In many industrial fields, such as aviation, aerospace,

Size: px
Start display at page:

Download "In many industrial fields, such as aviation, aerospace,"

Transcription

1 August 2012 Research & Development Compressive properties of aluminum foams by gas injection method *Zhang Huiming 1, Chen Xiang 1, 2, Fan Xueliu 1, and Li Yanxiang 1,2 (1. Department of Mechanical Engineering, Tsinghua University, Beijing , China; 2. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing , China) Abstract: The compressive properties of aluminum foams by gas injection method are investigated under both quasi-static and dynamic compressive loads in this paper. The experimental results indicate that the deformation of the aluminum foams goes through three stages: elastic deforming, plastic deforming and densification stage, during both the quasi-static and dynamic compressions. The aluminum foams with small average cell size or low porosity have high yield strength. An increase in strain rate can lead to an increase of yield strength. The yield strength of the aluminum foams under the dynamic loading condition is much greater than that under the quasi-static loading condition. Dynamic compressive tests show that a higher strain rate can give rise to a higher energy absorption capacity, which demonstrates that the aluminum foams have remarkable strain rate sensitivity on the loading rate. Key words: aluminum foam; strain rate; porosity; energy absorption CLC numbers: TG Document code: A Article ID: (2012) In many industrial fields, such as aviation, aerospace, construction and automotive, the needs of high quality, energy-absorbing structural parts are increasing. With increasing car speeds and the potential impact energy, the demands for improvement of the crash-worthiness of the car are a pressing issue. By converting the impact energy into plastic deformation energy and keeping the peak force acting on the protected objects below the level could cause damage, closed-cell aluminum foams with their large amount of cavities could be used as shock absorption structures, such as bumpers, door pillars, etc., for their high strength and stiffness [1]. The research on the relationship between the strain and stress at low and high strain rates and the energy absorption capability of the closed-cell aluminum foams has been a worldwide research interest [2-9]. The mechanical properties of the closed-cell aluminum foams are mainly determined by the size of the pores and the morphology characterization, such as relative density, average pore size, anisotropy and defects in the foam structure [2, 10]. A lot of research has been done to compare the compressive process of different kinds of metallic foams. Some studies on both open-cell and closed-cell metallic foams [3, 11-13] show that the plateau stress is almost insensitive to strain rate for the given strain rates but other research [14-17] has shown that *Zhang Huiming Male, master degree candidate at the Department of Mechanical Engineering, Tsinghua University. He obtained his B.S. degree from Huazhong University of Science and Technology in His research interests mainly focus on fabrication and mechanical properties of aluminum foams. xchen@tsinghua.edu.cn (corresponding author: Chen Xiang) Received: ; Accepted: the metallic foams have remarkable strain rate sensitivity to the loading rate. Gibson and Ashby have pointed out that the strain rate dependence of the mechanical properties of foams is caused in two ways, which are the inherent dependence of the cell-wall material itself and the dependence caused by the presence of a gas or liquid inside the pores [13]. It is believed that aluminum foam of different structures may lead to different experimental results. The aluminum foams fabricated by the gas injection method have a uniform pore size distribution and a thin cell wall. In this paper the quasi-static and dynamic compressive tests were performed to investigate the deformation mode of the aluminum foam in the low and high strain rates. The deformation mechanism of the aluminum foam during the compressive process was discussed. 1 Experimental procedure A356 aluminum alloy was used as the base material and was melted and held at 680 in a crucible heated by a resistance furnace. Compressed air was injected into the aluminum melt to produce the aluminum foams through an orifice submerged at the bottom of the crucible and the initial temperature of the compressed air was kept at 15 to 20. The 10 volume percent of 9 μm sized Al 2 O 3 particles were added into the A356 aluminum alloy melt and then dispersed by mechanical stirring at the rate of 1,300 r min -1. As the air was injected into the melt, the bubble would form, detach and flow to the surface of the melt and then the foams were collected at the melt surface. Cylindrical specimens with the size of Φ 8 cm and length 12 cm were cut from the collected foams using electro-discharge machining. The section observation method was applied to determine the average pore diameter. Ten parallel lines in the 215

2 CHINA FOUNDRY X, Y, and Z directions were measured and pore number was counted on each line (Fig. 1(a)). Chord length was gotten by dividing length by pore number in three orthogonal directions. Lastly, average pore diameter was calculated using equation (1). Figure 1(b) showed the chord length versus number of measurements. Figure 1(b) shows that the chord length would be constant when the number of measurements was greater than 8 or 9. Thus a total of 10 measurements were made on each specimen. The chord length of a specimen is the average value for the 10 measurements. where, D is the average chord length, t is the average chord length in three directions. (a) Chord length (cm) Number of measurements Fig.1: Schematic diagram of (a) measuring the average pore size and (b) relationship between chord length and the number of measurements The quasi-static compressive testing was carried out at room temperature using a WDW-100 computer-controlled test machine. The compressive rate was 5 mm min -1 (strain rate: s -1 ) and the load-displacement curves were recorded. The stress-strain (σ-ε) curves were obtained after data processing. The dynamic compressive testing was conducted at room temperature using a drop hammer testing machine (developed here) at the Automobile Collision Laboratory of Tsinghua University (Fig. 2). All aluminum foam specimens were fixed on the center of a steel tray with a diameter of 12 cm to prevent them from moving off center during the drop testing. The weight of the drop hammer is 2.7 kg and the drop height of the Fig. 2: Schematic diagram of the drop hammer test apparatus (1) (b) Vol.9 No.3 hammer could be adjusted to get different impact velocities and impact energies. A force sensor with a sensitivity of 4.53 pc/n and a maximum range of 60 kn was mounted below the tray. The experimental parameters, such as compressive load, impact time, impact speed, could be recorded through an intelligent data acquisition and processing system at the data acquisition frequency of 5,000 fps. A high-speed camera was used to record the process of compressive deformation of the aluminum foam specimens. The images of the compressive process were treated by a non-contact strain measurement system (VIC-2D and VIC-3D) to calculate the strain rate of the aluminum foams. 2 Results and discussion 2.1 Quasi-static compressive properties of aluminum foam Quasi-static compressive deformation stress-strain (σ-ε) curves for the specimens prepared by the gas injection method, having porosities from 94% to 97%, are shown in Fig. 3. It has been shown that the compression of the aluminum foams experienced is in the typical deformation process of the metallic foams [13] and the curves comprise three regions, namely elastic deformation, plastic deformation and densification regions. A very small, linear, elastic deformation is displayed and the stress increases rapidly when the pressure head acts on the surface of the aluminum foam where partially reversible cell-wall bending occurs. The plastic deformation of aluminum foam occurs after the first maximum; and an extended plateau region appears where the foam cell walls buckle, yield and fracture. Mostly deformation is localized in the defect (or weak links) regions in the foams when the specimen is crushed. Then the region in the middle of the sample begins to crush. As the crushing proceeds, the deformation and the stress passes to the un-deformed region layer by layer; the failure subsequently develops along the clusters of defects and thereafter the cell wall material itself becomes pressed together and the whole sample is crushed (densification region). The sharp increase of the stress at the end of the curves corresponds to densification in the foam. It also can be seen from Fig. 3 that the extended plateau fluctuates due to the pores in the foam being not exactly regular and the abrupt and repeatable failure of successive pore layers. For the aluminum foam with the same average pore size, the plateau stress decreases (Fig. 3(a)) with an increase in the porosity from 94% to 97%. The densification stage starts at 50% strain for the aluminum foams with smaller porosity; and at 65% strain for the aluminum foams with larger porosity. For foams having similar pore size, the smaller the porosity, the thicker the pore cell wall; so the foam can bear a higher load giving a higher yield plateau. For foams having similar density, the larger the pore size, the lower the yield strength. The plateau stress is about 0.29 MPa and the densification strain is 62% when the pore size is about 0.97 cm; while the plateau stress is only about 0.19 MPa and the densification 216

