TECHNOLOGIES FOR APPLYING FLUIDS IN SEMICONDUCTOR PACKAGING

Size: px
Start display at page:

Download "TECHNOLOGIES FOR APPLYING FLUIDS IN SEMICONDUCTOR PACKAGING"

Transcription

1 TECHNOLOGIES FOR APPLYING FLUIDS IN SEMICONDUCTOR PACKAGING Alec J. Babiarz Asymtek Carlsbad, CA, USA ABSTRACT Jetting fluids in semiconductor packaging and assembly has become an enabling process. Jetting underfill for flip chip semiconductor packaging allows tighter packaging of multiple chips on a substrate because the fillet wet out area is smaller. Since the rate of applying underfill fluid for the same fillet size is faster with jetting, the throughput is higher than needle dispensing. In some cases needle dispensing and even stencil printing are not able to provide an adequate or cost effective means to apply adhesives, fluxes or other fluid electronics materials. Jetting fluxes may also allow thinner, more consistent and accurate film builds than stencil printing. Jetting has significantly reduced material costs in the underfill process for flip chips and CSPs. Keywords Capillary, Jetting, LED, Splashing, Underfill, CSP INTRODUCTION The traditional means of applying fluids in semiconductor packaging and electronic circuit board assembly has been with needle dispensers. Fluids are typically packaged in a container such as a syringe or cartridge and attached directly or through a tube to a valve or pump. A needle is attached at the outlet end of the valve or pump to direct the flow of fluid to the During application, the needle must be held in close proximity to the surface of the substrate to allow the fluid to wet the surface. When needle dispensing is coupled to an XYZ robot, the speed of moving the needle across the surface and the gap between the needle and surface must be maintained accurately to obtain high quality dispensing. Jetting fluids and adhesives instead of needle dispensing avoids quality issues associated with needle dispensing. The primary enabling feature of jetting is that the distance from the surface to the substrate to the jet nozzle does not need to be maintained as accurately as a needle. Secondly, the jetting heads can deliver higher volumes of fluid in finer streams than what can be extruded from a needle. Therefore the inherent throughput of jetting is faster than needle dispensing. JET STREAMS AND BREAKOFF Another unique feature of jetting adhesives is the fact that a viscous fluid will not immediately from a sphere once ejected from a nozzle such as observed in ink jet printing. The typical jet nozzle s inside diameter may be between 250 microns to 50 microns. Since a viscous fluid maintains the stream shape the diameter to the ejected fluid may closely follow the nozzle diameter. This fact allows jetting underfills with small fillets and into tight slots. Most fluids used in semiconductor packaging or electronics assembly are greater that 100 cps. At these viscosity ranges the surface tension forces are much smaller than the viscous forces. Therefore, a jet of fluid ejected from a nozzle remains in cylindrical from for a longer period of time before forming a sphere. If the nozzle is close to a surface, the stream never develops into a sphere prior to hitting the The physics of droplet formation on inviscous fluids is well known. The breakup of a stream into droplets is called Rayleigh jet instability. A cylinder of inviscous fluid will want to form a sphere because a sphere contains the highest volume of fluid with the lowest surface area, therefore the lowest energy state for a surface and volume. See figure 1. Figure 1. Capillary Instability: The force γ/r forces fluid from the throat, leading to collapse. γ = surface tension and r = radius of sphere. Viscous fluids are more of a mathematical challenge and beyond the scope of this paper, however given enough time any cylindrical fluid will want to form a sphere. In figure 1 u is the relative axial fluid velocity. This axial velocity depends upon the viscous and inertial forces on the fluid. The driving force is the capillary force derived from the fluid surface tension and the radius change due to a disturbance. A disturbance is necessary to initiate the

2 droplet formation. When r becomes larger than R, the capillary force developed by γ/r is significant to cause an instability and droplet formation. Rayleigh s analysis determined that instability in non viscous fluids will occur at a wavelength of 4.51 X 2R. This means that a 50 micron diameter cylinder of fluid could reach a maximum length of 225 microns before breaking up into spherical segments. Rayleigh also determined that viscous fluids could extend much longer before breaking up into droplets 1. Later work on Rayleigh instability for viscous fluids has shown that the maximum rate of instability may be correlated to the Ohnesorge number 1. Oh # = (ργd) 0.5 /μ = (Reynolds #) 0.5 Where: γ/μ = Capillary velocity μ = fluid viscosity γ = fluid surface tension ρ = fluid density D = Diameter of cylinder Figures 2 through 4 show high speed camera photographs of a jet stream of a viscous fluid exiting the jet orifice. In most applications of jetting adhesives the jet nozzle is 0.5 to 5 mm away from the And, the velocity of the fluid is between 1 to 10 meters per second. At those distances and fluid velocities, a viscous fluid does not have time to form a droplet before impacting the However, since the stream velocity is typically much faster than the XY translation speed, the stream forms a dot on the of 75 microns from the surface and at least at high as the largest filler in the fluid being dispensed. In semiconductor packaging applications, there may be 10 substrates in a boat, each with a flip chip that requires underfill. The boat may be 300 mm long. Therefore a height sense would be required at each position to obtain accurate dispensing. Since a jet can dispense from 500 microns to 2000 microns from the substrate, only one height sense is required. Since it may take 500 milliseconds to height sense, this can be a significant amount of wasted cycle time. Also, on long dispense lines, a substrate may be warped to such an extent that the needle gap varies so much that fluid is not dispensed properly along the length of the line. Needle dispensing requires that the fluid be concurrently in contact with the needle and the This leads to three quality and accuracy issues. At the beginning of a line, a needle must wait until the fluid begins to flow and then the XY mechanism may begin its move. At the end of the line, the flow must be slowed and cut off in unison with the XY mechanisms deceleration to prevent a bulbous end point. Last, as the needle lifts up to move to the next dispense point, some fluid remains on the needle. The amount of excess material left on the needle is dependent upon the dispense gap at the end of the line and the amount of plowing that occurred. Plowing occurs if the needle XY speed is slower than the fluid flow out of the needle orifice. Jetting does not have any of these problems because the fluid is jetted from the nozzle and impinges upon the Figure 2: Figure 3: Figure 4: In the case of low viscosity fluids, the stream would collapse into a sphere rapidly. See Figure 5. JET VERSUS CONTACT NEEDLE DISPENSING Some of the advantages of jetting over needle dispensing are as follows. 1. Non contact dispensing. a. High tolerance for dispense gap variation. b. No concurrent needle & surface wetting. 2. High flow rate at small steam diameters. 3. High clearance from dies or other components Non contact dispensing eliminates many of the difficult to control variables associated with needle dispensing. When dispensing dots of fluid, the fluid exiting the needle must make contact with the substrate immediately in the vicinity of the needle orifice. Typically this dispense gap is ½ the needle inside diameter. Therefore a 150 micron inside diameter needle would have to be positioned to a maximum The flow rate from a jet nozzle is less restricted than the flow rate through a dispensing tip. The flow through a tube is given as follows: 4 πdn Q= ( P2 P3) 128μn ln Where: d n = inside diameter of needle or nozzle μ n = fluid viscosity l n = length of needle or nozzle P = pressure drop Q = Volumetric flow rate

