm) 4 0 z-axis (Å) y-axis (µm) kev H+ 1x1017 cm-2; 250oC, 10 min x-axis (µm) nm 80 kev H+ 1x1017 cm-2; >300oC rough surface nm rms highly defective near surface region

29 2 Wafer Transfer of InP on Si IR transmission image Conditions: O 2 plasma, 900mbar pressure

30 Wafer bonding results: InP/Si Optical micrograph Si InP 25 µm Chemical Etching of Damaged Layer In HCl:H 3 PO 4 :H 2 O 2 ; 1:2:4 AFM: rms roughness = 0.9 nm

31 Hydrophobic Bonding Ohmic Contact Current [A cm -2 ] p + -Ge/p + -Si p + -Ge/n + -Si Slope = 1 / R Al contacts Ge wafer Si substrate Voltage [V] Degenerately doped p + -Ge/p + -Si and p annealed to 400 C Contact resistances of <0.1 Ω cm in p + Ge/ p + Si tunnel junction in p + Ge/ p + Si Ge/n + -Si wafer bonded structures No twist angle dependence for degenerately doped substrates

32 MOCVD: three-junction solar cell on Ge/Si Sample Pre-MOCVD Ge roughness (Å) Post-MOCVD Ge roughness (Å) Bulk Ge <5 147 Ge/Si Ge/Si rough III-V interfaces Ge/Si-1 Si Substrate 6 µm GaAs Cap (1.4µm) Active InGaP (0.7µm) Active GaAs (3.0µm) GaAs Buffer (1.5µm) Transferred Ge (~0.7µm) Bulk Ge Ge Substrate 5 µm

33 MOCVD results: GaAs cap photoluminescence PL Intensity [a.u.] 1.2x x x x x x Bulk Ge Ge/Si-2 Ge/Si-1 τ Ge Bulk = 0.23 ns τ Sample 2 = 0.20 ns Wavelength [nm] Strong GaAs band edge emission at ~880 nm PL Intensity ~ (surface roughness) -1 GaAs Cap GaInP GaAs Base Region λ = 458nm

34 Epitaxial growth on InP/Si templates 2x10 5 cladding layers transferred substrate InGaAsP InGaAs InGaAsP InP Si PL Intensity (a.u.) 1x Wavelength (nm) Bulk InP (25 mw) InP/Si x 43.5 (75 mw)

35 Thin Film Microcell with Microconcentrator LED-like Technology for Photovoltaics: Composite Fresnel/SIL Optics for Concentration (cm 2 ) PDMS (RTV Silicone) Microlense Array, Suns, ( few cm 2 ) High Efficiency 4 J MicroCells (2-5 mm x 2-5 mm)

36 Fabrication of Fresnel Lenses From an existing glass fresnel lens make a mold of the lens pour PDMS into petri dish degas and cure lay glass lens onto PDMS until it sticks cover the lens completely with an excess of PDMS degas and cure peel the layers apart real and imaginary images

37 Thin Film Microcell Microconcentrator UHE PV Arrays 3J or 4J Tandem MicroCells (2-5 mm x 2-5 mm) PDMS Microlense Array, Suns PC Board Like-Substrate; Cells Surface Mounted

38 Summary Multijunction Absorbers Essential for Ultrahigh Efficiency Lattice-mismatched III-V Semiconductors Enable Very Flexible Absorber Design Wafer Bonding and Layer Transfer: New Design Freedoms for High Efficiency PV Detailed Balance Calculations can be used as Materials Selection/Interconnection Guide Microconcentrators: LED-like Technology for Low-Cost Multijunction III-V Terrestrial PV

Development of High-concentration Photovoltaics at Fraunhofer ISE: Cells and Systems

Development of High-concentration Photovoltaics at Fraunhofer ISE: Cells and Systems Development of High-concentration Photovoltaics at Fraunhofer ISE: Cells and Systems Gerhard Peharz Fraunhofer-Institut für Solare Energiesysteme ISE 23 rd October 2008 Outline The Fraunhofer ISE III-V

More information

Transmission Mode Photocathodes Covering the Spectral Range

Transmission Mode Photocathodes Covering the Spectral Range Transmission Mode Photocathodes Covering the Spectral Range 6/19/2002 New Developments in Photodetection 3 rd Beaune Conference June 17-21, 2002 Arlynn Smith, Keith Passmore, Roger Sillmon, Rudy Benz ITT