3 August 2012 Research & Development Fig. 3: Quasi-static stress-strain curves of aluminum foam specimens: (a) different nominal porosities of 94% and 97% at average pore size of 1.27 cm and (b) different average pore sizes of 0.97 cm and 1.27 cm at nominal porosity of 96% strain is up to 65% when the pore size is about 1.27 cm (Fig. 3b). Figure 4 shows the quasi-static deformation process of the aluminum foams prepared by the gas injection method. As an energy-absorbing material, aluminum foams have the characteristics that higher strain could be obtained at lower stress levels. According to the formula of energy absorption capacity (Eq. 2) of closed-cell foam given by Gibson and Ashby [10], the extended plateau is particularly important for the foam application, and the higher the yield stress of aluminum foams, the greater the energy absorbed. ε ε pl where, W is the energy absorption capacity of aluminum foam, σ pl is the plateau stress at the strain of ε. (2) Figure 5 shows stress versus strain curves (σ-ε) of aluminum foam samples with and without a skin subjected to quasi-static compressive loads. By the gas injection fabrication method, the skin of the aluminum foam is as thin as the cell wall thickness, which is about 50 μm. It is easy to estimate the weight fraction of skin in the total weight of the samples. The result turns out that the fraction of skin in weight is less than 5% of the total weight of the sample and therefore the weight of skin is ignored. The yield stress of the aluminum foam with a skin is at about 0.4 MPa and the plateau strain ranges from 2% to 70%. Compared with the samples without a skin, the specimens with a skin can withstand a greater load in the deformation process, giving rise to a higher plateau stress and thus can absorb more energy before the densification stage. Fig. 4: Photographs of aluminum foam taken during quasi-static deformation process 217

4 CHINA FOUNDRY Vol.9 No.3 Fig. 5: Stress versus strain curves of quasi-static compression of aluminum foams with a nominal porosity of 96% and a pore size of 1.42 cm 2.2 Effect of pore morphology on quasistatic compressive properties of aluminum foams Gibson and Ashby [13] developed a formula to calculate the static plateau stress for the compression of plastic foams, which is: pl ys s s where, σ * pl is the plateau stress of the aluminum foam, σ ys and r s are the yield stress and density of the solid aluminum alloy that the foam cell wall is made of, r * is the density of the aluminum foam, and f is the fraction of solid in the cell edges of foam. According to Eq. 3, in the ideal model, the plateau stress of foam depends only on the porosity, the greater the porosity, the smaller proportion of aluminum foam cell wall and the smaller load the foam can bear. However, there are many defects in the actual (3) aluminum foams: (1) the pores are not in the form of regular tetrakaidecahedra, that is, the pores are not regular hexagons in the cross section of the foam; (2) there are a variety of the pore sizes and the thickness of cell wall; (3) there is severe deformation of the foams. Although the aluminum foams have some different aspects compared with regular tetrakaidecahedra, this model is accepted as the standard model in theoretical analysis, because it is very simple and matches the experiment results [2]. Figure 6 shows the defects such as coalescence and elongation of pores in the aluminum foam after binary image processing. These defects seriously affect the compressive properties of aluminum foam. Figure 7 illustrates the compressive stress-strain curves of A356 alloy and the compressive yield strength of aluminum foam having different porosities. According to Eq. 2, the average yield stress of the aluminum foam with porosity of 96% is 0.35 MPa, while with porosity of 93% it is 0.93 MPa. Comparing the quasi-static compressive results with theoretical calculated values at the given porosity, the calculated yield strength is higher than the experimental result. According to the deformation characteristics of aluminum foam, compressed foam collapses layer by layer because the distribution of defects is not uniform and thus results in the fluctuation of the stress-strain curves. Hence, the yield strength will be close to the theoretical value when the morphology of the pores is in the form of a uniform honeycomb. Fig. 6: Morphology of foam defects: (a) coalescence of pores and (b) elongation of pores Yield strength (MPa) º Yield strength of base material: 91.5 MPa MPA Fig. 7: Yield strength of aluminum base material and foam: (a) A356 aluminum alloy and (b) aluminum foam 218

