Quality of Simulation Packages for Flashless Hot Forging Operations

Size: px
Start display at page:

Download "Quality of Simulation Packages for Flashless Hot Forging Operations"

Transcription

1 363 Simulation of Materials Processing: Theory, Methods and Applications, Mori (ed.) 2001 Swets & Zeitlinger; Lisse, ISBN Quality of Simulation Packages for Flashless Hot Forging Operations Hans Christoph Altmann Institute for Integrated Production Hanover, Ltd, Hanover, Germany Wim J. Slagter MSC.Software (E.D.C.) B.V., Gouda, The Netherlands ABSTRACT: The development of new forming processes in the field of hot forging technology includes many difficulties due to the large number of parameters constituting the process. By developing a process the design engineer has to consider both technical and economical limits in order to obtain competitive forgings. Preferred process parameters include small number of forging steps, less tool abrasion, less contribution of flash material, and the stability of the forming process with the minimum of rejects. Experimental testing is one method of forging process development. It shows directly to what extent the new process meets the requirements of the market. Experimental testing usually needs much time and money, especially during development of new processes. Time and costs of developing a forging process can be reduced with the help of forging simulation packages. For this aim the forging practice has to be taken into account. Most important for meaningful forging simulation is the determination of correct process parameters. In addition a check and a compensation of the data base after the comparison between experiments and the computation of the developed process is necessary. The existence of a systematic process parameter data bank for special kinds of forming process in combination with forging specific simulation software lifts the value of the simulations, and more important, the process development speed. The IPH - Institute for Integrated Production Hanover develops hot flashless precision forging technology based on near-net shape technology. In the past it succeeded to form connecting rods in both warm and hot temperature range. Today this process is applied to other products as well. For information transfer a digital camera, a camera for heat radiation, wire strain gauges, a 3D measuring machine and a thermometer have been used. Several precision forging processes have been simulated with two commercial software packages: MSC.SuperForge and MSC.AutoForge. The handling of the machines and programs as well as simulation results are described. 1 INTRODUCTION The Institute for Integrated Production Hanover (IPH) advises companies and realizes development projects. Most important fields are the production engineering, the logistics, and the information systems. One focal point of business in the division of production engineering is forming processes. Development projects deals with the problems of precision forging in theory and practice test. The realization of the precision forging process of connecting rods is an important milestone in the history of the institute. Precision forging is a near-net shape way of forging without a flash. It reduces the number of single forming-operations. Other subjects of the Institute for Integrated Production are the forming with multidirectional punch movement and the forming with segmented dies. The development of new precision forging processes focuses on complex geometries that are suited to be used by industrial partners. For developing new forging processes the IPH uses numerical calculation codes. These codes make it possible to vary a relative great number of process parameters in an easy way. This method is faster and cheaper than constructing, manufacturing, mounting, and testing of tools during all periods of development. In the beginning when the initial tool geometry has to be found, the only way is to conduct different tests. During the second half of development the optimization can effectively be realized by making use of simulation. Here many small modifications can virtually be tried out. Theoretic examinations result in process knowledge which never would appear in such an evident form.

2 364 lay in the workpiece close the tools forming with the dies table small hole Figure 1. Principle character of the hot precision forging shaft big hole lower punch upper punch In the workshop such investigations are usually expensive and time-consuming. The IPH makes use of both MSC.AutoForge and MSC.SuperForge because of its complementary strengths. MSC.AutoForge is very suited for the prediction of tool temperature, as well as elastic and thermal tool deformation. MSC.SuperForge is suited for complex 3-D forging simulation in which high resolution of material flow details is desired with reasonable CPU processing times. During the precision forging development the IPH needs both complementary qualities. This paper shows examples. plates coupled with four bearings and four springs. The springs connecting both plates are pre-stretched. The outer plate is the main plate and fixed at the forming machine. The inner plate is the second one and carries the impression. Punches are fixed on the inner side of the outer plate. They go through holes in the inner plate and they end in the inside of the impression. All punches on the same side are fixed on one main plate. 2 FLASHLESS HOT FORGING 2.1 The Forging Process Flashless hot forging is the deformation of metal above the temperature zone of warm forming in closed dies towards near-net shape or net shape geometries. The flashless process is reached with the separation of the outer geometry tools from the forming tools. The outer dies determine the outer geometry. The inner punches provide the forming energy. First of all, the dies for the geometry are closed around the work piece without any deformation. Secondly, the punches get into the impression and cause the forming process up to the complete filling of the impression. Figure 1 shows the sequence. 2.2 The Precision Forging Tool As shown in figure 2 typical precision forging tools consist of two groups of parts: the upper group and the lower group. Each group consists of two parallel Figure 2. Typical precision forging tool for near net shape forging with horizontal and vertical gaps. 2.3 Moving Characteristics of the Different Tools The Tool is used with a screw press. During the first phase of moving the upper tools, die and punches move down with the same speed. Then the upper die gets in contact with the lower die. The impression is closed and the moving speed and the balance of forces changes. When the upper and lower die have contact with each other the pre-stretched springs are compressed and hold the dies closed. During this phase of process the machine force will increase