More information

Mechanically Stacked Solar Cells for Concentrator Photovoltaics

Mechanically Stacked Solar Cells for Concentrator Photovoltaics Mechanically Stacked Solar Cells for Concentrator Photovoltaics Ian Mathews 1 *, Donagh O'Mahony 1, Weiwei Yu 1, Declan Gordan 2, Nicolas Cordero 1, Brian Corbett 1, and Alan P. Morrison 2,1 1 Tyndall

More information

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS Badgap Engineering: Precise Control of Emission Wavelength Wavelength Division Multiplexing Fiber Transmission Window Optical Amplification Spectrum Design and Fabrication of emitters and detectors Composition

More information

Experimental Results from Performance Improvement and Radiation Hardening of Inverted Metamorphic Multi-Junction

Experimental Results from Performance Improvement and Radiation Hardening of Inverted Metamorphic Multi-Junction P. Patel, D. Aiken, A. Boca, B. Cho, D. Chumney, M. B. Clevenger, A. Cornfeld, N. Fatemi, Y. Lin, J. McCarty, F. Newman, P. Sharps, J. Spann, M. Stan, J. Steinfeldt, C. Strautin, and T. Varghese EMCORE

More information

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells.

Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells. Study of a-sige:h Films and n-i-p Devices used in High Efficiency Triple Junction Solar Cells. Pratima Agarwal*, H. Povolny, S. Han and X. Deng. Department of Physics and Astronomy, University of Toledo,

More information

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator 1 Outline Why thin film Si? Advantages of Si thin film Si thin film vs. other thin film Hydrogenated amorphous silicon Energy gap

More information

Photovoltaics under concentrated sunlight

Photovoltaics under concentrated sunlight Photovoltaics under concentrated sunlight April 2, 2013 The University of Toledo, Department of Physics and Astronomy Principles and Varieties of Solar Energy (PHYS 4400) Reading assignment: Sections 9.4

More information

The components of. Technology focus: III-Vs on silicon. Fiber-optic gallium antimonide

The components of. Technology focus: III-Vs on silicon. Fiber-optic gallium antimonide 76 Direct growth of III-V laser structures on silicon substrates From infrared to ultraviolet wavelengths, researchers are enabling lower-cost production of silicon photonics. Mike Cooke reports. The components

More information

Ferroelectric Oxide Single-Crystalline Layers by Wafer Bonding and Hydrogen/Helium Implantation

Ferroelectric Oxide Single-Crystalline Layers by Wafer Bonding and Hydrogen/Helium Implantation Mat. Res. Soc. Symp. Proc. Vol. 748 2003 Materials Research Society U11.8.1 Ferroelectric Oxide Single-Crystalline Layers by Wafer Bonding and Hydrogen/Helium Implantation Ionut Radu, Izabela Szafraniak,

More information

Polycrystalline CdS/CdTe solar cells

Polycrystalline CdS/CdTe solar cells Polycrystalline CdS/CdTe solar cells Al Compaan Distinguished University Professor of Physics, Emeritus (Lecture for Heben/Ellingson solar cells class) March 3, 2011 1 Absorption spectra of various semiconductors

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Introduction to Solar Cell Materials-I

Introduction to Solar Cell Materials-I Introduction to Solar Cell Materials-I 23 July 2012 P.Ravindran, Elective course on Solar Rnergy and its Applications Auguest 2012 Introduction to Solar Cell Materials-I Photovoltaic cell: short history

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project March 5 th, 2010 Investigators Nicholas Melosh, Department of Materials Science

More information

Performance and Radiation Resistance of Quantum Dot Multi-Junction Solar Cells

Performance and Radiation Resistance of Quantum Dot Multi-Junction Solar Cells B.C. Richards 1, Young Lin 1, Pravin Patel 1, Daniel Chumney 1, Paul R. Sharps 1 Chris Kerestes 1,2, David Forbes 2, Kristina Driscoll 2, Adam Podell 2, Seth Hubbard 2 1 EMCORE Corporation, Albuquerque,