5 August 2012 Research & Development 2.3 Dynamic compressive properties of aluminum foam Dynamic compressive deformation process and the stressstrain (σ-ε) curves for the specimens prepared by gas injection method are shown in Figs. 8 and 9, respectively. It can be seen that the dynamic compression of the aluminum foams experienced also is in the typical deformation process of metallic foams and the deformation of the aluminum foams will go through three stages: elastic deforming, plastic deforming and densification stage. According to the highspeed camera, the crushing of the foam was started in the regions having the lowest density or clusters of defects (or weak links) for the specimen at the beginning of deformation. 0% 11% 22% 34% 45% 56% 66% 77% Fig. 8: Photographs of aluminum foam in dynamic deformation process taken by a high-speed camera Fig. 9: Stress versus strain curves of dynamic compression of aluminum specimens with a nominal porosity of 94% and pore size of 0.93 cm s -1 Strain rate: 40 s -1, 68-1 Average pore diameter: 0.93 cm Porosity: 94% The failure subsequently develops along the clusters of defects until the deformation covers the entire specimen and the foam becomes pressed together. It also can be seen from Fig. 9 that, compared with the opencell aluminum foams [3], the closed-cell aluminum foams are more sensitive to the strain rate during the compression. The explanation of such behavior lies in the increase in the gas pressure in the pores of the closed-cell aluminum foam during the compressive process, which gives rise to the resistance to the deformation. The deformation rate of the pores is different at various strain rates. Therfore the speed of increase in the gas pressure in the pores is different, resulting in the changes in the yield strength [13]. According to Eq. 2 developed by Gibson and Ashby, for the closedcell aluminum foam with a porosity of 94%, the plateau stress is about 0.37 MPa at the strain rate of s -1 ; the plateau stress is 6.06 MPa at the strain rate of 40 s -1 ; and the plateau stress is MPa at the strain rate of 68 s -1. Compared with the quasistatic deformation, the higher impact velocity allows the rapid rupture and collapse of the pores of the aluminum f o a m i n t h e d y n a m i c compressive process. At the same time, the rise of the gas pressure in the pores has the tendency to prevent the foam collapse; and to compensate for the decrease of stress caused by the foam collapse. So the yield strength under dynamic compression is significantly higher than that under quasi-static compression. It must be pointed out that the densification strain is still at 60% to 70% whether under dynamic or quasi-static compression. According to Eq. 2, the energy absorbed per unit volume is proportional to the yield stress of the aluminum foam and more impact energy could be absorbed with an increase in the compressive strain. Figure 10 shows the energy absorption capability of aluminum foam at different strain rates. It can be seen from Fig. 10 that the higher the strain rate, the higher the plateau stress of the aluminum foam; and the higher the impact energy absorbed. Conpared with the quasi-static compression, the dynamic compression of aluminum foam shows a similar deformation process, and the yield strength of aluminum foam with small porosity and pore size is higher. The increase in plateau stress and the associated increase in the energy absorption capacity at higher strain rate are of benefit to the use of aluminum foams in high-impact energy-absorption 219

6 CHINA FOUNDRY Fig. 10: Energy absorption capability of aluminum foam at different strain rates applications. The higher strain rate can give rise to a higher energy absorption capacity under dynamic compression, which demonstrates that the aluminum foams have remarkable strain rate sensitivity to the loading rate. 3 Conclusions : 0.37 MPa : s -1 : 6.06 MPa : 40 s -1 : MPa : 68 s -1 (1) The compression of the aluminum foams experienced is typical of the deformation process of metallic foams under both quasi-static and dynamic compressive loads and will go through three stages: elastic deformation, plastic deformation and densification stage. In the elastic deformation stage, the aluminum foam will deform with the increase in the load and partially reversible cell wall bending will occur. The plastic deformation of aluminum foam occurs after the first maximum and an extended plateau region appears where the foam cell walls buckle, yield and fracture. The crushing of the foam starts in the regions having the lowest density or clusters of defects (or weak links) of the specimen and then the failure subsequently develops along the clusters of defects until the deformation covers the entire specimen and the foam becomes pressed together. (2) Under quasi-static compressive load, the smaller the porosity of the foam, the thicker the cell wall, the greater load the foam can bear, and the higher plateau stress for the aluminum foam with the same average pore size. The smaller the average pore size, the higher the load the foam can bear, and the higher the yield strength. (3) Compared with the specimens without a skin, the samples with a skin can withstand a greater load during the deformation process, giving rise to a higher plateau stress and thus can absorb more energy before the densification stage. (4) The closed-cell aluminum foams have remarkable strain rate sensitivity to the loading rate. The greater the strain rate, the higher the yield strength and the higher the impact energy Vol.9 No.3 absorbed. The yield strength under dynamic compression is significantly higher than the yield strength under quasi-static compression. References [1] Fuganti A, Lorenzi L, Arve Gronsund H, and Magnus L. Aluminum foam for automotive applications. Advanced Engineering Materials, 2000, 2(4): [2] Ashby M F, Evans A G, Fleck N A, et al. Metal foams: a design guide, Oxford, UK: Butterworth-Heinemann, [3] Deshpande V S and Fleck N A. High strain rate compressive behaviour of aluminum alloy foams. International Journal of Impact Engineering, (3): [4] Andrews E, Sanders W, and Gibson L J. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering A, 1999, 270(2): [5] Ruan D, Lu G, Chen F L, and Siores E. Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures, 2002, 57: [6] Shen Jianhu, Lu Guoxing, and Ruan Dong. Compressive behaviour of closed-cell aluminium foams at high strain rates. Composites, Part B: Engineering, 2010, 41: [7] Markaki A E and Clyne T W. The effect of cell wall microstructure on the deformation and fracture of aluminiumbased foams. Acta Materialia, 2001, 49: [8] Koza E, Leonowicza M, Wojciechowskia S, et al. Compressive strength of aluminium foams. Materials Letters, 2003, 58: [9] Hanssen A G, Langseth M, and Hopperstad O S. Crash behavior of foam-based components: validation of numerical simulations. Advanced Engineering Materials, 2002, 4: [10] Gibson L J, and Ashby M F. Cellular solids: structures and properties. 2nd ed., Cambridge, UK: Cambridge University Press, [11] Kenny L D. Mechanical properties of particle stabilised aluminum foams. Materials Science Forum, 1996, : [12] Dannemann K A, Jr. and Lankford J. High strain rate compression of closed-cell aluminium foams. Materials Science and Engineering A, 2000, 293(1-2): [13] Hall I W, Guden M, and Yu C J. Crushing of aluminum closed cell foams: density and strain rate effects. Scripta Materialia, 2000, 43: [14] Mukai T, Kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in a closed-celled aluminium foam under dynamic loading. Scripta Materialia, 1999, 40(8): [15] Kanahashi H, Mukai T, Yamada Y, et al. Dynamic compression of an ultra-low density aluminium foam. Materials Science and Engineering A, 2000, 280(2): [16] Liu J, Yu S, Song Y, et al. Dynamic compressive strength of Zn-22Al foams. Journal of Alloys and Compounds, 2009, 476(1-2): [17] Wang Z, Shen J, Lu G, and Zhao L. Compressive behavior of closed-cell aluminum alloy foams at medium strain rate. Materials Science and Engineering A, 2010, 528(6): The work was financially supported by the Scientific Research Program of Zhejiang Province, China (No. 2009C31049). 220