3 365 rapidly. The dies move down half the speed of the upper punches. And the upper and lower punches move into the impression, get in contact with the work piece and cause the deformation of the work piece. During the compression of springs and the deformation of work piece the speed of the tools decreases because of loss of kinetic energy. After the reducing of the speed to zero the lowest position of the tools is reached. After that point of time the springs and the elasticity of the machine cause lifting of the tools in opposite order as described before. 2.4 Different Types of Gaps The typical grouping of the different tools causes horizontal and vertical gaps. Vertical gaps develop between the different tools coming from the same direction. Horizontal gaps develop between the different dies coming from different directions. Every gap contains the danger of material flowing in it, which makes the forging useless. Horizontal gaps are closed and opened during the precision forging process. The danger of material in the gap is influenced by the time of closing the gap and the force of holding the gap closed. If closing of the gap occurs too late, the material will have reached the critical area. If the holding force is too small, the gap will be opened again during the forming operation. A typical example is shown below in figure 3. Simulation of Materials Processing: Theory, Methods and Applications, Mori (ed.) 2001 Swets & Zeitlinger; Lisse, ISBN The precision forging process of the connecting rod consists of several single forming processes. First a metal cylinder is cut. Secondly, this cylinder is warmed. Thirdly, the hot cylinder is cross rolled to an axi-symmetric geometry. Furthermore, this geometry is preformed and finally it is precision forged. The latter is shown in figure 4. Figure 3. Connecting rod with a forging mistake because of problems with the horizontal gap Vertical gaps occur between the different tools working from the same side. These gaps are never closed. The width of the gap differs with temperature and the elastic deformation of the material under forging loads. 3 THE CONNECTING ROD The connecting rod geometry is suited for the precision forging process. The geometry consists of several convex bodies and three concave areas. The concave areas are suited for the using of punches to push the work piece material into the convex zones. Figure 4. Connecting rod with a forging mistake because of problems with the horizontal gap 4 THE SIMULATION OF HOT FLASHLESS FORGING 4.1 Characteristics of Flashless Hot Forging As previously mentioned, the simulation focuses on the last precision forging process. Most qualities of the precision forged connecting rod occur during the last step and depend on the filling of the impression as well as the possible existence of folds.

4 4.2 Forging Temperature During the warming process the work piece temperature increases from 20 C up to 1200 C. This warming process takes place in a furnace. The optimum result is a homogeneous temperature of the complete work piece. In reality this state cannot be reached. First the temperature of the metal increase with high speed. At the end the warming speed decreases as it is shown in figure 5. T [ C] Time [s] Figure 5. Temperature increases during the warming During and after the warming the temperature is inhomogeneous as shown in figure 7. The reason is the non-uniform thickness of the work piece. This inhomogeneous temperature never disappears because of the asymptotic character of the heat-exchange. The thermo-photograph (figure 6) of the connecting rod shows the temperature field. To synchronize the measured and the calculated result (figure 7.) the heat transfer coefficient used in the simulation has to be optimized. 1550,7 C Figure 7. Calculated temperature distribution after heating 4.3 Punch Forces The punch forces document the momentary balance of the forces inside the impression. The magnitude of these forces determines the size of both tools and machines, as well as the extent of tool wear. The correct prediction of these forces decides the success of a tool construction. Using the described method, a good agreement in punch force is obtained (figure 8). The experimental force is sensitive to the change of initial temperature, and the accuracy is considered to be adequate for precise tool construction. Force of the Die [kn] Forging (1150 C) Forging (850 C) SuperForge (980 C) Forces in Comparison 0 0,00 0,03 0,05 0,08 0,10 0,13 Time of process [s] Figure 8. Calculated and measured force of the punches during the precision forging 60,2 Figure 6. Thermo-photograph of the heated material The correct temperature field at the beginning of the numerical calculation is an important condition for accurately predicting the range of yield stress. The second important connection is between yield stress and strain rate of the material. In both tests and calculations a screw press is used. The speed of this machine is determined by the mechanical energy that passes during the process to the work piece. The balance of the forces reduces the speed of the screw press in accordance with the yield stress and the momentary work piece geometry. Figure 9. Sectional view of the calculated and measured geometry of the connecting rod during the process Figure 9 shows the excellent agreement between the calculated and measured contours near the big eye of the connecting rod. 366

5 Simulation of Materials Processing: Theory, Methods and Applications, Mori (ed.) 2001 Swets & Zeitlinger; Lisse, ISBN TOOL GAPS 5.1 Vertical Gaps The vertical width of the gap between the die and punch does not depend on the springs or the toolkinematics. The width of the vertical gap depends on the construction of the tools, the elastic deformation, and the thermal expansion. To discover the relation between the width of the gap and material flow into that gap a special experiment is necessary. Figure 10 shows the finite element calculation of the test geometry. Ten cycles of forging are shown in the result. Because of the heating during the period of contact between work piece and tool the temperature increases and the material expands. During the time between two cycles the tool is cooled by water and the temperature decreases again. The material contracts again. In figure 11 it is shown that the thermal effect behaves asymptotically. After the first ten cycles of warming, the process appears to be quasi-static. The maximum change of gap width due to this thermal effect is r = 0.12mm. 5.3 Elasticity Caused Changes The precision forging causes relatively high pressure in the impression. This pressure may result in large strain and deformation in the tools. The deformation can also influence the width of the gap between the punch and the die. To reproduce the elastic deformation of the tools during the forging process the tool are generated in the simulation model, and the deformation is calculated. Figure 10. Gap experiment and numerical calculation 5.2 Thermally Caused Changes In this model the thermal expansion of the tool is shown. Figure 11 shows the changes of the width of the gap. Figure 12. Elasticity caused change of the gap width During the forming operation there is pressure inside the die resulting in an increase of diameter. The punch is pushed down and because of that loading the diameter of the punch also increases. Figure 12 shows the increasing diameter of both die and punch. The green-colored line is for the die and the red one is for the punch. The diameter of the die increases more than the diameter of the punch. The gap width changes with r = 0.02mm. Figure 11. Thermally caused change of the gap width