More information

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process

Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen

More information

InGaN quantum dot based LED for white light emitting

InGaN quantum dot based LED for white light emitting Emerging Photonics 2014 InGaN quantum dot based LED for white light emitting Luo Yi, Wang Lai, Hao Zhibiao, Han Yanjun, and Li Hongtao Tsinghua National Laboratory for Information Science and Technology,

More information

Structural and Optical Properties of Aluminium Antimonide Thin Films Deposited By Thermal Evaporation Method

Structural and Optical Properties of Aluminium Antimonide Thin Films Deposited By Thermal Evaporation Method Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Physics Research, 2011, 2 (1): 146-153 (http://scholarsresearchlibrary.com/archive.html) ISSN 0976-0970 CODEN (USA):

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting April 20, 2012 Final Report to the Global Climate and Energy Project Investigators Nicholas Melosh, Department of Materials Science and Engineering,

More information

Topics Relevant to CdTe Thin Film Solar Cells

Topics Relevant to CdTe Thin Film Solar Cells Topics Relevant to CdTe Thin Film Solar Cells March 13, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides

Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides 10.1149/1.2392914, copyright The Electrochemical Society Formation of and Light Emission from Si nanocrystals Embedded in Amorphous Silicon Oxides D. Comedi a, O. H. Y. Zalloum b, D. E. Blakie b, J. Wojcik

More information

EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs)

EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs) extended single-crystal film formation on top of a crystalline substrate Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs) optoelectronic devices (GaInN) high-frequency wireless communication devices

More information

High-Resolution, Electrohydrodynamic Inkjet Printing of Stretchable, Metal Oxide Semiconductor Transistors with High Performances

High-Resolution, Electrohydrodynamic Inkjet Printing of Stretchable, Metal Oxide Semiconductor Transistors with High Performances Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 ` Electronic Supplementary Information High-Resolution, Electrohydrodynamic Inkjet Printing of

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

STUDY OF THE TANDEM SOLAR CELL. Fong Chun Hui

STUDY OF THE TANDEM SOLAR CELL. Fong Chun Hui STUDY OF THE TANDEM SOLAR CELL Fong Chun Hui A project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor (Hons.) of Physics Faculty of Engineering and Science

More information

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Materials Transactions, Vol. 48, No. 5 (27) pp. 975 to 979 #27 The Japan Institute of Metals Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Akira Heya 1, Naoto Matsuo 1, Tadashi Serikawa

More information

Molecular Beam Epitaxy Growth of GaAs 1-x Bi x

Molecular Beam Epitaxy Growth of GaAs 1-x Bi x Molecular Beam Epitaxy Growth of GaAs 1-x Bi x Dan Beaton, Ryan Lewis, Xianfeng Lu, Mostafa Masnadi-Shirazi, Sebastien Tixier, Erin Young, Martin Adamcyk, UBC, Vancouver, BC B. Fluegel, A. Mascarenhas,

More information

Laser Spike Annealing for sub-20nm Logic Devices

Laser Spike Annealing for sub-20nm Logic Devices Laser Spike Annealing for sub-20nm Logic Devices Jeff Hebb, Ph.D. July 10, 2014 1 NCCAVS Junction Technology Group Semicon West Meeting July 10, 2014 Outline Introduction Pattern Loading Effects LSA Applications

More information

Nanostructured Engineered Materials With High Magneto-optic Performance For Integrated Photonics Applications

Nanostructured Engineered Materials With High Magneto-optic Performance For Integrated Photonics Applications Edith Cowan University Research Online School of Engineering Publications 28 Nanostructured Engineered Materials With High Magneto-optic Performance For Integrated Photonics Applications Mikhail Vasiliev

More information

HIGH-EFFICIENCY DILUTE NITRIDE MULTIJUNCTION SOLAR CELLS: INFLUENCE OF POINT DEFECTS ON THE DEVICE PERFORMANCE

HIGH-EFFICIENCY DILUTE NITRIDE MULTIJUNCTION SOLAR CELLS: INFLUENCE OF POINT DEFECTS ON THE DEVICE PERFORMANCE HIGH-EFFICIENCY DILUTE NITRIDE MULTIJUNCTION SOLAR CELLS: INFLUENCE OF POINT DEFECTS ON THE DEVICE PERFORMANCE Ville Polojärvi, Arto Aho, Antti Tukiainen, Marianna Raappana, Timo Aho, Mircea Guina Optoelectronics