The 3 rd TSME International Conference on Mechanical Engineering October 2012, Chiang Rai

The 3 rd TSME International Conference on Mechanical Engineering October 2012, Chiang Rai P including Paper ID Crush Response of Polyurethane Foam-Filled Aluminium Tube Subjected to Axial Loading Nirut Onsalung*, Chawalit Thinvongpituk, Visit Junchuan and Kulachate Pianthong Department of Mechanical

More information

Prediction on the onset of global failure of irregular honeycombs under. compression

Prediction on the onset of global failure of irregular honeycombs under. compression ICCM2015, 14-17 th July, Auckland, NZ Prediction on the onset of global failure of irregular honeycombs under compression Youming Chen, Raj Das, and Mark Battley Centre for Advanced composite materials,

More information

CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM

CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM Puput Wiyono, Faimun, Priyo Suprobo and Heppy Kristijanto Department of Civil Engineering, Institut Teknologi Sepuluh Nopember,

More information

Mechanical Behaviour of Polymer Sandwich Composites under Compression

Mechanical Behaviour of Polymer Sandwich Composites under Compression American Journal of Materials Science 2015, 5(3C): 107-111 DOI: 10.5923/c.materials.201502.22 Mechanical Behaviour of Polymer Sandwich Composites under Compression Mohd. Zahid Ansari *, Sameer Rathi, Kewal

More information

The out-of-plane compressive behavior of metallic honeycombs

The out-of-plane compressive behavior of metallic honeycombs Materials Science and Engineering A 380 (2004) 272 280 The out-of-plane compressive behavior of metallic honeycombs F. Côté a, V.S. Deshpande a, N.A. Fleck a,, A.G. Evans b a Cambridge University Engineering

More information

The use of magnesium has grown dramatically in the. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 CHINA FOUNDRY

The use of magnesium has grown dramatically in the. Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 CHINA FOUNDRY CHINA FOUNDRY Vol.9 No.2 Section thickness-dependent tensile properties of squeeze cast magnesium alloy AM60 *Xuezhi Zhang, Meng Wang, Zhizhong Sun, and Henry Hu (Department of Mechanical, Automotive and

More information

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 5 Fatigue Dr. Hodge Jenkins Mercer University Introduction to Fatigue in Metals Cyclic loading produces stresses that are variable, repeated, alternating, or fluctuating

More information

MULTI-AXIAL YIELD BEHAVIOUR OF POLYMER FOAMS

MULTI-AXIAL YIELD BEHAVIOUR OF POLYMER FOAMS Acta mater. 49 (2001) 1859 1866 www.elsevier.com/locate/actamat MULTI-AXIAL YIELD BEHAVIOUR OF POLYMER FOAMS V. S. DESHPANDE and N. A. FLECK Department of Engineering, University of Cambridge, Trumpington

More information

Finite Element Analysis on the Unloading Elastic Modulus of Aluminum Foams by Unit-cell Model

Finite Element Analysis on the Unloading Elastic Modulus of Aluminum Foams by Unit-cell Model IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Finite Element Analysis on the Unloading Elastic Modulus of Aluminum Foams by Unit-cell Model To cite this article: F Triawan

More information

Mechanics of Materials and Structures

Mechanics of Materials and Structures Journal of Mechanics of Materials and Structures METAL SANDWICH PLATES WITH POLYMER FOAM-FILLED CORES A. Vaziri, Z. Xue and J. W. Hutchinson Volume 1, Nº 1 January 2006 mathematical sciences publishers

More information

Vehicle crash test against a lighting pole: experimental analysis and numerical simulation

Vehicle crash test against a lighting pole: experimental analysis and numerical simulation Safety and Security Engineering II 347 Vehicle crash test against a lighting pole: experimental analysis and numerical simulation G. Janszen Aerospace Engineering Department, Politecnico di Milano, Italy

More information

EXPERIMENTAL STUDY OF FOAM FILLED ALUMINUM COLUMNS UNDER AXIAL IMPACT LOADING

EXPERIMENTAL STUDY OF FOAM FILLED ALUMINUM COLUMNS UNDER AXIAL IMPACT LOADING Journal of KONES Powertrain and Transport, Vol. 20, No. 2 2013 EXPERIMENTAL STUDY OF FOAM FILLED ALUMINUM COLUMNS UNDER AXIAL IMPACT LOADING Leonardo Gunawan, Annisa Jusuf, Tatacipta Dirgantara, Ichsan

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

Arch. Metall. Mater. 62 (2017), 2B,

Arch. Metall. Mater. 62 (2017), 2B, Arch. Metall. Mater. 6 (7), B, 9- DOI:.55/amm-7- B.-H. KANG*, M.-H. PARK**, K.-A. LEE*** # EFFECT OF STRUT THICKNESS ON ROOM AND HIGH TEMPERATURE COMPRESSIVE PROPEIES OF BLOCK-TYPE Ni-Cr-Al POWDER POROUS