6 Work Piece Contact with the Gap At the end of the process the work piece should completely fill the impression. The forging material should have contact with the tool gap only at the end of the precision forging process. Figure 13. Contact at the gap at the end of the process Otherwise there is the danger of material moving in the gap. Figure 13 shows the material in the experimental tools reaching the gap just at the end of the process. 6 FUTURE TRENDS 6.1 Crankshaft The new knowledge and the more precise parameters for the precision forging process are suited for development of the precision forging of more complex geometries (figure 14). The most important issues during the development of the precision forging of crankshafts are the gap, the possible existence of folds, the contact pressure and the extent of filling of the impression. During design of geometrically complicated precision forging processes it is most important to compare the mechanical and thermal parameters of the numerical model with reality. This paper describes some measurements and tests required. These investment in time and energy is considered to be valuable. More precise and optimized results are now feasible. Particular aspects like detailed die loads and material flow appear to be well predictable in the simulation. The further technical development of precision forging processes for more complex geometries like the precision forging of crankshafts is modeled by making use of simulation packages. With the help of MSC.AutoForge and MSC.SuperForge and the described procedure for fixing process parameters, it is possible to obtain the most important design information before the manufacturing of tools takes place. 8 REFERENCES 1. Slagter W, Florie C, Venis A; Advances in Three-Dimensional Forging Process Modelling. Proceedings of the 15th National Conference on Manufacturing Research, pp73-78, 1999, UK. 2. Lange K; Umformtechnik, Handbuch für Industrie und Wissenschaft, Band 2: Massivumformung, pp42, 563,1988, D. 3. Lange K; Umformtechnik, Handbuch für Industrie und Wissenschaft, Band 1: Gundlagen, pp98ff.,1984, D. 4. Schmidt B. C., Fluess A., Kohlstette J.; Gratloses Präzisionsschmieden von Langteilen, Umformtechnik, Nr.3, 2000, D. 5. Muessig B., Boromandi F., Numerische Simulation optimiert Werkzeuge und Fertigungsprozesse, Maschinenmarkt, Das IndustrieMagazin, Nr. 41, pp 43-46, 2000, D. Figure 14. Precision forging of crankshafts 7 CONCLUSIONS

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining.

Casting. Forming. Sheet metal processing. Powder- and Ceramics Processing. Plastics processing. Cutting. Joining. Traditional Manufacturing Processes Casting Forming Sheet metal processing Powder- and Ceramics Processing Plastics processing Cutting Joining Surface treatment FUNDAMENTALS OF METAL FORMING Overview of

More information

Application of The Finite Volume Method to Upset Forging of Cylinders. Introduction. Nomenclature. Arjaan J. Buijk

Application of The Finite Volume Method to Upset Forging of Cylinders. Introduction. Nomenclature. Arjaan J. Buijk Arjaan J. Buijk Manufacturing Division MSC.Software Corporation arjaan.buijk@mscsoftware.com Presented at: Forging Fair 2000 April 13, 2000 Columbus, Ohio Application of The Finite Volume Method to Upset

More information

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS

COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS COMPUTER SIMULATION BASED DESIGN AND OPTIMISATION OF DIE FORGING OPERATIONS Dr.S.Shamasundar ProSIM, 21/B. 9 th main Shankara Nagara, Mahalakshmipuram Bangalore-560096 Email: shama@pro-sim.com Web: www.pro-sim.com

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN

METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN METAL FORMING AND THE FINITE-ELEMENT METHOD SHIRO KOBAYASHI SOO-IK OH TAYLAN ALTAN New York Oxford OXFORD UNIVERSITY PRESS 1989 CONTENTS Symbols, xiii 1. Introduction, 1 1.1 Process Modeling, 1 1.2 The

More information

FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY

FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY FRAUNHOFER INSTITUTE FOR MACHINE TOOLS AND FORMING TECHNOLOGY IWU SIMULATION IN FORMING TECHNOLOGY 1 SIMULATION IN SHEET METAL FORMING Simulation is an essential part of the development chain, especially

More information

Module 3 Selection of Manufacturing Processes. IIT Bombay

Module 3 Selection of Manufacturing Processes. IIT Bombay Module 3 Selection of Manufacturing Processes Lecture 3 Design for Bulk Deformation Processes Instructional objectives By the end of this lecture, the students are expected to learn the working principle

More information

Simulation of finite volume of hot forging process of industrial gear

Simulation of finite volume of hot forging process of industrial gear 2012 International Conference on Networks and Information (ICNI 2012) IPCSIT vol. 57 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V57.21 Simulation of finite volume of hot forging process

More information

3. Residual Stresses

3. Residual Stresses 3. Residual Stresses 3. Residual Stresses 22 Figure 3.1 br-ei-3-1e.cdr weld Various Reasons of Residual Stress Development grinding disk less residual stresses, and it will never be stress-free! The emergence

More information

Introduction. 1. Outline of fan case ring

Introduction. 1. Outline of fan case ring A near-net-shape (NNS) ring-rolling process was developed to reduce the forging weight of a rolled, fan case front, ring made of Ti-6Al-4V. This was achieved by optimizing the ring-rolling process in which

More information

Design for Forging. Forging processes. Typical characteristics and applications

Design for Forging. Forging processes. Typical characteristics and applications Design for Forging Forging processes Forging is a controlled plastic deformation process in which the work material is compressed between two dies using either impact or gradual pressure to form the part.

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b

Types of Strain. Engineering Strain: e = l l o. Shear Strain: γ = a b Types of Strain l a g Engineering Strain: l o l o l b e = l l o l o (a) (b) (c) Shear Strain: FIGURE 2.1 Types of strain. (a) Tensile. (b) Compressive. (c) Shear. All deformation processes in manufacturing

More information

A wide range of cold-formable steel grades and aluminium alloys are used as wire materials within a diameter range from 5 mm to 34 mm.

A wide range of cold-formable steel grades and aluminium alloys are used as wire materials within a diameter range from 5 mm to 34 mm. Cold-Formed Parts 2 ESKA manufactures complex precision cold-formed parts for applications with large and medium quantities. The highly-efficient cold- forming process ensures economic manufacture of near-net-shape

More information

CAE Analysis of Crankshaft for Testing Dynamic Loads for Reducing Cost & Weight

CAE Analysis of Crankshaft for Testing Dynamic Loads for Reducing Cost & Weight 2303-2307 CAE Analysis of Crankshaft for Testing Dynamic Loads for Reducing Cost & Weight Salim Ahmed, Tasmeem Ahmad Khan Abstract This study was conducted on a single cylinder four stroke cycle engine.

