These metal centres interact through metallic bonding

Size: px
Start display at page:

Download "These metal centres interact through metallic bonding"

Transcription

1 The structures of simple solids The majority of inorganic compounds exist as solids and comprise ordered arrays of atoms, ions, or molecules. Some of the simplest solids are the metals, the structures of which can be described in terms of regular, space-filling arrangements of the metal atoms. These metal centres interact through metallic bonding The description of the structures of solids The arrangement of atoms or ions in simple solid structures can often be represented by different arrangements of hard spheres. 1

2 3.1 Unit cells and the description of crystal structures A crystal of an element or compound can be regarded as constructed from regularly repeating structural elements, which may be atoms, molecules, or ions. The crystal lattice is the pattern formed by the points and used to represent the positions of these repeating structural elements. (a) Lattices and unit cells A lattice is a three-dimensional, infinite array of points, the lattice points, each of which is surrounded in an identical way by neighbouring points, and which defines the basic repeating structure of the crystal. 2

3 The crystal structure itself is obtained by associating one or more identical structural units (such as molecules or ions) with each lattice point. A unit cell of the crystal is an imaginary parallel-sided region (a parallelepiped ) from which the entire crystal can be built up by purely translational displacements Unit cells may be chosen in a variety of ways but it is generally preferable to choose the smallest cell that exhibits the greatest symmetry Two possible choices of repeating unit are shown but (b) would be preferred to (a) because it is smaller. 3

4 All ordered structures adopted by compounds belong to one of the following seven crystal systems. The angles (, β, ) and lengths (a, b, c) used to define the size and shape of a unit cell are the unit cell parameters (the lattice parameters ) 4

5 A primitive unit cell (denoted by the symbol P) has just one lattice point in the unit cell, and the translational symmetry present is just that on the repeating unit cell. Lattice points describing the translational symmetry of a primitive cubic unit cell. 5

6 body-centred (I, from the German word innenzentriet, referring to the lattice point at the unit cell centre) with two lattice points in each unit cell, and additional translational symmetry beyond that of the unit cell Lattice points describing the translational symmetry of a body-centred cubic unit cell. 6

7 face-centred (F) with four lattice points in each unit cell, and additional translational symmetry beyond that ofthe unit cell Lattice points describing the translational symmetry of a face-centred cubic unit cell. 7

8 We use the following rules to work out the number of lattice points in a three-dimensional unit cell. The same process can be used to count the number of atoms, ions, or molecules that the unit cell contains 1. A lattice point in the body of, that is fully inside, a cell belongs entirely to that cell and counts as A lattice point on a face is shared by two cells and contributes 1/2 to the cell. 3. A lattice point on an edge is shared by four cells and hence contributes 1/4. 4. A lattice point at a corner is shared by eight cells that share the corner, and so contributes 1/8. 8

9 Thus, for the face-centred cubic lattice depicted in Fig. 3.5 the total number of lattice points in the unit cell is (8 1/8 ) +(6 1/2) = 4. For the body-centred cubic lattice depicted in Fig. 3.4, the number of lattice points is (1 1) + (8 1/8 ) = 2. 9

10 (b) Fractional atomic coordinates and projections Structures may be drawn in projection, with atom positions denoted by fractional coordinates. a) The structure of metallic tungsten and (b) its projection representation. 10

11 The projection representation of an fcc unit cell. 11

12 3.2 The close packing of spheres Many metallic and ionic solids can be regarded as constructed from entities, such as atoms and ions, represented as hard spheres. Close-packed structure, a structure in which there is least unfilled space. The coordination number (CN) of a sphere in a close-packed arrangement (the number of nearest neighbours ) is 12, the greatest number that geometry allows A close-packed layer of hard spheres 12

13 The close packing of identical spheres can result in a variety of polytypes cubic closepacked (ccp) hexagonally close-packed (hcp) 13

14 Because each ccp unit cell has a sphere at one corner and one at the centre of each face, a ccp unit cell is sometimes referred to as face-centred cubic (fcc). The hexagonal close-packed (hcp) unit cell of the ABAB... polytype. The colours of the spheres correspond to the layers 14