More information

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components T. Tryland SINTEF Raufoss Manufacturing, Raufoss, Norway 1 Background It is often useful to have a physical model

More information

Production technology for aluminium foam/steel sandwiches

Production technology for aluminium foam/steel sandwiches 113 Production technology for aluminium foam/steel sandwiches Abstract J. Baumeister, raunhofer-institute for Manufacturing and Applied Materials Research, Bremen 3-dimensional shaped sandwich panels with

More information

The effects of Trigger Mechanism on the Energy Absorption of Thin-Walled Rectangular Steel Tubes

The effects of Trigger Mechanism on the Energy Absorption of Thin-Walled Rectangular Steel Tubes The 3rd National Graduate Conference (NatGrad2), Universiti Tenaga Nasional, Putrajaya Campus, 8-9 April 2. The effects of Trigger Mechanism on the Energy Absorption of Thin-Walled Rectangular Steel Tubes

More information

Manufacturing (Bending-Unbending-Stretching) Effects on AHSS Fracture Strain

Manufacturing (Bending-Unbending-Stretching) Effects on AHSS Fracture Strain Manufacturing (Bending-Unbending-Stretching) Effects on AHSS Fracture Strain Hong Zhu ArcelorMittal Global R & D - East Chicago Crush Distance (mm) Background 300 250 200 150 100 50 300 600 900 1200 1500

More information

RESPONSE OF FLEXIBLE SANDWICH PANELS TO BLAST LOADING

RESPONSE OF FLEXIBLE SANDWICH PANELS TO BLAST LOADING 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS RESPONSE OF FLEXIBLE SANDWICH PANELS TO BLAST LOADING D. Karagiozova**, G.N. Nurick*, G.S. Langdon*, S. Chung Kim Yuen*, Y. Chi* and S. Bartle* [G.N.

More information

Cross Section Optimization for Axial and Bending Crushing Using AHSS

Cross Section Optimization for Axial and Bending Crushing Using AHSS Cross Section Optimization for Axial and Bending Crushing Using AHSS Guofei Chen United States Steel Corporation Outline Introduction Dimension Effect Axial Crush Mode Stability Optimization Study Test

More information

Sandwich beams with gradient-density aluminum foam cores subjected to impact loading

Sandwich beams with gradient-density aluminum foam cores subjected to impact loading Structures Under Shock and Impact XIII 391 Sandwich beams with gradient-density aluminum foam cores subjected to impact loading J. Zhang & G. P. Zhao State Key Laboratory of Mechanical Structure Strength

More information

Pyramidal lattice truss structures with hollow trusses

Pyramidal lattice truss structures with hollow trusses Materials Science and Engineering A 397 (2005) 132 137 Pyramidal lattice truss structures with hollow trusses Douglas T. Queheillalt, Haydn N.G. Wadley Department of Materials Science and Engineering,

More information

Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper

Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper Materials Transactions, Vol. 49, No. 1 (2008) pp. 144 to 150 #2008 The Japan Institute of Metals Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper Hironori Seki*, Masakazu Tane and Hideo

More information

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy

Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy Effect of Zn content on microstructure, mechanical properties and fracture behavior of Mg-Mn alloy *Yin Dongsong 1, Zhang Erlin 2 and Zeng Songyan 1 (1. School of Materials Science and Engineering, Harbin

More information

IMPACT BEHAVIOUR OF SPOT-WELDED THIN-WALLED FRUSTA

IMPACT BEHAVIOUR OF SPOT-WELDED THIN-WALLED FRUSTA IMPACT BEHAVIOUR OF SPOT-WELDED THIN-WALLED FRUSTA Maria KOTEŁKO *, Artur MOŁDAWA * *Faculty of Mechanical Engineering, Department of Strength of Materials, Łódź University of Technology, ul. Stefanowskiego

More information

POSSIBILITIES FOR THE USE OF METAL-HYBRID- STRUCTURES FOR VEHICLE CRASH LOAD CASES

POSSIBILITIES FOR THE USE OF METAL-HYBRID- STRUCTURES FOR VEHICLE CRASH LOAD CASES www.dlr.de Chart 1 POSSIBILITIES FOR THE USE OF METAL-HYBRID- STRUCTURES FOR VEHICLE CRASH LOAD CASES Michael Kriescher 1, Walid Salameh 1, Elmar Beeh 1, Jan Roettger 2, Dr.-Ing. Alexander Droste 2, Dr.-Ing.

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard

More information

Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car

Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car Structures Under Shock and Impact X 167 Honeycomb sandwich material modelling for dynamic simulations of a crash-box for a racing car S. Boria & G. Forasassi Department of Mechanical, Nuclear and Production

More information

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions D. P. Myriounis, S.T.Hasan Sheffield Hallam

More information

Deformation Behavior in Three-point Bending of Aluminum Alloy Honeycomb Structures

Deformation Behavior in Three-point Bending of Aluminum Alloy Honeycomb Structures Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 625-630 625 Deformation Behavior in Three-point Bending

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

A Study on the Powder Forging of Aluminum Alloy Pistons

A Study on the Powder Forging of Aluminum Alloy Pistons International Journal of the Korean Society of Precision Engineering Vol. 2, No. 4, November 2001. A Study on the Powder Forging of Aluminum Alloy Pistons Jong-Ok Park 1,Chul-WooPark 1 and Young-Ho Kim

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

Mathematical Model Development on the Deformation Behaviour of Symmetric Hexagonal of Various Angles and Square Tubes under Lateral Loading

Mathematical Model Development on the Deformation Behaviour of Symmetric Hexagonal of Various Angles and Square Tubes under Lateral Loading ; ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Mathematical Model Development on the Demation Behaviour of Symmetric Hexagonal of Various Angles and Square Tubes

More information

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com The effect of ER4043 and

More information

Analysis of the energy absorption of aluminium tubes for crash boxes

Analysis of the energy absorption of aluminium tubes for crash boxes Analysis of the energy absorption of aluminium tubes for crash boxes 2nd Workshop on Structural Analysis of Lightweight Structures Natters, May 30-2012 F.O. Riemelmoser (FH Kärnten) M. Kotnik (SZ Oprema

More information

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS Dipartimento di Ingegneria Meccanica e Aerospaziale By. Prof. G. Belingardi, Alem.T.