More information

Computer Simulation of Forging Using the Slab Method Analysis

Computer Simulation of Forging Using the Slab Method Analysis International Journal of Scientific & Engineering Research Volume 2, Issue 6, June-2011 1 Computer Simulation of Forging Using the Slab Method Analysis S. B. Mehta, D. B. Gohil Abstract Forging is a very

More information

Development of Energy-Saving High-Performance Continuous Carburizing Furnace

Development of Energy-Saving High-Performance Continuous Carburizing Furnace TECHNICAL REPORT Development of Energy-Saving High-Performance Continuous Carburizing Furnace M. MINAMIGUCHI T. SAITOU Koyo Thermo Systems Co., Ltd. and JTEKT Corporation have jointly developed an energy-saving

More information

Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks

Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks IDE 2008, Bremen, Germany, September 17 th 19 th, 2008 77 Material flow analysis for hot-forming of 20MnCr5 gear wheel blanks Rüdiger Rentsch Foundation Institute of Materials Science (IWT), Badgasteinerstr.

More information

Metal extrusion. Metal stamping

Metal extrusion. Metal stamping Metal extrusion Answer the following questions 1. In which of the following extrusion operation is friction a factor in determining the extrusion force (one best answer): (a) direct extrusion or (b) indirect

More information

Chapter 14 Forging of Metals

Chapter 14 Forging of Metals Introduction Chapter 14 Forging of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and Schmid What is

More information

Fig. 1: Schematic of roughing rolling unit of Mobarakeh Steel Company

Fig. 1: Schematic of roughing rolling unit of Mobarakeh Steel Company IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 5 Ver. I (Sep. - Oct. 2016), PP 88-98 www.iosrjournals.org. Investigation of Effects of

More information

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Takashi CHODA *1, Dr. Hideto OYAMA *2, Shogo MURAKAMI *3 *1 Titanium Research & Development Section, Titanium Div., Iron & Steel

More information

A STUDY OF FINE BLANKING PROCESS BY FEM SIMULATION. G. Fang, P. Zeng

A STUDY OF FINE BLANKING PROCESS BY FEM SIMULATION. G. Fang, P. Zeng Key Engineering Materials Vols. 261-263 (2004) pp 603-608 Online available since 2004/Apr/15 at www.scientific.net (2004) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/kem.261-263.603

More information

SHRI GURU GOBIND SINGHJI INSTITUTE OF ENGG & TECHNOLOGY DEPARTMENT OF PRODUCTION ENGINEERING SUBJECT:MECHANICAL WORKING OF METALS EXPERIMENT NO: 3

SHRI GURU GOBIND SINGHJI INSTITUTE OF ENGG & TECHNOLOGY DEPARTMENT OF PRODUCTION ENGINEERING SUBJECT:MECHANICAL WORKING OF METALS EXPERIMENT NO: 3 SHRI GURU GOBIND SINGHJI INSTITUTE OF ENGG & TECHNOLOGY DEPARTMENT OF PRODUCTION ENGINEERING SUBJECT:MECHANICAL WORKING OF METALS EXPERIMENT NO: 3 AIM: STUDY OF FORGING EQUIPMENT AIM: Study of forging

More information

Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances

Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances Journal of Mechanics Engineering and Automation 6 (216) 59-65 doi: 1.17265/2159-5275/216.2.1 D DAVID PUBLISHING Effects of TiCN Composite Die with Low Thermal Conductivity on Hot Forging Performances Ryo

More information

Numerical Simulation on the Hot Stamping Process of an Automobile Protective Beam

Numerical Simulation on the Hot Stamping Process of an Automobile Protective Beam 2016 International Conference on Material Science and Civil Engineering (MSCE 2016) ISBN: 978-1-60595-378-6 Numerical Simulation on the Hot Stamping Process of an Automobile Protective Beam Han-wu LIU

More information

APN029. The SER2 Universal platform for material testing. A.Franck TA Instruments Germany

APN029. The SER2 Universal platform for material testing. A.Franck TA Instruments Germany APN029 The SER2 Universal platform for material testing A.Franck TA Instruments Germany Keywords: Elongation viscosity, Hencky rate, SER, friction testing INTRODUCTION The roots of extensional rheometry

More information

A Study on the Powder Forging of Aluminum Alloy Pistons

A Study on the Powder Forging of Aluminum Alloy Pistons International Journal of the Korean Society of Precision Engineering Vol. 2, No. 4, November 2001. A Study on the Powder Forging of Aluminum Alloy Pistons Jong-Ok Park 1,Chul-WooPark 1 and Young-Ho Kim

More information

Numerical investigation of manufacturing hollow preforms by combining the processes backward cup extrusion and piercing

Numerical investigation of manufacturing hollow preforms by combining the processes backward cup extrusion and piercing MATEC Web of Conferences 80, Numerical investigation of manufacturing hollow preforms by combining the processes backward cup extrusion and piercing Robinson Henry 1,a and Mathias Liewald 1 1 Institute

More information

Design and Analysis of a Connecting Rod

Design and Analysis of a Connecting Rod Design and Analysis of a Connecting Rod Sebastian Antony, Arjun A., Shinos T. K B.Tech. Mechanical Dept. Muthoot Institute of Technology and Science Ernakulam, India Abstract The main function of a connecting

More information

HOW TO BUY FORGINGS. The Design Conference

HOW TO BUY FORGINGS. The Design Conference HOW TO BUY FORGINGS Close cooperation between buyers and producers of forgings has always been a vital part of achieving the best possible product at the lowest possible cost. With major advances in forging

More information

Simulation of Hot Extrusion of an Aluminum Alloy with Modeling of Microstructure

Simulation of Hot Extrusion of an Aluminum Alloy with Modeling of Microstructure Simulation of Hot Extrusion of an Aluminum Alloy with Modeling of Microstructure A. Ockewitz, a, D.-Z. Sun,b, F. Andrieux,c and S. Mueller 2,d Fraunhofer Institute for Mechanics of Materials IWM, Woehlerstrasse,

More information

The Potential for Electromagnetic Metal Forming for Plane (Car Body) Components

The Potential for Electromagnetic Metal Forming for Plane (Car Body) Components The Potential for Electromagnetic Metal Forming for Plane (Car Body) Components R. Neugebauer, P. Blau, H. Bräunlich, M. Pfeifer Abstract Classical quasi-static technologies of sheet metal forming are