3 In this case for a given inside diameter d the length of the needle is 5 to 10 times longer than a nozzle orifice. Consequently at a constant pressure source the jet nozzle will flow 5 to 10 times more fluid. The reason this is an advantage is that the jet can put down a fine stream of material faster than a needle that extrudes the same diameter of material. Also, if the needle s inside diameter is the same diameter of the jet nozzle the equivalent needle s stream size is the ID of the needle, but the needle must be held close to the surface which means the OD of the needle must fit between the die or a safe distance away from the die. Since the fluid wets the outside of the need, the wetted area is actually larger then the outside diameter of the needle. See Figure 7. Figure 9 Needle path is not always square at corners & can damage the die New technologies bring new challenges. When jetting materials it is important to provide enough energy to quickly extrude an adhesive at approximately 5 meters a second and provide break off, but not provide so much energy that the drop or stream impacts the surface with enough energy to cause a splash. SPLASHING Several papers have been written around the physics of drops impinging upon a dry surface as well as a thin film of liquid 3, 4, 5. The propensity for a drop to splash upon impact is estimated by an experimental approximation called the Sommerfeld Parameter. It has been shown that the probability of splashing is high if the dimensionless Sommerfeld number is greater than 50 4, 5. Therefore the jet can put down finer fillets and lines much faster than a needle. In fact jets are used to put material between die as close as 350 microns without wetting the top side of the die. See Figure 8. Figure 8 30g needle 25μ space Jet Stream 75μ space Further, it would be impractical to do the same applications with a needle. A 30 gage needle has a 105 micron inside diameter and an outside diameter of 300 microns. Such a needle would have 25 microns of space on either side of the needle. A 100 micron jet stream would have 3 times the space margin at 75 microns. Needles can touch and destroy the die in normal underfill applications. Since the jet is moving above the die by at least 0.5mm there is no chance of a collision. See figure 9. Sommerfield Parameter = We 0.5 Re 0.25 Weber # = We = ρu 2 D/γ Reynolds # = Re = ρud/μ μ = fluid viscosity ρ = fluid density γ = fluid surface tension U = drop velocity D = drop diameter Splashing is not well understood but is initiated by instabilities and perturbations that occur at the point of impact. Splashing depends on other conditions such as surface roughness, surface and fluid temperature, surface conditions, and the dynamic surface wetting angles 6, which may be different while the fluid is advancing versus retracting. Upon retraction the surface is already wet, but there is a capillary line force restraining retraction, while upon expansion the capillary line force may be helping or hindering depending upon the wetting angle. Analyzing typical fluids used in underfilling and calculating the Sommerfeld Parameter over a range of velocities from 1 m/s to 10 m/s and viscosities from 10 cps to 10,000 cps as shown in Figure 10. This shows that jetting typical underfill materials lies in a safe zone where it is probable that splashing will not occur.

4 Figure 11 Flux edge Containment Line FLUX JETTING The contact pads must be fluxed prior to flip chip attach. There are several methods in the industry ranging from dip fluxing, stencil printing, needle dispensing, spraying and jetting. Generally the least amount of flux applied is the best amount. In most assembly processes it is desired to apply a sticky flux. The sticky flux holds the flip chip in place while the substrate is moved to the reflow oven. Upon reflow, the melted solder bumps are self centering. Noncontact jet fluxing is used to apply thin layers of flux. Jetting the thin fluxes will apply a thinner and more uniform deposition than any other application process and is the preferred method. In the process of jet fluxing a swirl and curtain of air surrounds the jet stream. The air helps contain the flux aerosol and helps force the flux down to the surface for good wetting. If there is too much energy applied during the jet fluxing the flux may move along the surface. To prevent and capture the flux along a straight line for good edge definition, two parallel lines of flux may be jetted without swirl air within the application area. The bands of flux lines contain the spray as it impinges the surface thereby providing excellent edge definition. See Figure 10. Underfill Applications As is well known in the industry, flip chips must be underfilled with an adhesive. The purpose of the underfill adhesive is to prevent strain on the solder bumps due to thermal mismatch between the silicon die and the substrate material. Flip chip devices typically have ball diameters of 125 microns or less. The strain on a ball is directly proportional to the ball height. The strain is determined by the difference in thermal coefficients of expansion between the die and substrate material. Each time a device is thermally cycled the bump undergoes strain. The number of thermal cycles to bump failure is inversely proportional to the square of the strain. Consequently, underfill is used to prevent bump strain. The underfill adhesive completely encapsulates the solder ball, which prevents bump from moving (strain) and the epoxy shrinkage keeps the ball in hydrostatic compression which also helps prevent crack initiation. This underfill process is called First level underfill. The customer use model for handheld and mobile products requires that the product survive several drops. The typical user of a cell phone will drop the phone at some time in the product s life. Consumers expect a dropped phone to work. Most mobile electronic products contain CSPs or BGA packages. These packages have bump heights that are typically 5 to 10 times larger than flip chip bumps, therefore a CSP can last 25 to 100 times more thermal cycles. However, the larger mass and size of CSPs makes the package vulnerable to excessive bending strain that occurs when a product is dropped. Consequently, underfill adhesive is applied to CSP packages to provide mechanical stability. This process is called secondary underfill. First and secondary underfills are applied during assembly by an automatic dispensing robot. As mentioned earlier, jetting allows less material in the fillet due to the narrow stream of fluid. The material savings can be significant enough to pay for automated jetting equipment, even if the underfill is being applied by low cost hand held needle dispensing processes.