More information

TRIPLEJUNCTION SOLAR CELL EFFICIENCIES ABOVE 32%: THE PROMISE AND CHALLENGES OF THEIR APPLICATION IN HIGH-CONCENTRATION-RATIO PV SYSTEMS

TRIPLEJUNCTION SOLAR CELL EFFICIENCIES ABOVE 32%: THE PROMISE AND CHALLENGES OF THEIR APPLICATION IN HIGH-CONCENTRATION-RATIO PV SYSTEMS TRIPLEJUNCTION SOLAR CELL EFFICIENCIES ABOVE 32%: THE PROMISE AND CHALLENGES OF THEIR APPLICATION IN HIGH-CONCENTRATION-RATIO PV SYSTEMS H.L. Cotal, D.R. Lillington, J.H. Ermer, R.R. King, N.H. Karam Spectrolab,

More information

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers

Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Preparation and Characterization of Micro-Crystalline Hydrogenated Silicon Carbide p-layers Erten Eser, Steven S. Hegedus and Wayne A. Buchanan Institute of Energy Conversion University of Delaware, Newark,

More information

16.2 Scanning Infrared Spectrometers

16.2 Scanning Infrared Spectrometers 16.2 Scanning Infrared Spectrometers it's difficult to find materials transparent in the infrared water vapor and atmospheric CO 2 can cause problems there are three common sources high diffraction orders

More information

Impurity Photovoltaic Effect in Multijunction Solar Cells

Impurity Photovoltaic Effect in Multijunction Solar Cells Available online at www.sciencedirect.com Procedia Technology 7 ( 2013 ) 166 172 The 2013 Iberoamerican Conference on Electronics Engineering and Computer Science Impurity Photovoltaic Effect in Multijunction

More information

Grundlagen der LED Technik

Grundlagen der LED Technik www.osram-os.com Grundlagen der LED Technik Dr. Berthold Hahn 8.3.14 Ilmenau 1 Dateienname ORG CODE Initiale Titel/Veranstaltung TT/MM/JJJJ Grundlagen der LED Technik 1. Einführung 2. Lichterzeugung im

More information

ZnO-based Transparent Conductive Oxide Thin Films

ZnO-based Transparent Conductive Oxide Thin Films IEEE EDS Mini-colloquium WIMNACT 32 ZnO-based Transparent Conductive Oxide Thin Films Weijie SONG Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China

More information

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass.

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass. Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass. Figure 16.28: The p orbitals (a) perpendicular to the plane of th carbon ring system in graphite can combine

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Agar, David; Korppi-Tommola, Jouko Title: Standard testing

More information

Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells

Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells ARL-TR-7349 JULY 2015 US Army Research Laboratory Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public

More information

Nanotechnology for Next Generation Photovoltaics

Nanotechnology for Next Generation Photovoltaics 340 Nanotechnology for Next Generation Photovoltaics NARASIMHA RAO MAVILLA 1,2, CHETAN SINGH SOLANKI 1,3, JUZER VASI 1,2 * 1 National Centre for Photovoltaic Research & Education, IIT Bombay, Mumbai 400076,

More information

High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates

High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates High Temperature Oxygen Out-Diffusion from the Interfacial SiOx Bond Layer in Direct Silicon Bonded (DSB) Substrates Jim Sullivan, Harry R. Kirk, Sien Kang, Philip J. Ong, and Francois J. Henley Silicon

More information

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs

Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs STATO E PROSPETTIVE DEL FOTOVOLTAICO IN ITALIA 26 giugno 2014 ENEA Via Giulio Romano n. 41, Roma Thin film photovoltaics: industrial strategies for increasing the efficiency and reducing costs Anna Battaglia,

More information

Implant Metrology for Bonded SOI Wafers Using a Surface Photo-Voltage Technique

Implant Metrology for Bonded SOI Wafers Using a Surface Photo-Voltage Technique Implant Metrology for Bonded SOI Wafers Using a Surface Photo-Voltage Technique Adam Bertuch a, Wesley Smith a, Ken Steeples a, Robert Standley b, Anca Stefanescu b, and Ron Johnson c a QC Solutions Inc.,

More information

High power mid-wave and long-wave infrared light emitting diodes: device growth and applications