More information

Bending Response and Energy Absorption of Closed-Hat-Section Beams

Bending Response and Energy Absorption of Closed-Hat-Section Beams Modern Applied Science; Vol. 10, No. 11; 2016 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Bending Response and Energy Absorption of Closed-Hat-Section Beams Hafizan

More information

Assessment of modification level of hypoeutectic Al -Si alloys by pattern recognition of cooling curves

Assessment of modification level of hypoeutectic Al -Si alloys by pattern recognition of cooling curves Assessment of modification level of hypoeutectic Al -Si alloys by pattern recognition of cooling curves *CHEN Xiang, GENG Hui-yuan, LI Yan-xiang (Department of Mechanical Engineering, Key Laboratory for

More information

CONNECTIONS OF TRAPEZOIDAL SHEETS UNDER FIRE. Petra Kallerová, František Wald, Zdeněk Sokol

CONNECTIONS OF TRAPEZOIDAL SHEETS UNDER FIRE. Petra Kallerová, František Wald, Zdeněk Sokol CONNECTIONS OF TRAPEZOIDAL SHEETS UNDER FIRE Petra Kallerová, František Wald, Zdeněk Sokol ABSTRACT The paper describes experiments with screwed connections of thin walled corrugated sheets using self-drilling

More information

Finite Element Analysis of Impact Damaged Honeycomb Sandwich

Finite Element Analysis of Impact Damaged Honeycomb Sandwich Finite Element Analysis of Impact Damaged Honeycomb Sandwich D.P.W. Horrigan and R.R Aitken Centre for Polymer and Composites Research, Department of Mechanical Engineering, The University of Auckland,

More information

Study of Thin-Walled Box Beams Crushing Behavior Using LS-DYNA

Study of Thin-Walled Box Beams Crushing Behavior Using LS-DYNA 11 th International LS-DYNA Users Conference Crash Safety Study of Thin-Walled Box Beams Crushing Behavior Using LS-DYNA Yucheng Liu Department of Mechanical Engineering University of Louisiana Lafayette,

More information

Study of Elastic Properties of Reinforcing Steel Bars

Study of Elastic Properties of Reinforcing Steel Bars 67 Study of Elastic Properties of Reinforcing Steel Bars J. A. Shayan R. Peiris and Ramal V. Coorey Department of Physics, University of Colombo, Colombo 3 ABSTRACT Reinforcing steel bars (rebars) are

More information

Comparative Study of Automotive Bumper with Different Materials for Passenger and Pedestrian Safety

Comparative Study of Automotive Bumper with Different Materials for Passenger and Pedestrian Safety IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 4 Ver. III (Jul- Aug. 2014), PP 60-64 Comparative Study of Automotive Bumper with Different

More information

Study of scale effects on mechanical strength of the AA1050 and AA1085 alloys

Study of scale effects on mechanical strength of the AA1050 and AA1085 alloys Study of scale effects on mechanical strength of the AA1050 and AA1085 alloys Olivier R. Marques oliviermarques@tecnico.ulisboa.pt Instituto Superior Técnico, Universidade de Lisboa, Portugal Abstract

More information

Simulation of the Mechanical Performance of Cast Steel with. Porosity: Static Properties

Simulation of the Mechanical Performance of Cast Steel with. Porosity: Static Properties Simulation of the Mechanical Performance of Cast Steel with Porosity: Static Properties R.A. Hardin 1 and C. Beckermann 2 1 Research Engineer, Mechanical and Industrial Engineering Dept. The University

More information

Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments

Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments THEORETICAL & APPLIED MECHANICS LETTERS 4, 021004 (2014) Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments Dafang Wu, 1, a) Anfeng Zhou,

More information

Supplementary Materials for

Supplementary Materials for Supplementary Materials for Highly-stretchable 3D-architected Mechanical Metamaterials Yanhui Jiang 1, Qiming Wang 1 * 1 Sonny Astani Department of Civil and Environmental Engineering, University of Southern

More information

Processing of cellular magnesium materials

Processing of cellular magnesium materials 147 Processing of cellular magnesium materials Y.Yamada, K.Shimojima, Y.Sakaguchi, M.Mabuchi, M.Nakamura, T.Asahina Materials Processing Department, National Industrial Research Institute ofnagoya, Hiratecho,

More information

Drop weight testing on sandwich panels with a novel thermoplastic core material

Drop weight testing on sandwich panels with a novel thermoplastic core material University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Civil Engineering Faculty Publications Civil Engineering 2012 Drop weight testing on sandwich panels with a novel thermoplastic

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

EXPERIMENTAL STUDY OF SANDWICH PANEL UNDER IMPACT LOADING

EXPERIMENTAL STUDY OF SANDWICH PANEL UNDER IMPACT LOADING EXPERIMENTAL STUDY OF SANDWICH PANEL UNDER IMPACT LOADING I.Nasri 1, H.J.Li 2, H.Zhao 1 1 Laboratoire de Mécanique et Technologie, ENS-Cachan/CNRS/University Paris 6 61, Avenue du président Wilson, 94235

More information

Application of Sequence Control Injection in Modified Design of Car Front Bumper

Application of Sequence Control Injection in Modified Design of Car Front Bumper IOP Conference Series: Materials Science and Engineering OPEN ACCESS Application of Sequence Control Injection in Modified Design of Car Front Bumper To cite this article: Wang Feng et al 2014 IOP Conf.