More information

Chapter 15 Extrusion and Drawing of Metals

Chapter 15 Extrusion and Drawing of Metals Introduction Chapter 15 Extrusion and Drawing of Metals Alexandra Schönning, Ph.D. Mechanical Engineering University of North Florida Figures by Manufacturing Engineering and Technology Kalpakijan and

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Lecture Notes: Dr. Hussam A. Mohammed Al- Mussiab Technical College Ferdinand P. Beer, E. Russell Johnston, Jr., and John T. DeWolf Introduction Concept of Stress The main objective of the study of mechanics

More information

Structural assessment of the integrated steel fly-overs widening the historic multiple-arch concrete viaduct over the Pede valley

Structural assessment of the integrated steel fly-overs widening the historic multiple-arch concrete viaduct over the Pede valley Structural assessment of the integrated steel fly-overs widening the historic multiple-arch concrete viaduct over the Pede valley Ken SCHOTTE PhD Student, Researcher Ken.Schotte@UGent.be Bart DE PAUW Researcher

More information

HIGH MAST CAMERA POLE ASSEMBLY GENERAL

HIGH MAST CAMERA POLE ASSEMBLY GENERAL 10-3.24 HIGH MAST CAMERA POLE ASSEMBLY GENERAL The Contractor must furnish and install the following equipment for high mast camera pole assembly as described herein and as shown on the plans: 1. Camera

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering ISSN 2320-9135 1 International Journal of Advance Research, IJOAR.org Volume 3, Issue 9, September 2015, Online: ISSN 2320-9135 EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti

More information

An Extrusion Die with Twin Cavities for Semi-hollow Al-Profiles

An Extrusion Die with Twin Cavities for Semi-hollow Al-Profiles An Extrusion Die with Twin Cavities for Semi-hollow Al-Profiles Xuemei Huang 1,a, Rurong Deng 2,b * 1,2 Guangzhou Vocational College of Science and Technology, Guangzhou, 510550, China a Email: 41784402@qq.com,

More information

Effects and Analysis of Thermal Stresses on Large Induction Furnace Refractory Linings for Molten Metal Applications

Effects and Analysis of Thermal Stresses on Large Induction Furnace Refractory Linings for Molten Metal Applications Effects and Analysis of Thermal Stresses on Large Induction Furnace Refractory Linings for Molten Metal Applications P. Geers, Market Manager, Molten Metals Blasch Precision Ceramic, Albany, New York,

More information

THE ANALYSIS OF FORGING INCONEL 718 ALLOY. Aneta ŁUKASZEK-SOŁEK, Janusz KRAWCZYK, Piotr BAŁA, Marek WOJTASZEK

THE ANALYSIS OF FORGING INCONEL 718 ALLOY. Aneta ŁUKASZEK-SOŁEK, Janusz KRAWCZYK, Piotr BAŁA, Marek WOJTASZEK THE ANALYSIS OF FORGING INCONEL 718 ALLOY Aneta ŁUKASZEK-SOŁEK, Janusz KRAWCZYK, Piotr BAŁA, Marek WOJTASZEK AGH University of Science and Technology, 30-059 Krakow, 30 Mickiewicza Av., e-mail address:

More information

The entire world of forging

The entire world of forging The entire world of forging Forming the Future Put it into motion. Forging with Schuler. For over 150 years, the name Schuler has been synonymous with innovative technologies, quality and customer-oriented

More information

4D grouting pressure model of a bored tunnel in 3D Tunnel

4D grouting pressure model of a bored tunnel in 3D Tunnel 4D grouting pressure model of a bored tunnel in 3D Tunnel F.J.M. Hoefsloot & A. Verweij, Fugro Ingenieursbureau B.V., The Netherlands INTRODUCTION For some ten years TBM-techniques have been used to construct

More information

Tools, Dies and Moulds

Tools, Dies and Moulds Tools, Dies and Moulds Tools, Dies and Moulds require innovative solutions to meet ever increasing customer demands. Complex product geometries and advanced materials present engineering, economic and

More information

FINITE ELEMENT ANALYSIS OF PROGRESSIVE DIE

FINITE ELEMENT ANALYSIS OF PROGRESSIVE DIE FINITE ELEMENT ANALYSIS OF PROGRESSIVE DIE 1 Vrushabh Mahaveer Ghosarwade, 2 Chandradharappa 1 PG student, Department of mechanical engineering, UBDTCE, Davangere, KARNATAKA, INDIA. 2 Professor, Department

More information

Finite Element Simulation of the Process of Aluminum. Alloy Resistance Spot Welding

Finite Element Simulation of the Process of Aluminum. Alloy Resistance Spot Welding Finite Element Simulation of the Process of Aluminum Alloy Resistance Spot Welding Li Baoqing, Shan Ping, Lian Jinrui, Hu Shengsun, Cheng Fangjie Tianjin University, Tianjin, P.R.C Abstract In this paper,

More information

Analysis of Shear Wall Transfer Beam Structure LEI KA HOU

Analysis of Shear Wall Transfer Beam Structure LEI KA HOU Analysis of Shear Wall Transfer Beam Structure by LEI KA HOU Final Year Project report submitted in partial fulfillment of the requirement of the Degree of Bachelor of Science in Civil Engineering 2013-2014

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

PUNCH FORCE BEHAVIOR DURING MICRO V-BENDING PROCESS OF THE COPPER FOIL

PUNCH FORCE BEHAVIOR DURING MICRO V-BENDING PROCESS OF THE COPPER FOIL International Journal of Technology (017) 7: 1314-130 ISSN 086-9614 IJTech 017 PUNCH FORCE BEHAVIOR DURING MICRO V-BENDING PROCESS OF THE COPPER FOIL Gandjar Kiswanto 1*, Aida Mahmudah 1,, Dedi Priadi