15 The cubic close-packed (fcc) unit cell of the ABC... polytype. The colours of the spheres correspond to the layers 15

16 The unoccupied space in a close-packed structure amounts to 26 per cent of the total volume. However, this unoccupied space is not empty in a real solid because electron density of an atom does not end as abruptly as the hardsphere model suggests. Calculating the unoccupied space in a close-packed array Calculate the percentage of unoccupied space in a close-packed arrangement of identical spheres. 16

17 3.3 Holes in close-packed structures The feature of a close-packed structure that enables us to extend the concept to describe structures more complicated than elemental metals is the existence of two types of hole, or unoccupied space between the spheres. An octahedral hole lies between two triangles of spheres on adjoining layers For a crystal consisting of N spheres in a close-packed structure, there are N octahedral holes. (a) An octahedral hole and (b) a tetrahedral hole formed in an arrangement of closepacked spheres. 17

18 (a) The location (represented by a hexagon) of the two octahedral holes in the hcp unit cell and (b) the locations (represented by hexagons) of the octahedral holes in the ccp unit cell. 18

19 Calculate the maximum radius of a sphere that may be accommodated in an octahedral hole in a closepacked solid composed of spheres of radius r r 19

20 A tetrahedral hole, T, is formed by a planar triangle of touching spheres capped by a single sphere lying in the dip between them. The tetrahedral holes in any closepacked solid can be divided into two sets: in one the apex of the tetrahedron is directed up (T) and in the other the apex points down (T ). In an arrangement of N close-packed spheres there are N tetrahedral holes of each set and 2N tetrahedral holes in all. The locations (represented by triangles) of the tetrahedral holes in the hcp unit cell 20

21 The locations of the tetrahedral holes in the ccp unit cell 21

22 The structures of metals and alloys Many metallic elements have close-packed structures, One consequence of this close-packing is that metals often have high densities because the most mass is packed into the smallest volume. Osmium has the highest density of all the elements at g cm 3 and the density of tungsten, g cm 3, which is almost twice that of lead (11.3 g cm 3 ) Calculate the density of gold, with a cubic close-packed array of atoms of molar mass M= g mol 1 and a cubic lattice parameter a = 409 pm. 22

23 Gold (Au) crystallizes in a cubic close-packed structure (the face-centered cube) and has a density of 19.3 g/cm3. Calculate the atomic radius of gold. 23

24 3.5 Nonclose-packed structures Not all elemental metals have structure based on close-packing and some other packing patterns use space nearly as efficiently. Even metals that are close-packed may undergo a phase transition to a less closely packed structure when they are heated and their atoms undergo large-amplitude vibrations. 24

25 Body-centred cubic structure (cubic-i or bcc) in which a sphere is at the centre of a cube with spheres at each corner Metals with this structure have a coordination number of 8 Although a bcc structure is less closely packed than the ccp and hcp structures (for which the coordination number is 12), 25

26 The least common metallic structure is the primitive cubic (cubic-p) structure, in which spheres are located at the lattice points of a primitive cubic lattice, taken as the corners of the cube. The coordination number of a cubic-p structure is 6. One form of polonium ( -Po) is the only example of this structure among the elements under normal conditions. 26

27 Solid mercury ( -Hg), however, has a closely related structure: it is obtained from the cubic-p arrangement by stretching the cube along one of its body diagonals A second form of solid mercury (β-hg) has a structure based on the bcc arrangement but compressed along one cell direction 27

28 The structures of the metallic elements at room temperature. Elements with more complex structures are left blank. 28

29 3.6 Polymorphism of metals polymorphism, the ability to adopt different crystal forms under different conditions of pressure and temperature. It is often, but not universally, found that The most closely packed phases are thermodynamically favoured at low temperatures The less closely packed structures are favoured at high temperatures. Application of high pressure leads to structures with higher packing densities, such as ccp and hcp. The polymorphs of metals are generally labelled, β,,...with increasing temperature. 29

30 3.8 Alloys An alloy is a blend of metallic elements prepared by mixing the molten components and then cooling the mixture to produce a metallic solid. Alloys typically form from two electropositive metals (a) Substitutional solid solutions Involves the replacement of one type of metal atom in a structure by another. 30