More information

Sains Malaysiana 42(12)(2013): NUR SURIANNI AHAMAD SUFFIN, ANASYIDA ABU SEMAN* & ZUHAILAWATI HUSSAIN

Sains Malaysiana 42(12)(2013): NUR SURIANNI AHAMAD SUFFIN, ANASYIDA ABU SEMAN* & ZUHAILAWATI HUSSAIN Sains Malaysiana 42(12)(2013): 1755 1761 Effect of Dissolution Times on Compressive Properties and Energy Absorption of Aluminum Foam (Kesan Masa Pelarutan ke Atas Sifat Mampatan dan Penyerapan Tenaga

More information

Mechanical Properties of Materials

Mechanical Properties of Materials INTRODUCTION Mechanical Properties of Materials Many materials, when in service, are subjected to forces or loads, it is necessary to know the characteristics of the material and to design the member from

More information

Characteristics of 1180MPa Grade Cold-rolled Steel Sheets with Excellent Formability

Characteristics of 1180MPa Grade Cold-rolled Steel Sheets with Excellent Formability Characteristics of 1180MPa Grade Cold-rolled Steel Sheets with Excellent Formability Tadao MURATA *1, Sae HAMAMOTO *1, Yukihiro UTSUMI *1, Takayuki YAMANO *2, Dr. Yuichi FUTAMURA *3, Takayuki KIMURA *4

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

Study on the Deformation Modes of an Axially Crushed Compact Impact Absorption Member

Study on the Deformation Modes of an Axially Crushed Compact Impact Absorption Member Vol:6, No:6, 22 Study on the Deformation Modes of an Axially Crushed Compact Impact Absorption Member Shigeyuki Haruyama, Hiroyuki Tanaka, Dai-Heng Chen, Aidil Khaidir Bin Muhamad International Science

More information

Experimental study on seismic behavior of composite concrete and

Experimental study on seismic behavior of composite concrete and 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 215, University of

More information

SEBASTIAN FISCHER Universität Stuttgart, Institut für Flugzeugbau, Stuttgart, Germany

SEBASTIAN FISCHER Universität Stuttgart, Institut für Flugzeugbau, Stuttgart, Germany SANDWICH STRUCTURES WITH FOLDED CORE: MANUFACTURING AND MECHANICAL BEHAVIOR SEBASTIAN FISCHER Universität Stuttgart, Institut für Flugzeugbau, 70569 Stuttgart, Germany SEBASTIAN HEIMBS EADS Innovation

More information

with Fillers Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C

with Fillers Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C A Study on the Mechanical Behaviour of the BFRP Decks with Fillers Yeou-Fong Li 1* and Chia-Hou Wu 1 1 Department of Civil Engineering, National Taipei University of Technology, Taiwan, R.O.C * 1, Sec.

More information

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Properties in Shear. Figure 7c. Figure 7b. Figure 7a Properties in Shear Shear stress plays important role in failure of ductile materials as they resist to normal stress by undergoing large plastic deformations, but actually fail by rupturing under shear

More information

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion

Strain Capacities Limits of Wrought Magnesium Alloys: Tension vs. Expansion Materials Sciences and Applications, 213, 4, 768-772 Published Online December 213 (http://www.scirp.org/journal/msa) http://dx.doi.org/1.4236/msa.213.41297 Strain Capacities Limits of Wrought Magnesium

More information

Investigation of the Behavior of Open Cell Aluminum Foam

Investigation of the Behavior of Open Cell Aluminum Foam University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Investigation of the Behavior of Open Cell Aluminum Foam Patrick J. Veale University of Massachusetts

More information

In the 21st century, with more understanding of the importance

In the 21st century, with more understanding of the importance An improved sodium silicate binder modified by ultra-fine powder materials *WANG Ji-na 1, FAN Zi-tian 1, WANG Hua-fang 2, DONG Xuan-pu 1, HUANG Nai-yu 1 (1. State Key Laboratory of Plastic Simulation and

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

Practice Problems Set # 3 MECH 321 Winter 2018

Practice Problems Set # 3 MECH 321 Winter 2018 Question 1 Copper-rich copper beryllium alloys are precipitation hardenable. After consulting the portion of the phase diagram given below, answer the following questions: (a) Specify the range of compositions

More information

Carbon Fiber Composite Cellular. Structures

Carbon Fiber Composite Cellular. Structures Carbon Fiber Composite Cellular Structures A Dissertation Presented to the faculty of the School of Engineering and Applied Science University of Virginia In partial fulfillment of the requirements of

More information

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE ECF EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE Masato Ono, Ki-Woo Nam*, Koji Takahashi, Kotoji Ando Department of Safety & Energy Engineering, Yokohama National University 79-

More information

Material Model Validation of a High Efficient Energy Absorbing Foam

Material Model Validation of a High Efficient Energy Absorbing Foam 5 th LS-DYNA Forum, Ulm 2006 Material Model Validation of a High Efficient Energy Absorbing Foam Authors: Gerhard Slik, Gavin Vogel and Virendra Chawda Dow Automotive Materials Engineering Centre Am Kronberger

More information

Testing and analysis of masonry arches subjected to impact loads

Testing and analysis of masonry arches subjected to impact loads Testing and analysis of masonry arches subjected to impact loads Paulo B. Lourenço, Tibebu Hunegn and Pedro Medeiros Department of Civil Engineering, ISISE, University of Minho, Guimarães, Portugal Nuno

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

Lab Exercise #2: Tension Testing (Uniaxial Stress)

Lab Exercise #2: Tension Testing (Uniaxial Stress) Lab Exercise #2: (Uniaxial Stress) Learning Outcomes: 1. Understand the basic concepts of stress and strain 2. Identify the engineering material properties 3. Connect stress and strain through Hooke s

More information

Fatigue of metals. Subjects of interest

Fatigue of metals. Subjects of interest Fatigue of metals Chapter 12 Subjects of interest Objectives / Introduction Stress cycles The S-N curve Cyclic stress-strain curve Low cycle fatigue Structural features of fatigue Fatigue crack propagation

More information

LOW COST ALUMINIUM FOAMS MADE BY CaCO 3 PARTICULATES. Varužan Kevorkijan* PROOF. Independent Researcher, Betnavska cesta 6, 2000 MARIBOR, Slovenia

LOW COST ALUMINIUM FOAMS MADE BY CaCO 3 PARTICULATES. Varužan Kevorkijan* PROOF. Independent Researcher, Betnavska cesta 6, 2000 MARIBOR, Slovenia Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC: LOW COST ALUMINIUM FOAMS MADE BY CaCO 3 PARTICULATES Varužan Kevorkijan* Independent Researcher, Betnavska cesta 6, 2000 MARIBOR,