More information

DISTORTION PREDICTION IN QUENCHING AISI 4140 C- RINGS WITH DIFFERENT QUENCHANTS 1

DISTORTION PREDICTION IN QUENCHING AISI 4140 C- RINGS WITH DIFFERENT QUENCHANTS 1 1 DISTORTION PREDICTION IN QUENCHING AISI 4140 C- RINGS WITH DIFFERENT QUENCHANTS 1 Alisson Duarte da Silva 2 Tércio Assunção Pedrosa 3 Maria Teresa Paulino Aguilar 4 Jean-Philippe Schillé 5 Zhanli Guo

More information

Structural Optimization and Additive Manufacturing Julen Ibabe 1,a, Antero Jokinen 2,b, Jari Larkiola 3,b, Gurutze Arruabarrena 4,a

Structural Optimization and Additive Manufacturing Julen Ibabe 1,a, Antero Jokinen 2,b, Jari Larkiola 3,b, Gurutze Arruabarrena 4,a Key Engineering Materials Vols. 611-612 (2014) pp 811-817 Online available since 2014/May/23 at www.scientific.net (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/kem.611-612.811

More information

A REVIEW ON COST OPTIMIZATION OF POWER PRESS BY ANALYSIS OF C-FRAME USING SOLID WORKS

A REVIEW ON COST OPTIMIZATION OF POWER PRESS BY ANALYSIS OF C-FRAME USING SOLID WORKS A REVIEW ON COST OPTIMIZATION OF POWER PRESS BY ANALYSIS OF C-FRAME USING SOLID WORKS 1 Mustafa Telwala, 2 Anand Parikh, 3 Vaja Hitesh, 4 HardikbhaiDabhi, 5 Rajdipsinh. G. Vaghela, 6 Hardik N. Chauhan

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

Designing a Forging Die for connecting rod

Designing a Forging Die for connecting rod RESEARCH ARTICLE OPEN ACCESS Designing a Forging Die for connecting rod Suraj Ashok Garud, Prof. M.M.Patil M.E.(CAD/CAM) ASST.PROF AT K.G.I.T # Department of mechanical engg srjgarud@gmail.com Abstract

More information

Effect of Spray Quenching Rate on Distortion and Residual Stresses during Induction Hardening of a Full-Float Truck Axle

Effect of Spray Quenching Rate on Distortion and Residual Stresses during Induction Hardening of a Full-Float Truck Axle Effect of Spray Quenching Rate on Distortion and Residual Stresses during Induction Hardening of a Full-Float Truck Axle Zhichao (Charlie) Li and B. Lynn Ferguson DANTE SOFTWARE, Cleveland, OH 44130, USA

More information

Bending of Extruded Profiles during Extrusion Process

Bending of Extruded Profiles during Extrusion Process MATERIALS FORUM VOLUME 28 - Published 2004 264 Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd Bending of Extruded Profiles during Extrusion Process K.B.

More information

Extrusion of complex shapes

Extrusion of complex shapes Extrusion of complex shapes 1 Hot extrusion Hot extrusion is the process of forcing a heated billet to flow through a shaped die opening It is used to produce long, strait metal products of constant cross

More information

Forging. Types of Forging Dies. Open-Die Forging. Outline. Forging. Types of forging Forging analysis Examples

Forging. Types of Forging Dies. Open-Die Forging. Outline. Forging. Types of forging Forging analysis Examples Forging Outline Forging Types of forging Forging analysis Examples Oldest of te metal forming operations, dating from about 5000 B C Components: engine cranksafts, connecting rods, gears, aircraft structural

More information

RELIABILITY OF SEISMIC LINKS IN ECCENTRICALLY BRACED STEEL FRAMES

RELIABILITY OF SEISMIC LINKS IN ECCENTRICALLY BRACED STEEL FRAMES RELIABILITY OF SEISMIC LINKS IN ECCENTRICALLY BRACED STEEL FRAMES ABSTRACT : M. Čaušević 1, M. Bulić, B. Androić 3 1 Professor, University of Rijeka, Faculty of Civil Engineering, Rijeka, Croatia Assistant,

More information

THERMAL EFFECT ON TOPOLOGY OPTIMIZED CRANK CASE COVER FOR ADDITIVE MANUFACTURING

THERMAL EFFECT ON TOPOLOGY OPTIMIZED CRANK CASE COVER FOR ADDITIVE MANUFACTURING THERMAL EFFECT ON TOPOLOGY OPTIMIZED CRANK CASE COVER FOR ADDITIVE MANUFACTURING A. Pandiyan 1, G. Arun Kumar 1, B. Baskar 2, A. Shajin 3, A. Sathis Kumar 1 and Mohammed Saleem 1 1 Department of Mechanical

More information

Surface Hardening. Faculty of Mechanical Engineering

Surface Hardening. Faculty of Mechanical Engineering 10 Surface Hardening Surface Hardening Many engineering must be very hard to resist surface indentation or wear and yet posses adequate toughness to resist impact damage Surface Hardening is a process

More information

Special Steel Wire Rods for Cold Forging with High Property

Special Steel Wire Rods for Cold Forging with High Property UDC 699. 14-426. 2 : 621. 735 Special Steel Wire Rods for Cold Forging with High Property Kiichiro TSUCHIDA* 1 Yasuhiro SHINBO* 1 Abstract The final uses of special steel bars and wire rods are mainly

More information

Keywords: Warm Forming, Warm Temperature, Plasticity, Forgeability, Pressure test, Simulation

Keywords: Warm Forming, Warm Temperature, Plasticity, Forgeability, Pressure test, Simulation 1 Slovak University of Technology in Bratislava, Faculty of Material Science and Technology in Trnava, Institute of Production Technologies, Slovak Republic Abstract. Warm forming is most commonly used

More information

ERC/NSM Activities. Research for Industry and Government

ERC/NSM Activities. Research for Industry and Government / Activities Research for Industry and Government Stamping Hydroforming Machining Forging / Activities in Tube Hydroforming 1. Materials Determination of material flow stress data for tubular materials

More information

Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses

Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses Available online at www.sciencedirect.com Physics Procedia 12 (2011) 60 66 LiM 2011 Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses Manuel Pfeiffer a *, Andy Engel a, Steffen Weißmantel