31 Substitutional solid solutions are generally formed if three criteria are fulfilled: 1. The atomic radii of the elements are within about 15 per cent of each other. 2. The crystal structures of the two pure metals are the same. 3. The electropositive characters of the two components are similar. Sodium and potassium are chemically similar and have bcc structures, the atomic radius of Na (191 pm) is 19 per cent smaller than that of K (235 pm) and the two metals do not form a solid solution. Copper and nickel, have similar electropositive character, similar crystal structures (both ccp), and similar atomic radii (Ni 125 pm, Cu 128 pm, only 2.3 per cent different), and form a continuous series of solid solutions, ranging from pure nickel to pure copper. 31

32 (b) Interstitial solid solutions of nonmetals In an interstitial solid solution, additional small atoms occupy holes within the lattice of the original metal structure. Interstitial solid solutions are often formed between metals and small atoms (such as boron, carbon, and nitrogen) that can inhabit the interstices in the structure. One important class of materials of this type consists of carbon steels in which C atoms occupy some of the octahedral holes in the Fe bcc lattice. 32

33 (c) Intermetallic compounds Intermetallic compounds are alloys in which the structure adopted is different from the structures of either component metal. when some liquid mixtures of metals are cooled, they form phases with definite structures that are often unrelated to the parent structure. These phases are called intermetallic compounds. They include β-brass (CuZn) and compounds of composition MgZn 2, Cu 3 Au, NaTl, and Na 5 Zn

34 Composition, lattice type and unit cell content of iron and its alloys What are the lattice types and unit cell contents of (a) iron metal (Fig. a) and (b) the iron/chromium alloy, FeCr The structure type is the bcc there are two Fe atoms in the unit cell the lattice type is primitive, P. There is one Cr atom and 1 Fe atom in the unit cell 34

35 Ionic solids 3.9 Characteristic structures of ionic solids Many of the structures can be regarded as derived from arrays in which the larger of the ions, usually the anions, stack together in ccp or hcp patterns and the smaller counter-ions (usually the cations) occupy the octahedral or tetrahedral holes in the lattice 35

36 The relation of structure to the filling of holes 36

37 (a) Binary phases, AX n The simplest ionic compounds contain just one type of cation (A) and one type of anion (X) present in various ratios covering compositions such as AX and AX 2. Several different structures may exist for each of these compositions, depending on the relative sizes of the cations and anions and which holes are filled and to what degree in the close-packed array The rock-salt structure is based on a ccp array of bulky anions with cations in all the octahedral holes. Because each ion is surrounded by an octahedron of six counter-ions, the coordination number of each type of ion is 6 and the structure is said to have (6,6)- coordination. 37

38 The number of formula units present in the unit cell is commonly denoted Z Show that the structure of the unit cell for sodium chloride (Figure) is consistent with the formula NaCl. 38

39 many 1:1 compounds in which the ions are complex units such as [Co(NH3)6][TlCl6]. The structure of this compound can be considered as an array of closepacked octahedral [TlCl 6 ] 3 ions with [Co(NH 3 ) 6 ] 3+ ions in all the octahedral holes. Similarly, compounds such as CaC 2, CsO 2, KCN, and FeS 2 all adopt structures closely related to the rock-salt structure with alternating cations and complex anions The structure of CaC 2 is based on the rock-salt structure but is elongated in the direction parallel to the axes of the C 2 2 ions. 39

40 caesium-chloride structure which is possessed by CsCl, CsBr, and CsI, as well as some other compounds formed of ions of similar radii to these. cubic unit cell with each corner occupied by an anion and a cation occupying the cubic hole at the cell centre (or vice versa); as a result, Z =1. The coordination number of both types of ion is 8, so the structure is described as having (8,8)-coordination. 40

41 The structure of ammonium chloride, NH 4 Cl, reflects the ability of the tetrahedral NH 4 + ion to form hydrogen bonds to the tetrahedral array of Cl ions around it. 41

42 The sphalerite structure, which is also known as the zinc-blende structure, it is based on an expanded ccp anion arrangement but now the cations occupy one type of tetrahedral hole, one half the tetrahedral holes present in a close-packed structure. Each ion is surrounded by four neighbours and so the structure has (4,4)- coordination and Z= 4. 42

43 The wurtzite structure polymorph of zinc sulfide It derived from an expanded hcp anion array rather than a ccp array This structure, which has (4,4)-coordination, is adopted by ZnO, AgI, and one polymorph of SiC, as well as several other compounds 43