5 Table 1 shows data from 4 types of CSPs in used in a mobile device. CSP Size (mm) I/O Ball Size 8x11 88 I/O 0.375m ball 10x I/O 13x I/O 15x I/o Area under CSP mm 2 Needle Disp mg. Jet Disp mg Savings mg % savings over needle % % % % 3. Christophe Josserand and Stephane Saleski, Dorplet splashing on a thin liquid film, Physics of Fluids, Volume 15, Number 6, June M. Bussmann, S. Chandra, and J. Mostaghimi, Modeling the splash of a droplet impacting a solid surface, PHYSICS OF FLUIDS, Vol 12, Number 12, December C. Mundo, M. Sommerfeld, and C. Tropea, Droplet wall collisions: Experimental studies of the deformation and breakup process, Int. J. Multiphase Flow 21, 151 (1995) Figure 12 shows a comparison to actual material savings achieved at a manufacturing site after switching to jet dispensing versus needle dispensing and the calculated material savings based on an analytical volume model. Figure 12 CONCLUSION The advantages of jetting adheseives over needle dispensing has enabled more economical and practical packaging solutions that utilize adhesives. In equivalent needle geometries, jetting allows higher throughput, greater margin on dispense gaps and tighter spacing guidelines, and greater material savings. REFERENCES 1. T. Funada, D.D. Joseph/J. Non-Newtonian Fluid Mech. 111 (2003) A. Babiarz, Jetting Adhesives and other materials for semiconductor and electronic component packaging. Pan Pacific Conference, SMTA, Feb 2007.

Selection and Application of Board Level Underfill Materials

Selection and Application of Board Level Underfill Materials Selection and Application of Board Level Underfill Materials Developed by the Underfill Materials Design, Selection and Process Task Group (5-24f) of the Assembly and Joining Committee (5-20) of IPC Supersedes:

More information

Plasma for Underfill Process in Flip Chip Packaging

Plasma for Underfill Process in Flip Chip Packaging Plasma for Underfill Process in Flip Chip Packaging Jack Zhao and James D. Getty Nordson MARCH 2470-A Bates Avenue Concord, California 94520-1294 USA Published by Nordson MARCH www.nordsonmarch.com 2015

More information

EPOXY FLUX MATERIAL AND PROCESS FOR ENHANCING ELECTRICAL INTERCONNECTIONS

EPOXY FLUX MATERIAL AND PROCESS FOR ENHANCING ELECTRICAL INTERCONNECTIONS As originally published in the SMTA Proceedings. EPOXY FLUX MATERIAL AND PROCESS FOR ENHANCING ELECTRICAL INTERCONNECTIONS Neil Poole, Ph.D., Elvira Vasquez, and Brian J. Toleno, Ph.D. Henkel Electronic

More information

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Vern Solberg STC-Madison Madison, Wisconsin USA Abstract The motivation for developing higher density IC packaging continues to be

More information

Recent Advances in Die Attach Film

Recent Advances in Die Attach Film Recent Advances in Die Attach Film Frederick Lo, Maurice Leblon, Richard Amigh, and Kevin Chung. AI Technology, Inc. 70 Washington Road, Princeton Junction, NJ 08550 www.aitechnology.com Abstract: The

More information

Anti-collapse Reflow Encapsulant Technology for FCOF. IMAPS Flip-Chip 2003, Austin TX

Anti-collapse Reflow Encapsulant Technology for FCOF. IMAPS Flip-Chip 2003, Austin TX Anti-collapse Reflow Encapsulant Technology for FCOF IMAPS Flip-Chip 2003, Austin TX Overview Background Problem Statement Development Process Timeline Anti-collapse approaches Test Methodology Results

More information

Manufacturing and Reliability Modelling

Manufacturing and Reliability Modelling Manufacturing and Reliability Modelling Silicon Chip C Bailey University of Greenwich London, England Printed Circuit Board Airflow Temperature Stress at end of Reflow Stress Product Performance in-service

More information

3D-WLCSP Package Technology: Processing and Reliability Characterization

3D-WLCSP Package Technology: Processing and Reliability Characterization 3D-WLCSP Package Technology: Processing and Reliability Characterization, Paul N. Houston, Brian Lewis, Fei Xie, Ph.D., Zhaozhi Li, Ph.D.* ENGENT Inc. * Auburn University ENGENT, Inc. 2012 1 Outline Packaging

More information

Splat formation in plasma-spray coating process*

Splat formation in plasma-spray coating process* Pure Appl. Chem., Vol. 74, No. 3, pp. 441 445, 2002. 2002 IUPAC Splat formation in plasma-spray coating process* Javad Mostaghimi and Sanjeev Chandra Centre for Advanced Coating Technologies, University

More information

Solidification of Metals in Molds

Solidification of Metals in Molds Metal Casting Solidification of Metals in Molds Pure Metals - Solidify at a constant temperature Planar solidification front Columnar crystals Eutectics - Solidify at a constant temperature Planar solidification

More information

Ultralow Residue Semiconductor Grade Fluxes for Copper Pillar Flip-Chip

Ultralow Residue Semiconductor Grade Fluxes for Copper Pillar Flip-Chip Ultralow Residue Semiconductor Grade Fluxes for Copper Pillar Flip-Chip SzePei Lim (Presenter), Jason Chou, Maria Durham, and Dr. Andy Mackie Indium Corporation 1 Outline of Presentation Roadmaps and challenges

More information

Droplet formation mechanisms in metallurgical processes

Droplet formation mechanisms in metallurgical processes EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling Droplet formation mechanisms in metallurgical processes Jane J. E. Lee Table of Contents 1. Introduction...2 Background...2

More information

MRSI-175Ag Epoxy Dispenser

MRSI-175Ag Epoxy Dispenser MRSI-175Ag Epoxy Dispenser Applications: Microwave & RF Modules MEMS Semiconductor Packaging Multi-Chip Modules Hybrid Circuits Optical Modules Overview The MRSI-175Ag Conductive Epoxy Dispenser handles