More information

Modelling of semi-liquid aluminium flow in extrusion

Modelling of semi-liquid aluminium flow in extrusion ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 7 Issue 2/2007 31 36 7/2 Modelling of semi-liquid aluminium

More information

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components

Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components Reduced Ductility due to Local Variation in Material Properties for 3D-printed Components T. Tryland SINTEF Raufoss Manufacturing, Raufoss, Norway 1 Background It is often useful to have a physical model

More information

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 5 Fatigue Dr. Hodge Jenkins Mercer University Introduction to Fatigue in Metals Cyclic loading produces stresses that are variable, repeated, alternating, or fluctuating

More information

Numerical analysis of wrinkling phenomenon in hydroforming deep drawing with hemispherical punch

Numerical analysis of wrinkling phenomenon in hydroforming deep drawing with hemispherical punch Numerical analysis of wrinkling phenomenon in hydroforming deep drawing with hemispherical punch H. Ziaeipoor, S. Jamshidifard, H. Moosavi, H.Khademizadeh Department of mechanical engineering, Room:55

More information

PREDICTION AND SIMULATION OF AXISYMMETRIC FORGING LOAD OF ALUMINUM

PREDICTION AND SIMULATION OF AXISYMMETRIC FORGING LOAD OF ALUMINUM Advances in Production Engineering & Management 3 (8), 71-8 ISSN 1854-65 Original scientific paper PREICTION AN SIMULATION OF AXISYMMETRIC FORGING LOA OF ALUMINUM Nefissi N.; Bouaziz Z. & Zghal A. Unit

More information

Jurnal Teknologi EXPERIMENTAL AND NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUBSOIL AND POST- ENSIONED SLAB-ON-GROUND. Full Paper

Jurnal Teknologi EXPERIMENTAL AND NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUBSOIL AND POST- ENSIONED SLAB-ON-GROUND. Full Paper Jurnal Teknologi EXPERIMENTAL AND NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUBSOIL AND POST- ENSIONED SLAB-ON-GROUND Petr Mynarcik, Jana Labudkova, Jiri Koktan * Faculty of Civil Engineering Department

More information

Bending number of paperboard (Reaffirmation of T 495 cm-03) (no changes from Draft 1)

Bending number of paperboard (Reaffirmation of T 495 cm-03) (no changes from Draft 1) NOTICE: This is a DRAFT of a TAPPI Standard in ballot. Although available for public viewing, it is still under TAPPI s copyright and may not be reproduced or distributed without permission of TAPPI. This

More information

Journal of Chemical and Pharmaceutical Research, 2013, 5(9): Research Article

Journal of Chemical and Pharmaceutical Research, 2013, 5(9): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2013, 5(9):549-554 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Finite element simulation on rolling-extrusion forming

More information

Modeling, Analysis and Comparison of Crankshaft for Weight Optimization Using FEA

Modeling, Analysis and Comparison of Crankshaft for Weight Optimization Using FEA ISSN 2395-1621 Modeling, Analysis and Comparison of Crankshaft for Weight Optimization Using FEA #1 EknathB.Pore, #2 D. N. Korade 1 eknathpore@gmail.com 2 dileepkorade@gmail.com 1 M.E.student,Department

More information

AISI A2 Cold work tool steel

AISI A2 Cold work tool steel T OOL STEEL FACTS AISI A2 Cold work tool steel Great Tooling Starts Here! General AISI A2 is an air- or oil hardening chromiummolybdenum-vanadium alloyed tool steel characterized by: Good machinability

More information

Effects of Electromagnetic and Hydraulic Forming Processes on the Microstructure of the Material *

Effects of Electromagnetic and Hydraulic Forming Processes on the Microstructure of the Material * Effects of Electromagnetic and Hydraulic Forming Processes on the Microstructure of the Material * Fr. W. Bach 1, L. Walden 1, M. Kleiner 2, D. Risch 2 1 Institute of Materials Science, University of Hannover,

More information

Effect of Sheet Thickness and Type of Alloys on the Springback Phenomenon for Cylindrical Die

Effect of Sheet Thickness and Type of Alloys on the Springback Phenomenon for Cylindrical Die AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 01, Science Huβ, http://www.scihub.org/ajsir ISSN: 153-69X, doi:10.551/ajsir.01.3.6.80.86 Effect of Sheet Thickness and Type of Alloys on the Springback

More information

Electromagnetic Compression as Preforming Operation for Tubular Hydroforming Parts *

Electromagnetic Compression as Preforming Operation for Tubular Hydroforming Parts * Electromagnetic Compression as Preforming Operation for Tubular Hydroforming Parts * V. Psyk, C. Beerwald, W. Homberg, M. Kleiner Chair of Forming Technology, University of Dortmund, Germany Abstract With

More information

AN INVESTIGATION OF INJECTION MOLDING PARAMETERS ON A SINGLE-STAGE INJECTION STRETCH BLOW MOLDING

AN INVESTIGATION OF INJECTION MOLDING PARAMETERS ON A SINGLE-STAGE INJECTION STRETCH BLOW MOLDING AN INVESTIGATION OF INJECTION MOLDING PARAMETERS ON A SINGLE-STAGE INJECTION STRETCH BLOW MOLDING Meng-Chih Chen 1*, Chih-Lin Hsu 2, Chao-Tsai Huang 3, Wen-Hsien Yang 4, Chia-Hsun Chen 5, and Kun-Chang

More information

LINEAR HAMMER IN FORGING

LINEAR HAMMER IN FORGING LINEAR HAMMER IN FORGING THE MOST PRECISE ENERGY APPLICATION. LINEAR HAMMER IN FORGING. Linear hammer used for forging. LINEAR HAMMER IN FORGING Schuler forging. System solutions from Schuler offer customers

More information

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with Comsol.

Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with Comsol. Excerpt from the Proceedings of the COMSOL Conference 21 Paris Stress Distribution in Masonry Walls, Loaded in Plane, Simulated with Comsol. A.T. Vermeltfoort 1 and A.W.M. Van Schijndel 2 1 Eindhoven University

More information

4D grouting pressure model PLAXIS

4D grouting pressure model PLAXIS 4D grouting pressure model PLAXIS F.J.M. Hoefsloot & A. Verweij Fugro Ingenieursbureau B.V., Leidschendam, The Netherlands ABSTRACT: Bored tunnels are about to be constructed in the urban areas of Amsterdam

More information

LD21 NEW MATERIALS FOR LARGE-CALIBER ROTATING BANDS FOR HIGH CHARGES. M. Schupfer1, K. Steinhoff2, R. Röthlisberger1 1.

LD21 NEW MATERIALS FOR LARGE-CALIBER ROTATING BANDS FOR HIGH CHARGES. M. Schupfer1, K. Steinhoff2, R. Röthlisberger1 1. LD21 19th International Symposium of Ballistics, 7 11 May 2001, Interlaken, Switzerland NEW MATERIALS FOR LARGE-CALIBER ROTATING BANDS FOR HIGH CHARGES M. Schupfer1, K. Steinhoff2, R. Röthlisberger1 1

More information

9. VACUUM TANK 9. VACUUM TANK

9. VACUUM TANK 9. VACUUM TANK 9. VACUUM TANK This system constitutes the external part of the solenoid cryostat. The vacuum tank, made of stainless steel, is cantilevered from the central ring of the barrel yoke. It houses and supports

More information

Concept and manufacture of a hollow crankshaft forming tool

Concept and manufacture of a hollow crankshaft forming tool Concept and manufacture of a hollow crankshaft forming tool Sara Tavares Luzia Melo Gamboa Department of Mechanical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 149-1, Lisbon, Portugal, 214.

More information

1. Definitions and classification of Metal forming processes

1. Definitions and classification of Metal forming processes 1. Definitions and classification of Metal forming processes 1.1 Introduction: Metal forming is a very important manufacturing operation. It enjoys industrial importance among various production operations

More information

Breaking Strength and Elongation of Pressure Sensitive Tapes

Breaking Strength and Elongation of Pressure Sensitive Tapes Harmonized International Standard Breaking Strength and Elongation of Pressure Sensitive Tapes Call Letters PSTC-131 Date of Issuance 09/55 Revised 04/66 Revised 11/70 Revised 08/85 Revised 08/89 Revised

More information

Simulation Technique for Pre-forming of AHSS Edge Stretching

Simulation Technique for Pre-forming of AHSS Edge Stretching 12 th International LS-DYNA Users Conference Metal Forming(3) Simulation Technique for Pre-forming of AHSS Edge Stretching Xiaoming Chen*, Jixin Sun** and Xinhai Zhu** * United States Steel Automotive

More information

Thermo-mechanical mechanical coupled simulation of hot forming processes considering die cooling

Thermo-mechanical mechanical coupled simulation of hot forming processes considering die cooling Thermo-mechanical mechanical coupled simulation of hot forming processes considering die cooling M. Medricky 1, R. Struck 1, C. Sunderkötter 1, D. Lorenz 2, P. Olle 3, B.-A. Behrens 3 1 Volkswagen Group

More information

Task 1 For Task 1, the outlet was set as a zero-gauge pressure outlet, which is the same outlet condition as the five smaller pipes.

Task 1 For Task 1, the outlet was set as a zero-gauge pressure outlet, which is the same outlet condition as the five smaller pipes. Jacob Schichtel Project 2 Page 1 of 9 Setup The geometry was created in ANSYS Design modeler as specified in the report instructions. A plane of symmetry was used to reduce the computation time and to

More information

Vibration Control SCHWINGMETALL. The Original Rubber-To-Metal Bonding from ContiTech

Vibration Control SCHWINGMETALL. The Original Rubber-To-Metal Bonding from ContiTech Vibration Control SCHWINGMETALL The Original Rubber-To-Metal Bonding from ContiTech ContiTech Vibration Control Innovator and Development Partner ContiTech is an innovator and development partner for vibration-damping

More information

EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD

EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD EFFECT OF EXTRUSION PARAMETERS AND DIE GEOMETRY ON THE PRODUCED BILLET QUALITY USING FINITE ELEMENT METHOD A.Ε. Lontos 1, F.A. Soukatzidis 2, D.A. Demosthenous 1, A.K. Baldoukas 2 1. Mechanical Engineering

More information

ScienceDirect. Optimization of Power Transmission on Mechanical Forging Presses

ScienceDirect. Optimization of Power Transmission on Mechanical Forging Presses Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 69 ( 2014 ) 890 896 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013 Optimization of Power

More information

AISI D2 Cold work tool steel

AISI D2 Cold work tool steel T OOL STEEL FACTS AISI D2 Cold work tool steel Great Tooling Starts Here! This information is based on our present state of knowledge and is intended to provide general notes on our products and their

More information

ScienceDirect. Deep drawing of cylindrical cup using incremental electromagnetic assisted stamping with radial magnetic pressure

ScienceDirect. Deep drawing of cylindrical cup using incremental electromagnetic assisted stamping with radial magnetic pressure Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 813 818 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Plastic deformation analysis of wear on insert component and die service life in hot forging process

Plastic deformation analysis of wear on insert component and die service life in hot forging process Indian Journal of Engineering & Materials Sciences Vol. 22, December 2015, pp. 686-692 Plastic deformation analysis of wear on insert component and die service life in hot forging process R Rajiev a *

More information

Design and Analysis of Crankshaft Used in Aerospace Applications and Comparision Using Different Materials.

Design and Analysis of Crankshaft Used in Aerospace Applications and Comparision Using Different Materials. Design and Analysis of Crankshaft Used in Aerospace Applications and Comparision Using Different Materials. Satya Narayana Gupta, N.Mahesh,B.Dinesh Kumar Aerospace Engineering, PG. Scholar (Aero), PG.

More information

Structural behaviour and failure mechanisms of concrete monoblock railway sleepers

Structural behaviour and failure mechanisms of concrete monoblock railway sleepers Structural behaviour and failure mechanisms of concrete monoblock railway sleepers Olli Kerokoski, Antti Nurmikolu and Tommi Rantala Department of Civil Engineering, Tampere University of Technology, P.O.

More information