High power mid-wave and long-wave infrared light emitting diodes: device growth and applications University of Iowa Iowa Research Online Theses and Dissertations Summer 2009 High power mid-wave and long-wave infrared light emitting diodes: device growth and applications Edwin John Koerperick University

More information

Laser printing and curing/sintering of silver paste lines for solar cell metallization

Laser printing and curing/sintering of silver paste lines for solar cell metallization Lasers in Manufacturing Conference 2015 Laser printing and curing/sintering of silver paste lines for solar cell metallization D. Munoz-Martin a *, Y. Chen a, A. Márquez a, M. Morales a, C. Molpeceres

More information

1. Introduction. What is implantation? Advantages

1. Introduction. What is implantation? Advantages Ion implantation Contents 1. Introduction 2. Ion range 3. implantation profiles 4. ion channeling 5. ion implantation-induced damage 6. annealing behavior of the damage 7. process consideration 8. comparison

More information

3. DATES COVERED (From - To) 01/06/10-01/06/12 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

3. DATES COVERED (From - To) 01/06/10-01/06/12 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

id : class06 passwd: class06

id : class06 passwd: class06 http://wwwee.stanford.edu/class_directory.php http://ocw.mit.edu/ocwweb/index.htm http://nanosioe.ee.ntu.edu.tw id : class06 passwd: class06 Display and OLED Market OLED on glass only ~US$ 0.5B in 04,

More information

Light-Induced Degradation of Thin Film Silicon Solar Cells

Light-Induced Degradation of Thin Film Silicon Solar Cells Journal of Physics: Conference Series PAPER OPEN ACCESS Light-Induced Degradation of Thin Film Silicon Solar Cells To cite this article: F U Hamelmann et al 2016 J. Phys.: Conf. Ser. 682 012002 View the

More information

Thin film CdS/CdTe solar cells: Research perspectives

Thin film CdS/CdTe solar cells: Research perspectives Solar Energy 80 (2006) 675 681 www.elsevier.com/locate/solener Thin film CdS/CdTe solar cells: Research perspectives Arturo Morales-Acevedo * CINVESTAV del IPN, Department of Electrical Engineering, Avenida

More information

A Comparison Between the Behavior of. Nanorod Array and Planar Cd(Se, Te)

A Comparison Between the Behavior of. Nanorod Array and Planar Cd(Se, Te) 21 Chapter 2 A Comparison Between the Behavior of Nanorod Array and Planar Cd(Se, Te) Photoelectrodes 1 2.1 Introduction The II-VI semiconductors CdSe and CdTe are appropriate materials for testing the

More information

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES

EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES EXCIMER LASER ANNEALING FOR LOW- TEMPERATURE POLYSILICON THIN FILM TRANSISTOR FABRICATION ON PLASTIC SUBSTRATES G. Fortunato, A. Pecora, L. Maiolo, M. Cuscunà, D. Simeone, A. Minotti, and L. Mariucci CNR-IMM,

More information

Metamorphic InGaAs photo-converters on GaAs substrates

Metamorphic InGaAs photo-converters on GaAs substrates Journal of Physics: Conference Series PAPER OPEN ACCESS Metamorphic InGaAs photo-converters on GaAs substrates To cite this article: D V Rybalchenko et al 2016 J. Phys.: Conf. Ser. 690 012032 View the

More information

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation

Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight. Xunlight Corporation Thin-Film Silicon Technology and Manufacturing Recap of a-si and a-si cell technology Types of a-si manufacturing systems a-si cell and module manufacturing at Xunlight Xunlight products and installations

More information

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS

Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS Project III. 4: THIN FILM DEVICES FOR LARGE AREA ELECTRONICS Project leader: Dr D.N. Kouvatsos Collaborating researchers from other projects: Dr D. Davazoglou Ph.D. candidates: M. Exarchos, L. Michalas

More information

Solar and Wind Energy

Solar and Wind Energy Jerry Hudgins Solar and Wind Energy Department of Electrical Engineering 1 Average Irradiation Data (Annual) from Solarex. The units on the map are in kwh/m 2 /day and represent the minimum case values

More information

MOVPE growth of GaN and LED on (1 1 1) MgAl

MOVPE growth of GaN and LED on (1 1 1) MgAl Journal of Crystal Growth 189/190 (1998) 197 201 MOVPE growth of GaN and LED on (1 1 1) Shukun Duan *, Xuegong Teng, Yutian Wang, Gaohua Li, Hongxing Jiang, Peide Han, Da-Cheng Lu National Integrated Optoelectronics