More information

Material Selection and Parameter Optimization for Reliable TMV Pop Assembly

Material Selection and Parameter Optimization for Reliable TMV Pop Assembly Selection and Parameter Optimization for Reliable TMV Pop Assembly Brian Roggeman, David Vicari Universal Instruments Corp. Binghamton, NY, USA Roggeman@uic.com Martin Anselm, Ph.D. - S09_02.doc Lee Smith,

More information

Characteristics of Solder Paste

Characteristics of Solder Paste Characteristics of Solder Paste Flow Solder paste is a viscous non-newtonian fluid, whose resistance to flow is not constant, and which exhibits shear thinning. This is an essential requirement for printing,

More information

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering WF637 A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering Low viscosity and high tacking power stabilize ball holding force and ensures excellent solder wettability Easy

More information

Advancements In Packaging Technology Driven By Global Market Return. M. G. Todd

Advancements In Packaging Technology Driven By Global Market Return. M. G. Todd Advancements In Packaging Technology Driven By Global Market Return M. G. Todd Electronic Materials, Henkel Corporation, Irvine, California 92618, USA Recently, the focus of attention in the IC packaging

More information

Type III is most commonly used Paste. Finer pitch devices generally require finer metal particle sizes

Type III is most commonly used Paste. Finer pitch devices generally require finer metal particle sizes Benefits of SPI Use Powder Particle Size Effects of Changes in Particle Size Distribution Type III is most commonly used Paste. Finer pitch devices generally require finer metal particle sizes Disadvantages

More information

A new Technique for Molten Metal Atomization

A new Technique for Molten Metal Atomization A new Technique for Molten Metal Atomization 1. Introduction V. Uhlenwinkel 1, L. Achelis 1, S. Sheikhaliev 2 and S. Lagutkine. 2 1. Institut fuer Werkstofftechnik, Badgassteiner Str. 2, 28359 Bremen,

More information

A NOVEL HIGH THERMAL CONDUCTIVE UNDERFILL FOR FLIP CHIP APPLICATION

A NOVEL HIGH THERMAL CONDUCTIVE UNDERFILL FOR FLIP CHIP APPLICATION A NOVEL HIGH THERMAL CONDUCTIVE UNDERFILL FOR FLIP CHIP APPLICATION YINCAE Advanced Materials, LLC WHITE PAPER November 2013 2014 YINCAE Advanced Materials, LLC - All Rights Reserved. YINCAE and the YINCAE

More information

3D Package Technologies Review with Gap Analysis for Mobile Application Requirements. Apr 22, 2014 STATS ChipPAC Japan

3D Package Technologies Review with Gap Analysis for Mobile Application Requirements. Apr 22, 2014 STATS ChipPAC Japan 3D Package Technologies Review with Gap Analysis for Mobile Application Requirements Apr 22, 2014 STATS ChipPAC Japan T.Nishio Contents Package trends and roadmap update Advanced technology update Fine

More information

Polymer Materials The Empowerment of Flip Chips

Polymer Materials The Empowerment of Flip Chips 1 Polymer Materials The Empowerment of Flip Chips By Tom Cinque and Ken Gilleo, PhD. (Ken@ET-Trends.com) Electronic Polymers Group - Advanced Products Division Alpha Metals Inc. [1997] Abstract FASTER,

More information

PCB ASSEMBLY PROCESS DEVELOPMENT AND CHARACTERIZATION OF 0.3MM µcsp PACKAGES

PCB ASSEMBLY PROCESS DEVELOPMENT AND CHARACTERIZATION OF 0.3MM µcsp PACKAGES PCB ASSEMBLY PROCESS DEVELOPMENT AND CHARACTERIZATION OF 0.3MM µcsp PACKAGES Wu WeiPing (Jonathan), Restyfonte Familara, L.M. Lim, Mohd Yusuf 1 Girish Wable 2 Jabil 1 Penang, Malaysia 2 St. Petersburg,

More information

ESFUELCELL MAXIMIZING THE USE OF PLATINUM CATALYST BY ULTRASONIC SPRAY APPLICATION

ESFUELCELL MAXIMIZING THE USE OF PLATINUM CATALYST BY ULTRASONIC SPRAY APPLICATION PROCEEDINGS OF ASME 2011 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY & 9TH FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY CONFERENCE ESFUELCELL2011 AUGUST 7-10, 2011, WASHINGTON, DC, USA ESFUELCELL2011-54369

More information

LED Die Attach Selection Considerations

LED Die Attach Selection Considerations LED Die Attach Selection Considerations Gyan Dutt & Ravi Bhatkal Alpha, An Alent plc Company Abstract Die attach material plays a key role in performance and reliability of mid, high and super-high power

More information

Failure Modes in Wire bonded and Flip Chip Packages

Failure Modes in Wire bonded and Flip Chip Packages Failure Modes in Wire bonded and Flip Chip Packages Mumtaz Y. Bora Peregrine Semiconductor San Diego, Ca. 92121 mbora@psemi.com Abstract The growth of portable and wireless products is driving the miniaturization

More information

Chips Face-up Panelization Approach For Fan-out Packaging

Chips Face-up Panelization Approach For Fan-out Packaging Chips Face-up Panelization Approach For Fan-out Packaging Oct. 15, 2015 B. Rogers, D. Sanchez, C. Bishop, C. Sandstrom, C. Scanlan, TOlson T. REV A Background on FOWLP Fan-Out Wafer Level Packaging o Chips

More information

RHEOLOGY & SLOT DIE COATING TECHNOLOGY. Mark Miller. Coating Tech Slot Dies, LLC Alpine Road, Suite 4. Eau Claire, WI 54703

RHEOLOGY & SLOT DIE COATING TECHNOLOGY. Mark Miller. Coating Tech Slot Dies, LLC Alpine Road, Suite 4. Eau Claire, WI 54703 RHEOLOGY & SLOT DIE COATING TECHNOLOGY Mark Miller Coating Tech Slot Dies, LLC 2322 Alpine Road, Suite 4 Eau Claire, WI 54703 (715) 544-7568 OFFICE (715) 456-9545 MOBILE mark.miller@slotdies.com www.slotdies.com