44 The fluorite (CaF 2 ) lattice Each cation is 8-coordinate and each anion 4- coordinate; six of the Ca 2+ ions are shared between two unit cells and the 8-coordinate environment can be appreciated by envisaging two adjacent unit cells. The unit cell of CaF 2 ; the Ca 2+ ions are shown in red and the F ions in green. 44

45 45

46 The antifluorite lattice The antifluorite structure is the inverse of the fluorite structure in the sense that the locations of cations and anions are reversed. The latter structure is shown by some alkali metal oxides, including Li 2 O. In it, the cations (which are twice as numerous as the anions) occupy all the tetrahedral holes of a ccp array of anions. The coordination is (4,8) rather than the (8,4) of fluorite itself. 46

47 The rutile structure, a mineral form of titanium(iv) oxide, TiO2. The structure can also be considered an example of hole filling in an hcp anion arrangement, the cations occupy only half the octahedral holes. Each Ti 4 atom is surrounded by six O atoms and each O atom is surrounded by three Ti 4 ions; hence the rutile structure has (6,3)-coordination. 47

48 (b) Ternary phases A a B b X n it is difficult to predict the most likely structure type based on the ion sizes and preferred coordination numbers. The mineral perovskite, CaTiO 3, is the structural prototype of many ABX 3 solids The perovskite structure is cubic with each A cation surrounded by 12 X anions and each B cation surrounded by six X anions the coordination number of the Ti 4+ ion in the perovskite CaTiO 3 is 6 48

1.10 Close packed structures cubic and hexagonal close packing

1.10 Close packed structures cubic and hexagonal close packing 1.9 Description of crystal structures The most common way for describing crystal structure is to refer the structure to the unit cell. The structure is given by the size and shape of the cell and the position

More information

Chapter 1. Crystal Structure

Chapter 1. Crystal Structure Chapter 1. Crystal Structure Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement Amorphous solids: No ordered structure to the particles of the solid. No well defined

More information

Chem 241. Lecture 19. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 19. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 19 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Water Redox Comp/Disproportionation Latimer Diagram Frost Diagram Pourbaix Diagram... 2 Ellingham

More information

Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS)

Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. What are anistropic substances. 2. Why are amorphous solids isotropic in nature?. Why glass is regarded as an amorphous solid? 4.

More information

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering Chapter 3 The Structure t of Crystalline Solids The difference between crystalline and non-crystalline materials is in the extent of ordering Both materials have the same composition but one is ordered

More information

Solid State-1 1) Ionic solids are characterised by 1) Good conductivity in solid state 2) High vapour pressure 3) Low melting point 4) Solubility in polar solvents 2) Three metals X, Y and Z are crystallised

More information

SOLID-STATE STRUCTURE.. FUNDAMENTALS

SOLID-STATE STRUCTURE.. FUNDAMENTALS SOLID-STATE STRUCTURE.. FUNDAMENTALS Metallic Elements & Sphere Packing, Unit Celis, Coordination Number, Ionic Structures Stoichiometry PRELAB ASSIGNMENT Properties of Shapes & Patterns following question

More information

Lecture 3: Description crystal structures / Defects

Lecture 3: Description crystal structures / Defects Lecture 3: Description crystal structures / Defects Coordination Close packed structures Cubic close packing Hexagonal close packing Metallic structures Ionic structures with interstitial sites Important

More information

CRYSTAL STRUCTURE TERMS

CRYSTAL STRUCTURE TERMS CRYSTAL STRUCTURE TERMS crystalline material - a material in which atoms, ions, or molecules are situated in a periodic 3-dimensional array over large atomic distances (all metals, many ceramic materials,

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3.

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3. Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3. Name(s): Element: Topics: 1. Octahedral and tetrahedral holes and the hcp lattice 2. Occupying the octahedral and tetrahedral

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

CHAPTER. The Structure of Crystalline Solids

CHAPTER. The Structure of Crystalline Solids CHAPTER 4 The Structure of Crystalline Solids 1 Chapter 4: The Structure of Crystalline Solids ISSUES TO ADDRESS... What are common crystal structures for metals and ceramics? What features of a metal

More information

CHAPTER THE SOLID STATE

CHAPTER THE SOLID STATE 133 CHAPTER THE SOLID STATE 1. The ability of a substances to assume two or more crystalline structures is called [1990] Isomerism Polymorphism Isomorphism Amorphism 2. Most crystals show good cleavage