More information

350 C for 8 hours in argon atmosphere. Supplementary Figures. Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2.

350 C for 8 hours in argon atmosphere. Supplementary Figures. Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2. Supplementary Figures Supplementary Figure 1 High-temperature annealing of BP flakes on SiO 2. (a-d) The optical images of three BP flakes on a SiO 2 substrate before (a,b) and after annealing (c,d) at

More information

Wafer-to-Wafer Bonding and Packaging

Wafer-to-Wafer Bonding and Packaging Wafer-to-Wafer Bonding and Packaging Dr. Thara Srinivasan Lecture 25 Picture credit: Radant MEMS Reading Lecture Outline Senturia, S., Chapter 17, Packaging. Schmidt, M. A. Wafer-to-Wafer Bonding for Microstructure

More information

X-ray Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy X-ray Photoelectron Spectroscopy X-ray photoelectron spectroscopy (XPS) is a non-destructive technique used to analyze the elemental compositions, chemical and electronic states of materials. XPS has a

More information

Towards scalable fabrication of high efficiency polymer solar cells

Towards scalable fabrication of high efficiency polymer solar cells Towards scalable fabrication of high efficiency polymer solar cells Hui Joon Park 2*, Myung-Gyu Kang 1**, Se Hyun Ahn 3, Moon Kyu Kang 1, and L. Jay Guo 1,2,3 1 Department of Electrical Engineering and

More information

ARTICLE IN PRESS. Solar Energy Materials & Solar Cells

ARTICLE IN PRESS. Solar Energy Materials & Solar Cells Solar Energy Materials & Solar Cells 93 (9) 167 175 Contents lists available at ScienceDirect Solar Energy Materials & Solar Cells journal homepage: www.elsevier.com/locate/solmat Sliver cells in thermophotovoltaic

More information

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

Solar cells conversion efficiency enhancement techniques

Solar cells conversion efficiency enhancement techniques Optica Applicata, Vol. XXXVII, No. 1 2, 2007 Solar cells conversion efficiency enhancement techniques JOANNA PRAŻMOWSKA *, REGINA PASZKIEWICZ, RYSZARD KORBUTOWICZ, MATEUSZ WOŚKO, MAREK TŁACZAŁA Wrocław

More information

Research Article Advances in High-Efficiency III-V Multijunction Solar Cells

Research Article Advances in High-Efficiency III-V Multijunction Solar Cells Advances in OptoElectronics Volume 27, Article ID 29523, 8 pages doi:1.1155/27/29523 Research Article Advances in High-Efficiency III-V Multijunction Solar Cells Richard R. King, Daniel C. Law, Kenneth

More information

Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection

Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection X.M. Zhang, W. Wen, X.L.Li, X.T. Zhou published on Dec 2012 PHYS 570 Instructor

More information

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture

Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Poster FVS Workshop 2002 Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Texture etching of sputtered ZnO:Al films has opened up a variety of possibilities

More information

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann

Efficiency improvement in solar cells. MSc_TI Winter Term 2015 Klaus Naumann Efficiency improvement in solar cells MSc_TI Winter Term 2015 Klaus Naumann Agenda Introduction Physical Basics Function of Solar Cells Cell Technologies Efficiency Improvement Outlook 2 Agenda Introduction

More information

Thin Film Scattering: Epitaxial Layers

Thin Film Scattering: Epitaxial Layers Thin Film Scattering: Epitaxial Layers 6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31, 2012 Thin films. Epitaxial

More information

Production of PV cells

Production of PV cells Production of PV cells MWp 1400 1200 Average market growth 1981-2003: 32% 2004: 67% 1000 800 600 400 200 0 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 rest 1.0 1.0 1.0 2.0 4.0

More information

III-V heterostructure TFETs integrated on silicon for low-power electronics

III-V heterostructure TFETs integrated on silicon for low-power electronics In the Quest of Zero Power: Energy Efficient Computing Devices and Circuits III-V heterostructure TFETs integrated on silicon for low-power electronics K. E. Moselund, M. Borg, H. Schmid, D. Cutaia and