More information

Fairchild Semiconductor Application Note January 2001 Revised September Using BGA Packages

Fairchild Semiconductor Application Note January 2001 Revised September Using BGA Packages Introduction AN-5026 Demanding space and weight requirements of personal computing and portable electronic equipment has led to many innovations in IC packaging. Combining the right interface and logic

More information

World Academy of Science, Engineering and Technology International Journal of Electronics and Communication Engineering Vol:3, No:11, 2009

World Academy of Science, Engineering and Technology International Journal of Electronics and Communication Engineering Vol:3, No:11, 2009 International Science Index, Electronics and Communication Engineering waset.org/publication/5181 Effect of Curing Profile to Eliminate the Voids / Black Dots Formation in Underfill Epoxy for Hi-CTE Flip

More information

PREPARED BY: DR. RAHIMAH OTHMAN FOOD ENGINEERING (ERT 426) SEMESTER 1 ACADEMIC SESSION 2016/17

PREPARED BY: DR. RAHIMAH OTHMAN FOOD ENGINEERING (ERT 426) SEMESTER 1 ACADEMIC SESSION 2016/17 1 PREPARED BY: DR. RAHIMAH OTHMAN FOOD ENGINEERING (ERT 426) SEMESTER 1 ACADEMIC SESSION 2016/17 SUBTOPICS 2 1. Introduction 2. Basic Principles of Extrusion 3. Extrusion System 3.1 Cold Extrusion 3.2

More information

Extrusion. Key Issues to Address. Lecture 2. Process. Process Variants. Process Analysis. Problem Solving

Extrusion. Key Issues to Address. Lecture 2. Process. Process Variants. Process Analysis. Problem Solving Extrusion Lecture 2 Chapter 4 Key Issues to Address Process Process Variants Process Analysis Problem Solving S.V. Atre 1 Extrusion Material is forced to flow through a die orifice to provide long continuous

More information

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation

Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes. Jason Chou and Sze Pei Lim Indium Corporation Advanced Analytical Techniques for Semiconductor Assembly Materials and Processes Jason Chou and Sze Pei Lim Indium Corporation Agenda Company introduction Semiconductor assembly roadmap challenges Fine

More information

ME 239: Rocket Propulsion. Real Nozzles. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Real Nozzles. J. M. Meyers, PhD ME 239: Rocket Propulsion Real Nozzles J. M. Meyers, PhD 1 Most Typical Real Nozzle Effects 1) Divergence of the flow 2) Low nozzle contraction ratios ( / ) 3) Boundary Layer Flow 4) Multiphase Flow 5)

More information

White Paper Quality and Reliability Challenges for Package on Package. By Craig Hillman and Randy Kong

White Paper Quality and Reliability Challenges for Package on Package. By Craig Hillman and Randy Kong White Paper Quality and Reliability Challenges for Package on Package By Craig Hillman and Randy Kong Background Semiconductor technology advances have been fulfilling Moore s law for many decades. However,

More information

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY

IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY IMPLEMENTATION OF A FULLY MOLDED FAN-OUT PACKAGING TECHNOLOGY B. Rogers, C. Scanlan, and T. Olson Deca Technologies, Inc. Tempe, AZ USA boyd.rogers@decatechnologies.com ABSTRACT Fan-Out Wafer-Level Packaging

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume 3, Issue 2, May-August (2012), pp. 470-479 IAEME: www.iaeme.com/ijmet.html Journal

More information

Chapter 14: Metal-Forging Processes and Equipments

Chapter 14: Metal-Forging Processes and Equipments Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 14: Metal-Forging Processes and Equipments Chapter Outline Introduction Open-die Forging Impression-die and Closed-die Forging Various

More information

High Density PoP (Package-on-Package) and Package Stacking Development

High Density PoP (Package-on-Package) and Package Stacking Development High Density PoP (Package-on-Package) and Package Stacking Development Moody Dreiza, Akito Yoshida, *Kazuo Ishibashi, **Tadashi Maeda, Amkor Technology Inc. 1900 South Price Road, Chandler, AZ 85248, U.S.A.

More information

Study of water falling film over horizontal drop shaped and inverted drop shaped tubes

Study of water falling film over horizontal drop shaped and inverted drop shaped tubes Study of water falling film over horizontal drop shaped and inverted drop shaped tubes Vipul Kumar Sharma, Nirmal Kant Singh 2 Dept. of Mechanical Engineering, GLBITM, Greater Noida, U.P, 236, India 2

More information

System Level Effects on Solder Joint Reliability

System Level Effects on Solder Joint Reliability System Level Effects on Solder Joint Reliability Maxim Serebreni 2004 2010 Outline Thermo-mechanical Fatigue of solder interconnects Shear and tensile effects on Solder Fatigue Effect of Glass Style on

More information

Spectrum S-920N Series

Spectrum S-920N Series Spectrum S-920N Series Scalable solutions for high-volume manufacturing and assembly Features and Benefits The S-920N series leverages over 25 years of Nordson ASYMTEK automated fluid dispensing and jetting

More information

Lead Free No Clean Solder Paste 4900P Technical Data Sheet 4900P

Lead Free No Clean Solder Paste 4900P Technical Data Sheet 4900P Description MG Chemicals has developed a unique flux system designed specifically for high temperature lead free alloys. It provides the fluxing activity levels that promote thermal stability and prevents

More information

Effect of Die Bonding Condition for Die Attach Film Performance in 3D QFN Stacked Die.