More information

(C) Na 2. (B) NaWO 3 WO 3

(C) Na 2. (B) NaWO 3 WO 3 EXERCISE-01 CHECK YOUR GRASP SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER) 1. A solid has a structure in which W atoms are located at the corners of a cubic lattice, O atom at the centre of

More information

Chem 253, UC, Berkeley. Chem 253, UC, Berkeley

Chem 253, UC, Berkeley. Chem 253, UC, Berkeley 1 2 Theorem: For any family of lattice planes separated by distance d, there are reciprocal lattice vectors perpendicular to the planes, the shortest being 2 /d. Orientation of plane is determined by a

More information

Intermolecular Forces. Part 2 The Solid State: Crystals

Intermolecular Forces. Part 2 The Solid State: Crystals Intermolecular Forces Part 2 The Solid State: Crystals 1 Prof. Zvi C. Koren 20.07.2010 Calculation of Lattice Energy, U, from a Thermodynamic Cycle What are the energies, virtual and real, involved in

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

CH445/545 Winter 2008

CH445/545 Winter 2008 CH445/545 Winter 2008 Assignment # 1 - due 01/18/08 60 total points SHOW ALL WORKING FOR FULL CREDIT, ANSWERS WITHOUT WORKING WILL BE PENALIZED! 1. Text Ch. 1 # 2 "Calculate the size of the largest sphere

More information

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures.

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures. METALLIC CRYSTALS tend to be densely packed. have several reasons for dense packing: -Typically, only one element is present, so all atomic radii are the same. -Metallic bonding is not directional. -Nearest

More information

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli Chapter-3 MSE-201-R Prof. Dr. Altan Türkeli The Structure of Crystalline Solids FUNDAMENTAL CONCEPTS Solid materials may be classified according to the regularity with which atoms or ions are arranged

More information

Close Packings of Spheres I.

Close Packings of Spheres I. Close Packings of Spheres I. close packed layer a non-close packed layer stacking of 2 close packed layers 3rd layer at position S: h.c.p. 3rd layer at position T: c.c.p. h.c.p.: hexagonal close packing

More information

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES Sarah Lambart RECAP CHAP. 2 2 different types of close packing: hcp: tetrahedral interstice (ABABA) ccp: octahedral interstice (ABCABC) Definitions:

More information

Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1.

Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1. Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1. Topics: 1. Properties of ionic substances 7. Octahedral and tetrahedral holes 2. Cubic lattices and the periodic table 8. The cesium chloride

More information

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH This lab will be divided into two parts. In the first part, you will be growing crystals from a seed crystal in a very visual demonstration of heterogeneous

More information

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they?

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they? Making Solid Stuff Primary Bonds Summary What are they? Results from atomic bonding So the atoms bond together! Order in materials No long range order to atoms Gases little or no interaction between components

More information

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially. Crystal structure A crystalline material :- is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material :- the manner in which

More information

Neighbour s envy, Owner s pride, Silicon Valley s delight, a girl s best friend, Miner s blackjack! Is that you?

Neighbour s envy, Owner s pride, Silicon Valley s delight, a girl s best friend, Miner s blackjack! Is that you? Introduction Neighbour s envy, Owner s pride, Silicon Valley s delight, a girl s best friend, Miner s blackjack! Is that you? Learning Objectives On completion of this topic you will be able to: 1. Identify

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10 ME 274 Dr Yehia M. Youssef 1 The Structure of Crystalline Solids Solid materials may be classified according to the regularity with which atoms or ions are arranged with respect to one another. A crystalline

More information

7.3 Bonding in Metals > Chapter 7 Ionic and Metallic Bonding. 7.3 Bonding in Metals. 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds

7.3 Bonding in Metals > Chapter 7 Ionic and Metallic Bonding. 7.3 Bonding in Metals. 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU What

More information

Chapter 12 The Solid State The Structure of Metals and Alloys

Chapter 12 The Solid State The Structure of Metals and Alloys Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks long-range

More information

ENGINEERING MATERIALS LECTURE #4

ENGINEERING MATERIALS LECTURE #4 ENGINEERING MATERIALS LECTURE #4 Chapter 3: The Structure of Crystalline Solids Topics to Cover What is the difference in atomic arrangement between crystalline and noncrystalline solids? What features

More information

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline

More information

Chapter1: Crystal Structure 1

Chapter1: Crystal Structure 1 Chapter1: Crystal Structure 1 University of Technology Laser Engineering & Optoelectronic Department Glass: 3 rd year Optoelectronic Engineering Subject: Solid state physics & material science Ass. Prof.