More information

Tests on FRP-Concrete Bond Behaviour in the presence of Steel

Tests on FRP-Concrete Bond Behaviour in the presence of Steel Tests on FRP-Concrete Bond Behaviour in the presence of Steel M. Taher Khorramabadi and C.J. Burgoyne Engineering Department, University of Cambridge Trumpington St., Cambridge, UK ABSTRACT The bond behaviour

More information

STRENGTH OF MATERIALS laboratory manual

STRENGTH OF MATERIALS laboratory manual STRENGTH OF MATERIALS laboratory manual By Prof. Shaikh Ibrahim Ismail M.H. Saboo Siddik College of Engineering, MUMBAI TABLE OF CONTENT Sr. No. Title of Experiment page no. 1. Study of Universal Testing

More information

Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum

Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 12, DECEMBER 2013 ISSN 2277-8616 Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure

More information

Table 1 El. Steel Category TS grade MPa MPa 980MPa GA980Y 724 1,022 Developed steel Galvannealed 780MPa GA780Y MPa CR980Y 690 1,030

Table 1 El. Steel Category TS grade MPa MPa 980MPa GA980Y 724 1,022 Developed steel Galvannealed 780MPa GA780Y MPa CR980Y 690 1,030 With growing awareness of global environmental issues, automobile manufacturers are striving to reduce automotive weight and thus decrease exhaust emissions. Concurrently, automakers are pursuing higher

More information

Effect of anisotropy on the hydroforming of aluminum alloy AA6061-T6 using newly developed method

Effect of anisotropy on the hydroforming of aluminum alloy AA6061-T6 using newly developed method th International Mechanical Engineering Forum Prague 212, 2-22 February 212, Prague Czech Effect of anisotropy on the hydroforming of aluminum alloy AA661-T6 using newly developed method Sh. A. Dizaji

More information

EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION

EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION EFFECT OF LOCAL PLASTIC STRETCH OM TOTAL FATIGUE LIFE EVALUATION Abstract G. S. Wang Aeronautics Division, The Swedish Defence Research Agency SE-17290 Stockholm, Sweden wgs@foi.se This paper shows that

More information

Vehicle Front Structure Energy Absorbing Optimization in Frontal Impact

Vehicle Front Structure Energy Absorbing Optimization in Frontal Impact Send Orders for Reprints to reprints@benthamscience.ae 168 The Open Mechanical Engineering Journal, 2015, 9, 168-172 Open Access Vehicle Front Structure Energy Absorbing Optimization in Frontal Impact

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

Mechanical Characterisation of Materials

Mechanical Characterisation of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering and Technology, Dhaka MME298 Structure and Properties of Biomaterials Sessional 1.50 Credits 3.00 Hours/Week July

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the

More information

Increased resistance to buckling of piston rods through induction hardening

Increased resistance to buckling of piston rods through induction hardening Increased resistance to buckling through IH Page 1(6) Increased resistance to buckling of piston rods through induction hardening Summary Induction hardening of hydraulic cylinder piston rods engenders

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Buckling Characteristics of Cylindrical Pipes

Buckling Characteristics of Cylindrical Pipes Journal of Traffic and Transportation Engineering 3 (015) 178-185 doi: 10.1765/38-14/015.03.006 D DAVID PUBLISHING Buckling Characteristics of Cylindrical Pipes Toshiaki Sakurai College of Science and

More information

FULL SET OF INNOVATIVE TOOLS FOR THE PREDICTION OF LASER WELDED BLANK FORMABILITY IN SIMULATION

FULL SET OF INNOVATIVE TOOLS FOR THE PREDICTION OF LASER WELDED BLANK FORMABILITY IN SIMULATION FULL SET OF INNOVATIVE TOOLS FOR THE PREDICTION OF LASER WELDED BLANK FORMABILITY IN SIMULATION Daniel Duque Múnera (a) ArcelorMittal Noble International Sadok Gaied (a)(c), Fabrice Pinard (b), Francis

More information

INVESTIGATIONS ON THE DYNAMIC FRACTURE TOUGHNESS OF HEAVY-SECTION DUCTILE CAST IRON FOR TRANSPORT AND STORAGE CASKS

INVESTIGATIONS ON THE DYNAMIC FRACTURE TOUGHNESS OF HEAVY-SECTION DUCTILE CAST IRON FOR TRANSPORT AND STORAGE CASKS INVESTIGATIONS ON THE DYNAMIC FRACTURE TOUGHNESS OF HEAVY-SECTION DUCTILE CAST IRON FOR TRANSPORT AND STORAGE CASKS Karsten Müller, Wolfram Baer and Peter Wossidlo, Department of Materials Engineering,

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips M. Samadi Department of civil engineering., Mashhad Branch, Islamic Azad University, Mashhad,

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

Powder Metallurgy Powder Extrusion Technology. Aluminium foam. Field of Activities. Application of Aluminium foam. Permanent Cooperation with:

Powder Metallurgy Powder Extrusion Technology. Aluminium foam. Field of Activities. Application of Aluminium foam. Permanent Cooperation with: 2.2.1.8/6 GB Aluminium foam Powder Metallurgy Powder Extrusion Technology Field of Activities Aluminium foam For the production of foamed aluminium, Al powder is mixed with a product releasing gas at higher

More information

Design and Testing of Wing Leading Edge of a Light Transport Aircraft

Design and Testing of Wing Leading Edge of a Light Transport Aircraft Design and Testing of Wing Leading Edge of a Light Transport Aircraft Stanley C. Salem, Kotresh M. Gaddikeri, MNN Gowda, Ramesh Sundaram Advanced Composites Division, National Aerospace Laboratories, Bangalore,

More information

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS Weichen XUE Professor Tongji University Siping Road 1239#, Shanghai 200092, China xuewc@tongji.edu.cn*

More information

Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments

Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments J. Mater. Sci. Technol., 11, 7(5), 5-5. Uniaxial Ratcheting Behaviors of Metals with Different Crystal Structures or Values of Fault Energy: Macroscopic Experiments Guozheng Kang 1), Yujie Liu ), Yawei

More information