Effect of Die Bonding Condition for Die Attach Film Performance in 3D QFN Stacked Die. Effect of Die Bonding Condition for Die Attach Film Performance in 3D QFN Stacked Die. A. JALAR, M. F. ROSLE, M. A. A. HAMID. School of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan

More information

Deformation behavior of a liquid droplet impacting a solid surface

Deformation behavior of a liquid droplet impacting a solid surface Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Deformation behavior of a liquid droplet impacting a solid surface S. OUKACH * 1, 2, M. ELGANAOUI 2, B. PATEYRON 2, H. HAMDI 1 1 Laboratoire

More information

New Technology for High-Density LSI Mounting in Consumer Products

New Technology for High-Density LSI Mounting in Consumer Products New Technology for High-Density Mounting in Consumer Products V Hidehiko Kira V Akira Takashima V Yukio Ozaki (Manuscript received May 29, 2006) The ongoing trend toward downsizing and the growing sophistication

More information

Development of System in Package

Development of System in Package Development of System in Package In recent years, there has been a demand to offer increasingly enhanced performance for a SiP that implements downsized and lower-profile chips at lower cost. This article

More information

Heat transfer modelling of slot jet impinging on an inclined plate

Heat transfer modelling of slot jet impinging on an inclined plate Heat transfer modelling of slot jet impinging on an inclined plate A. Ramezanpour 1, H. Shirvani 1 & I. Mirzaee 2 1 School of Design and Communication Systems, APU University, UK 2 CFD Research Centre,

More information

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION Frank Grano, Felix Bruno Huntsville, AL Dana Korf, Eamon O Keeffe San Jose, CA Cheryl Kelley Salem, NH Joint Paper by Sanmina-SCI Corporation EMS, GTS

More information

Test Flow for Advanced Packages (2.5D/SLIM/3D)

Test Flow for Advanced Packages (2.5D/SLIM/3D) 1 Test Flow for Advanced Packages (2.5D/SLIM/3D) Gerard John Amkor Technology Inc. Gerard.John@amkor.com 2045 East Innovation Circle, Tempe, AZ 85284, USA Phone: (480) 821-5000 ADVANCED PACKAGE TEST FLOW

More information

An Innovative High Throughput Thermal Compression Bonding Process

An Innovative High Throughput Thermal Compression Bonding Process An Innovative High Throughput Thermal Compression Bonding Process Li Ming 2 September 2015 Outline Introduction Throughput improved TCB Process Liquid Phase Contact (LPC) bonding Flux-LPC-TCB under inert

More information

Design for Flip-Chip and Chip-Size Package Technology

Design for Flip-Chip and Chip-Size Package Technology Design for Flip-Chip and Chip-Size Package Technology Vern Solberg Solberg Technology Consulting Madison, Wisconsin Abstract As new generations of electronic products emerge they often surpass the capability

More information

Effect of temperature on atomization in gas centered coaxial injection systems

Effect of temperature on atomization in gas centered coaxial injection systems Effect of temperature on atomization in gas centered coaxial injection systems V. Sasi Prabhakaran, D. Sivakumar, C. Oommen, and T. J. Tharakan Abstract This paper summarizes the current status of research

More information

Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards Stefano Sciolè BDM I.M.S.

Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards Stefano Sciolè BDM I.M.S. Reliability of Interconnects in LED Lighting Assemblies Utilizing Metal Clad Printed Circuit Boards Stefano Sciolè BDM I.M.S. Henkel Electronic Materials Agenda 1. Introduction 2. Motivation 3. Interconnect

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

CFD on Small Flow Injection of Advanced Accumulator in APWR

CFD on Small Flow Injection of Advanced Accumulator in APWR 54 CFD on Small Flow Injection of Advanced Accumulator in APWR TOMOSHIGE TAKATA TAKAFUMI OGINO TAKASHI ISHIBASHI TADASHI SHIRAISHI The advanced accumulator in the advanced pressurized-water reactor is

More information

Adhesive Alternatives for Magnet Bonding Assembly

Adhesive Alternatives for Magnet Bonding Assembly Henkel Corporation 1001 Trout Brook Crossing Rocky Hill, CT 06067 860-571-5100 Fax 860-571-5358 www.loctite.com Adhesive Alternatives for Magnet Bonding Assembly SMMA Fall Technical Conference 2007 Prepared

More information

Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications

Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications Thermo-Mechanical FEM Analysis of Lead Free and Lead Containing Solder for Flip Chip Applications M. Gonzalez 1, B. Vandevelde 1, Jan Vanfleteren 2 and D. Manessis 3 1 IMEC, Kapeldreef 75, 3001, Leuven,

More information

1. 3 Extrusion molding

1. 3 Extrusion molding 1. 3 Extrusion molding 9 Extrusion is a widely used technique, both in the field of traditional and technical ceramics. This method allows the continuous manufacture of products with a constant cross-

More information

Bob Willis Process Guides

Bob Willis Process Guides Practical Selection/Problems with SMT Adhesives Bob Willis Surface M ount Technology (SM T) first started with the introduction of mixed technology designs incorporating components mounted on the underside

More information

Aging Treatment Characteristics of Shear Strength in Micro Solder Bump

Aging Treatment Characteristics of Shear Strength in Micro Solder Bump Materials Transactions, Vol. 43, No. 2 (22) pp. 3234 to 3238 c 22 The Japan Institute of Metals Aging Treatment Characteristics of Shear Strength in Micro Solder Bump Chong-Hee Yu, Kyung-Seob Kim 2, Yong-Bin

More information

Hybrid atomization method suitable for production of fine spherical lead-free solder powder

Hybrid atomization method suitable for production of fine spherical lead-free solder powder NUKLEONIKA 2006;51(Supplement 1):S83 S88 PROCEEDINGS Hybrid atomization method suitable for production of fine spherical lead-free solder powder Kazumi Minagawa, Hideki Kakisawa, Susumu Takamori, Yoshiaki

More information

Effect of the Molten Metal Stream s Shape on Particle Size Distribution of Water Atomized Metal Powder

Effect of the Molten Metal Stream s Shape on Particle Size Distribution of Water Atomized Metal Powder Article Effect of the Molten Metal Stream s Shape on Particle Size Distribution of Water Atomized Metal Powder Suchart Yenwiset a and Tawichart Yenwiset b, * Department of Industrial Education, Faculty

More information

FIVE STAR PRODUCTS, INC. (800)

FIVE STAR PRODUCTS, INC.  (800) FIVE STAR PRODUCTS, INC. www.fivestarproducts.com (800) 243-2206 Page 1 of 11 DESIGN-A-SPEC GUIDELINES FIVE STAR RS ANCHOR GEL CONTENTS PART A - GENERAL CONDITIONS PART B - MATERIAL SPECIFICATIONS PART