More information

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model. { Stacking atoms together Crystal Structure Stacking Oranges Packing atoms together Long Range Order Crystalline materials... atoms pack in periodic, 3D arrays typical of: -metals -many ceramics -some

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 3 Atomic and Ionic Arrangements 1 Objectives of Chapter 3 To learn classification of materials based on atomic/ionic

More information

CHEM 200/202. Professor Gregory P. Holland Office: GMCS-213C. All s are to be sent to:

CHEM 200/202. Professor Gregory P. Holland Office: GMCS-213C. All  s are to be sent to: CHEM 200/202 Professor Gregory P. Holland Office: GMCS-213C All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Monday from 12:00 pm to 2:00 pm or by appointment.

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

General Characteristics of Solid State

General Characteristics of Solid State General Characteristics of Solid State (i) They have definite mass, volume and shape. (ii) Intermolecular distances are short. (iii) Intermolecular forces are strong. (iv) Their constituent particles (atoms,

More information

KEY FIRST MIDTERM EXAM Chemistry February 2009 Professor Buhro

KEY FIRST MIDTERM EXAM Chemistry February 2009 Professor Buhro KEY FIRST MIDTERM EXAM Chemistry 465 19 February 2009 Professor Buhro Signature KEY Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

Diffusion & Crystal Structure

Diffusion & Crystal Structure Lecture 5 Diffusion & Crystal Structure Diffusion of an interstitial impurity atom in a crystal from one void to a neighboring void. The impurity atom at position A must posses an energy E to push the

More information

Chapter 3. The structures of simple solids Structures of Solids Crystalline solids Amorphous solids

Chapter 3. The structures of simple solids Structures of Solids Crystalline solids Amorphous solids Chapter 3. The structures of simple solids Structures of Solids Crystalline solids The atoms, molecules or ions pack together in an ordered arrangement Such solids typically have flat surfaces, with unique

More information

Crystal Structures of Interest

Crystal Structures of Interest rystal Structures of Interest Elemental solids: Face-centered cubic (fcc) Hexagonal close-packed (hcp) ody-centered cubic (bcc) Diamond cubic (dc) inary compounds Fcc-based (u 3 u,nal, ß-ZnS) Hcp-based

More information

Chapter 16. Liquids and Solids. Chapter 16 Slide 1 of 87

Chapter 16. Liquids and Solids. Chapter 16 Slide 1 of 87 Chapter 16 Liquids and Solids Chapter 16 Slide 1 of 87 Chapter Preview Intramolecular forces determine such molecular properties as molecular geometries and dipole moments. Intermolecular forces determine

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Class XII Chapter 1 The Solid State Chemistry

Class XII Chapter 1 The Solid State Chemistry Class XII Chapter 1 The Solid State Chemistry Question 1.1: Define the term 'amorphous'. Give a few examples of amorphous solids. Amorphous solids are the solids whose constituent particles are of irregular

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

Chapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.)

Chapter 12 Metals. crystalline, in which particles are in highly ordered arrangement. (Have MP.) Chapter 12 Metals 12.1 Classification of Solids Covalent Ionic Molecular Metallic Solids Solids Solids Solids Molecular consist of molecules held next to each other by IMF s. Relatively low to moderate

More information

SECOND MIDTERM EXAM Chemistry April 2011 Professor Buhro

SECOND MIDTERM EXAM Chemistry April 2011 Professor Buhro SECOND MIDTERM EXAM Chemistry 465 1 April 011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

Chemistry/Materials Science and Engineering C150 Introduction to Materials Chemistry

Chemistry/Materials Science and Engineering C150 Introduction to Materials Chemistry Chemistry/Materials Science and Engineering C150 Introduction to Materials Chemistry Class will meet Tuesdays and Thursdays, 8:00-9:30 am, in 433 Latimer Hall. Instructor: Office Hours: Jeffrey Long (211

More information

Unit 1 The Solid State

Unit 1 The Solid State Points to Remember Amorphous and Crystalline Solids Unit 1 The Solid State Amorphous- short range order, Irregular shape eg-glass Crystalline Solids- long range order, regular shape eg : NaCl Molecular

More information

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro FIRST MIDTERM EXAM Chemistry 465 1 March 2011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres.