More information

Ivan Bazarov Physics Department, Cornell University. Fundamental processes in III-V photocathodes; application for high-brightness photoinjectors

Ivan Bazarov Physics Department, Cornell University. Fundamental processes in III-V photocathodes; application for high-brightness photoinjectors Ivan Bazarov Physics Department, Cornell University Fundamental processes in III-V photocathodes; application for high-brightness photoinjectors 07/21/09 I.V. Bazarov, III-V Photocathodes, ERL09 2 Contents

More information

R&D ACTIVITIES AT ASSCP-BHEL,GURGAON IN SOLAR PV. DST-EPSRC Workshop on Solar Energy Research

R&D ACTIVITIES AT ASSCP-BHEL,GURGAON IN SOLAR PV. DST-EPSRC Workshop on Solar Energy Research R&D ACTIVITIES AT -BHEL,GURGAON IN SOLAR PV at the DST-EPSRC Workshop on Solar Energy Research (22 nd 23 rd April, 2009) by Dr.R.K. Bhogra, Addl. General Manager & Head Email: cpdrkb@bhel.co.in Dr.A.K.

More information

Basics of Plasmonics

Basics of Plasmonics Basics of Plasmonics Min Qiu Laboratory of Photonics and Microwave Engineering School of Information and Communication Technology Royal Institute of Technology (KTH) Electrum 229, 16440 Kista, Sweden http://www.nanophotonics.se/

More information

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology

LOT. Contents. Introduction to Thin Film Technology. Chair of Surface and Materials Technology Introduction to Thin Film Contents 1. Introduction and Application Examples (2h) 2. Preparation of Thin Films by PVD (Physical Vapor Deposition) (6h) 2.1 Vacuum Technique (1h) 2.1.1 Kinetics of Gases 2.1.2

More information

- DUV-LEDs - Development and Applications

- DUV-LEDs - Development and Applications 2 October 23th 2015 Room 201, National Taiwan University Hospital International Convention Center - DUV-LEDs - Development and Applications Cyril Pernot Nagoya Development Detached Office Nikkiso Co.,

More information

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces

Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces Cathodoluminescence measurements of suboxide band-tail and Si dangling bond states at ultrathin Si SiO 2 interfaces A. P. Young a) Department of Electrical Engineering, The Ohio State University, Columbus,

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

Recrystallization in CdTe/CdS

Recrystallization in CdTe/CdS Thin Solid Films 361±362 (2000) 420±425 www.elsevier.com/locate/tsf Recrystallization in CdTe/CdS A. Romeo, D.L. BaÈtzner, H. Zogg, A.N. Tiwari* Thin Film Physics Group, Institute of Quantum Electronics,

More information

Impurity free vacancy disordering of InGaAs quantum dots

Impurity free vacancy disordering of InGaAs quantum dots JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 12 15 DECEMBER 2004 Impurity free vacancy disordering of InGaAs quantum dots P. Lever, H. H. Tan, and C. Jagadish Department of Electronic Materials Engineering,

More information

Monolithic Microphotonic Optical Isolator

Monolithic Microphotonic Optical Isolator Monolithic Microphotonic Optical Isolator Lei Bi, Juejun Hu, Dong Hun Kim, Peng Jiang, Gerald F Dionne, Caroline A Ross, L.C. Kimerling Dept. of Materials Science and Engineering Massachusetts Institute

More information

What if your diffractometer aligned itself?

What if your diffractometer aligned itself? Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director,

More information

2Dlayer Product Catalog

2Dlayer Product Catalog 2Dlayer Product Catalog Your idea, Our materials! We provide solutions, not just materials. Tel.: 1-919-228-9662 Email: info@2dlayer.com URL: http://2dlayer.com We accept purchase orders and all kinds

More information

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high

Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high Supplementary Figure 1 Scanning electron micrograph (SEM) of a groove-structured silicon substrate. The micropillars are ca. 10 μm wide, 20 μm high and own the gap of 10 μm. Supplementary Figure 2 Strictly

More information

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.