More information

Stress and Distortion Evolution During Induction Case Hardening of Tube

Stress and Distortion Evolution During Induction Case Hardening of Tube Stress and Distortion Evolution During Induction Case Hardening of Tube Dr. Valentin Nemkov, Mr. Robert Goldstein, Mr. John Jackowski Fluxtrol, Inc., Auburn Hills, MI, USA vsnemkov@fluxtrol.com, +1 248

More information

Copyright 2009 Year IEEE. Reprinted from 2009 Electronic Components and Technology Conference. Such permission of the IEEE does not in any way imply

Copyright 2009 Year IEEE. Reprinted from 2009 Electronic Components and Technology Conference. Such permission of the IEEE does not in any way imply Copyright 2009 Year IEEE. Reprinted from 2009 Electronic Components and Technology Conference. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Institute of Microelectronics

More information

ISO 3966 INTERNATIONAL STANDARD. Measurement of fluid flow in closed conduits Velocity area method using Pitot static tubes

ISO 3966 INTERNATIONAL STANDARD. Measurement of fluid flow in closed conduits Velocity area method using Pitot static tubes INTERNATIONAL STANDARD ISO 3966 Second edition 2008-07-15 Measurement of fluid flow in closed conduits Velocity area method using Pitot static tubes Mesurage du débit des fluides dans les conduites fermées

More information

Flow Test Data Book and Flow Handbook for 405 Compact Orifice Series and 1595 Conditioning Orifice Plate

Flow Test Data Book and Flow Handbook for 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Test Book and Handbook for 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Title Page 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Test Book NOTICE Read this manual before

More information

DROP IMPACT ON TEXTILE MATERIAL: EFFECT OF FABRIC PROPERTIES

DROP IMPACT ON TEXTILE MATERIAL: EFFECT OF FABRIC PROPERTIES DROP IMPACT ON TEXTILE MATERIAL: EFFECT OF FABRIC PROPERTIES Zouhaier Romdhani 1 *, Ayda Baffoun 2, Mohamed Hamdaoui 2, Sadok Roudesli 1 1 Laboratory of Interfaces and Advanced Materials (L.A.M.I), faculty

More information

The formation of oscillation marks in continuous casting of steel

The formation of oscillation marks in continuous casting of steel The formation of oscillation marks in continuous casting of steel 1 Introduction Continuous casting is a method of producing an infinite solid strand from liquid metal by continuously solidifying it as

More information

Local Single- and Two-Phase Heat Transfer from an Impinging Cross-Shaped Jet

Local Single- and Two-Phase Heat Transfer from an Impinging Cross-Shaped Jet Purdue University Purdue e-pubs CTRC Research Publications Cooling Technologies Research Center 2014 Local Single- and Two-Phase Heat Transfer from an Impinging Cross-Shaped Jet M. J. Rau Purdue University

More information

Investigation of the Electrostatic Charge Injection Method at High Hydrodynamic Pressures. University of Illinois at Chicago Chicago, IL USA

Investigation of the Electrostatic Charge Injection Method at High Hydrodynamic Pressures. University of Illinois at Chicago Chicago, IL USA ILASS Americas, 23 rd Annual Conference on Liquid Atomization and Spray Systems, Ventura, CA, May 2011 Investigation of the Electrostatic Charge Injection Method at High Hydrodynamic Pressures E. L. Ergene

More information

"ewlb Technology: Advanced Semiconductor Packaging Solutions"

ewlb Technology: Advanced Semiconductor Packaging Solutions "ewlb Technology: Advanced Semiconductor Packaging Solutions" by Sharma Gaurav@, S.W. Yoon, Yap Yok Mian, Shanmugam Karthik, Yaojian Lin, Pandi C. Marimuthu and Yeong J. Lee* STATS ChipPAC Ltd. 5 Yishun

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Three-Dimensional Molded Interconnect Devices (3D-MID)

Three-Dimensional Molded Interconnect Devices (3D-MID) Jörg Frank Three-Dimensional Molded Interconnect Devices (3D-MID) Materials, Manufacturing, Assembly and Applica ons for Injec on Molded Circuit Carriers Sample Pages ISBN 978-1-56990-551-7 HANSER Hanser

More information

AN Handling and processing of sawn wafers on UV dicing tape. Document information. Sawn wafers, UV dicing tape, handling and processing

AN Handling and processing of sawn wafers on UV dicing tape. Document information. Sawn wafers, UV dicing tape, handling and processing Handling and processing of sawn wafers on UV dicing tape Rev. 2.0 13 January 2009 Application note Document information Info Keywords Abstract Content Sawn wafers, UV dicing tape, handling and processing

More information

MECHANICAL AND PHYSICAL PROPRIETIES

MECHANICAL AND PHYSICAL PROPRIETIES Kera-Coat Ceramic Coatings are Special Ceramic Coating defined as a substantially vitreous or glassy inorganic coating bonded to metal by fusion at a temperature above 800 F. In this short abstract we

More information

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials

Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes. Michael J. Carmody Chief Scientist, Intrinsiq Materials Advances in Printing nano Cu and Using Existing Cu Based Manufacturing Processes Michael J. Carmody Chief Scientist, Intrinsiq Materials Why Use Copper? Lower Cost than Silver. Print on Numerous Substrates.

More information

PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT

PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT PERFORMANCE ANALYSIS OF NATURAL DRAFT WET COOLING TOWER AT OPTIMIZED INJECTION HEIGHT 1 ALOK SINGH, 2 SANJAY SONI, 3 R. S. RANA 1 Assistant Professor, 2 Associate Professor, 3 Mechanical Engineering Department

More information

28nm Mobile SoC Copper Pillar Probing Study. Jose Horas (Intel Mobile Communications) Amy Leong (MicroProbe) Darko Hulic (Nikad)

28nm Mobile SoC Copper Pillar Probing Study. Jose Horas (Intel Mobile Communications) Amy Leong (MicroProbe) Darko Hulic (Nikad) 28nm Mobile SoC Copper Pillar Probing Study Jose Horas (Intel Mobile Communications) Amy Leong (MicroProbe) Darko Hulic (Nikad) Overview Introduction to IMC Copper Pillar Implementation at IMC Low force

More information

Effects of Flux and Reflow Parameters on Lead-Free Flip Chip Assembly. Sandeep Tonapi 1 Doctoral Candidate

Effects of Flux and Reflow Parameters on Lead-Free Flip Chip Assembly. Sandeep Tonapi 1 Doctoral Candidate Effects of Flux and Reflow Parameters on Lead-Free Flip Chip Assembly Sandeep Tonapi 1 Doctoral Candidate Peter Borgesen, Ph.D. 2 Manager, Area Array Consortium K. Srihari, Ph.D. 1 Professor, Department

More information

2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder

2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder Presented at the COMSOL Conference 2010 Paris 2D axial-symmetric model for fluid flow and heat transfer in the melting and resolidification of a vertical cylinder Simon Morville, Muriel Carin, Denis Carron,

More information

OPTIMISED CURING OF SILVER INK JET BASED PRINTED TRACES

OPTIMISED CURING OF SILVER INK JET BASED PRINTED TRACES Nice, Côte d Azur, France, 27-29 September 2006 OPTIMISED CURING OF SILVER INK JET BASED PRINTED TRACES Z. Radivojevic 1, K. Andersson 1, K. Hashizume 2, M. Heino 1, M. Mantysalo 3, P. Mansikkamaki 3,

More information

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14 Keeping Cool!: selecting high performance thermal materials for LED Lighting applications Ian Loader 25/03/14 1 Target Points to cover Basics of Thermal Management Considerations for thermal materials

More information

Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall

Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall Ari Silde 1), Simo Hostikka 1), Ari Kankkunen 2), Juhani Hyvärinen 3) and Ilkka Hakola 1) 1) Technical Research

More information

Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip

Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip EPRC 12 Project Proposal Cu Pillar Interconnect and Chip-Package-Interaction (CPI) for Advanced Cu Low K chip 15 th Aug 2012 Page 1 Introduction: Motivation / Challenge Silicon device with ultra low k

More information

Panel Discussion: Advanced Packaging

Panel Discussion: Advanced Packaging Dr. Steve Bezuk Senior Director IC Packaging Engineering Qualcomm Technologies, Inc. Panel Discussion: Advanced Packaging PAGE 1 Technical Challenges of Packaging (Mobile Focus) Materials Die materials

More information

Fluxless soldering using Electron Attachment (EA) Technology

Fluxless soldering using Electron Attachment (EA) Technology Fluxless soldering using Electron Attachment (EA) Technology Proprietary, patented innovation for wafer level packaging applications including wafer bump and copper pillar reflow. Air Products has partnered

More information

Generation of small batch high quality metal powder

Generation of small batch high quality metal powder Generation of small batch high quality metal powder Daniel Nils Ellendt 2 Lutz Mädler 2 Jörg Fischer- Peter Hofmann 3 Volker Schwenck Bühner 3 Uhlenwinkel schwenck@iwt.unibremen.de Ellendt@iwt.unibremen.de

More information

No-Clean Flux Residue and Underfill Compatibility Effects on Electrical Reliability

No-Clean Flux Residue and Underfill Compatibility Effects on Electrical Reliability No-Clean Flux Residue and Underfill Compatibility Effects on Electrical Reliability Eric Bastow Indium Corporation Utica, NY No-clean soldering processes dominate the commercial electronics manufacturing

More information

AIR QUENCHING OF ALUMINUM: THE AFFECT OF QUENCH ORIENTATION AND AIR VELOCITY

AIR QUENCHING OF ALUMINUM: THE AFFECT OF QUENCH ORIENTATION AND AIR VELOCITY AIR QUENCHING OF ALUMINUM: THE AFFECT OF QUENCH ORIENTATION AND AIR VELOCITY A Major Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the

More information

Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages

Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages Effects of Design, Structure and Material on Thermal-Mechanical Reliability of Large Array Wafer Level Packages Bhavesh Varia 1, Xuejun Fan 1, 2, Qiang Han 2 1 Department of Mechanical Engineering Lamar

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

Flip-Chip Process Improvements for Low Warpage

Flip-Chip Process Improvements for Low Warpage Flip-Chip Process Improvements for Low Warpage Robert L. Hubbard Lambda Technologies, Inc. Morrisville, NC, USA bhubbard@microcure.com Pierino Zappella*, Pukun Zhu Henkel Corporation Irvine, CA, USA Abstract

More information

Wafer Level Chip Scale Package (WLCSP)

Wafer Level Chip Scale Package (WLCSP) Freescale Semiconductor, Inc. Application Note Document Number: AN3846 Rev. 4.0, 8/2015 Wafer Level Chip Scale Package (WLCSP) 1 Introduction This application note provides guidelines for the handling

More information

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance Scott D. Szymanski March Plasma Systems Concord, California, U.S.A. sszymanski@marchplasma.com

More information

Tribology in Hydrostatic Extrusion of Metals A review

Tribology in Hydrostatic Extrusion of Metals A review Tribology in Hydrostatic Extrusion of Metals A review P. Tomar*, R. K. Pandey, Y. Nath Mechanical and Automation Engineering Department G.G.S. Indraprastha University, Delhi-110403, India *Corresponding

More information

NEW GENERATION UNDERFILLS POWER THE 2 ND FLIP CHIP REVOLUTION

NEW GENERATION UNDERFILLS POWER THE 2 ND FLIP CHIP REVOLUTION NEW GENERATION UNDERFILLS POWER THE 2 ND FLIP CHIP REVOLUTION Dr. Ken Gilleo ET-Trends; gilleo@ieee.org (previously, Cookson Electronics Group Abstract Various forms of Flip Chip technology have been around

More information

ORIFICE MTERE BASIC SELECTION & DESIGN CONSIDERATIONS. All rights reserved to thepetrostreet.com

ORIFICE MTERE BASIC SELECTION & DESIGN CONSIDERATIONS. All rights reserved to thepetrostreet.com ORIFICE MTERE BASIC SELECTION & DESIGN CONSIDERATIONS All rights reserved to thepetrostreet.com METER SELECTION PHILOSOPHY Reliability/ Repeatability Rangeability Versatility Economicsi Installation Cost

More information

Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation.

Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation. Study of the Interface Microstructure of Sn-Ag-Cu Lead-Free Solders and the Effect of Solder Volume on Intermetallic Layer Formation. B. Salam +, N. N. Ekere, D. Rajkumar Electronics Manufacturing Engineering

More information