More information

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg and A.N. Tiwari* Thin Films Physics Group, Laboratory for Solid State Physics, Swiss Federal Institute

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

9:00 Intro to pyrite, collaboration Matt Law 9:20 Phase Field Crystal (PFC) modeling John Lowengrub 9:40 CVD thin film growth Nick Berry 9:55 XPS

9:00 Intro to pyrite, collaboration Matt Law 9:20 Phase Field Crystal (PFC) modeling John Lowengrub 9:40 CVD thin film growth Nick Berry 9:55 XPS Pyrite FeS 2 Kickoff Meeting August 3, 2010 Meeting schedule 9:00 Intro to pyrite, collaboration Matt Law 9:20 Phase Field Crystal (PFC) modeling John Lowengrub 9:40 CVD thin film growth Nick Berry 9:55

More information

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab.

Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA. Nano-Bio Electronic Materials and Processing Lab. Surface Preparation and Cleaning Conference April 19-20, 2016, Santa Clara, CA, USA Issues on contaminants on EUV mask Particle removal on EUV mask surface Carbon contamination removal on EUV mask surface

More information

Journal of Crystal Growth

Journal of Crystal Growth Journal of Crystal Growth 323 (2011) 127 131 Contents lists available at ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Growth and material properties of ZnTe

More information

EFFICIENCY IMPROVEMENTS IN GaAs-on-Si SOLAR CELLS

EFFICIENCY IMPROVEMENTS IN GaAs-on-Si SOLAR CELLS EFFICIENCY IMPROVEMENTS IN GaAs-on-Si SOLAR CELLS S.M. Vernon, S.P. Tobin, V.E. Haven, C. Bajgar and T.M. Dixon Spire Corporation, Patriots Park, Bedford, MA 01730 M. M. Al-Jassim, R.K. Ahrenkiel and K.A.

More information

TPV History from 1990 to Present & Future Trends

TPV History from 1990 to Present & Future Trends TPV History from 1990 to Present & Future Trends Lewis Fraas and Leonid Minkin JX Crystals Inc, 1105 12 th Ave NW Suite A2, Issaquah, WA 98027 USA Tel: (425) 392 5237, FAX: (425) 392 7303, Lfraas@jxcrystals.com

More information

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE

TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE W.L. Sarney 1, L. Salamanca-Riba 1, V. Ramachandran 2, R.M Feenstra 2, D.W. Greve 3 1 Dept. of Materials & Nuclear Engineering,

More information

Fs- Using Ultrafast Lasers to Add New Functionality to Glass

Fs- Using Ultrafast Lasers to Add New Functionality to Glass An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference Fs- Using Ultrafast Lasers to Add New Functionality to Glass Denise M. Krol University of California, Davis 17th

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013 ISSN: 2277-3754 Fabrication and Characterization of Flip-Chip Power Light Emitting Diode with Backside Reflector Ping-Yu Kuei, Wen-Yu Kuo, Liann-Be Chang, Tung-Wuu Huang, Ming-Jer Jeng, Chun-Te Wu, Sung-Cheng

More information

GaAs nanowires with oxidation-proof arsenic capping for the growth of epitaxial shell

GaAs nanowires with oxidation-proof arsenic capping for the growth of epitaxial shell Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supplementary information GaAs nanowires with oxidation-proof arsenic capping for the growth of

More information

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Arts / Science in Physics from The College of

More information

LIGHTWEIGHT, LIGHT-TRAPPED, THIN GaAs SOLAR CELL FOR SPACECRAFT APPLICATIONS: PROGRESS AND RESULTS UPDATE' ABSTRACT INTRODUCTION

LIGHTWEIGHT, LIGHT-TRAPPED, THIN GaAs SOLAR CELL FOR SPACECRAFT APPLICATIONS: PROGRESS AND RESULTS UPDATE' ABSTRACT INTRODUCTION LIGHTWEIGHT, LIGHT-TRAPPED, THIN GaAs SOLAR CELL FOR SPACECRAFT APPLICATIONS: PROGRESS AND RESULTS UPDATE' M.H. Hannon, M.W. Dashiell, L.C. DiNetta, and A.M. Barnett AstroPower, Inc. Newark, DE 1971 6-2000

More information

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm)

R Sensor resistance (Ω) ρ Specific resistivity of bulk Silicon (Ω cm) d Diameter of measuring point (cm) 4 Silicon Temperature Sensors 4.1 Introduction The KTY temperature sensor developed by Infineon Technologies is based on the principle of the Spreading Resistance. The expression Spreading Resistance derives

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information