The structures of pure metals are crystalline (crystal lattice) with regular arrangement of metal atoms that are identical perfect spheres. HW#3 Louisiana Tech University, Chemistry 481. POGIL (Process Oriented Guided Inquiry Learning) Exercise on Chapter 3. Metals and Alloys. Why? Metals What is the structure of a metallic solid? What is

More information

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved. Chapter 3: Atomic and Ionic Arrangements 3-1 Learning Objectives 1. 2. 3. 4. 5. 6. 7. 8. Short-range order versus long-range order Amorphous materials Lattice, basis, unit cells, and crystal structures

More information

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space.

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space. CRYSTAL LATTICE How to form a crystal? 1. Define the structure of the lattice 2. Define the lattice constant 3. Define the basis Defining lattice: Mathematical construct; ideally infinite arrangement of

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples UNIT V CRYSTAL PHYSICS PART-A Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent

More information

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

Ceramic Science 4RO3. Lecture 2. Tannaz Javadi. September 16, 2013

Ceramic Science 4RO3. Lecture 2. Tannaz Javadi. September 16, 2013 Ceramic Science 4RO3 Lecture 2 September 16, 2013 Tannaz Javadi Rule 5: In an Ionic structure the chemical environment (cations) that is surrounding an anion should be at least uniform and similar. Although

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

Chapter One: The Structure of Metals

Chapter One: The Structure of Metals Fourth Edition SI Version Chapter One: The Structure of Metals 2010. Cengage Learning, Engineering. All Rights Reserved. 1.1 Importance of the structure: Structures Processing Properties Applications Classification

More information

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava

Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face. Dr. Anurag Srivastava Physics of Materials: Symmetry and Bravais Lattice To understand Crystal Plane/Face Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior Physics

More information

CHEM J-2 June 2014

CHEM J-2 June 2014 CHEM1102 2014-J-2 June 2014 The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. 2 What is

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10. Liquids and Solids Three States of Matter H 2 O Volume constant constant no Shape constant no no Why in three different states? 1 Intermolecular Force dipole-dipole attraction V dip-dip : 1.

More information

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1)

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) See many great sites like ob s rock shop with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html

More information

Ex: NaCl. Ironically Bonded Solid

Ex: NaCl. Ironically Bonded Solid Ex: NaCl. Ironically Bonded Solid Lecture 2 THE STRUCTURE OF CRYSTALLINE SOLIDS 3.2 FUNDAMENTAL CONCEPTS SOLIDS AMORPHOUS CRYSTALLINE Atoms in an amorphous Atoms in a crystalline solid solid are arranged

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution

3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (112 ) (c) (102 ) (d) (13 1) Solution 3.40 Sketch within a cubic unit cell the following planes: (a) (01 1 ) (b) (11 ) (c) (10 ) (d) (13 1) The planes called for are plotted in the cubic unit cells shown below. 3.41 Determine the Miller indices

More information

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids Dr. Coates Learning Objectives I 1. Describe difference in atomic/molecular structure between crystalline/noncrystalline

More information

NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS

NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS NPTEL COURSE ADVANCED CERAMICS FOR STRATEGIC APPLICATIONS QUESTIONS AND ANSWERS Q1: What do you understand by Ceramics? Ans: Ceramics are a group of chemical compounds, either simple (consisting of only

More information

Materials Science. Why?

Materials Science. Why? Materials Science and Engineering, 2012 Compiled by Greg Heness & Mike Cortie Chapter 3 Crystalline Structure - Perfection, pp. 40-101 Materials Science A knowledge of this material is needed for diverse

More information

Part 1. References: Gray: Chapter 6 OGN: Chapter 19 and (24.1)

Part 1. References: Gray: Chapter 6 OGN: Chapter 19 and (24.1) Part 1 References: Gray: Chapter 6 OGN: Chapter 19 and (24.1) Aspects of Chemical Bonds Bonding in Chem 1a Atomic Structure Explain Atomic Line Spectra, Galaxies, etc. Shapes of Orbitals in Atoms for Bonding

More information

FINAL EXAM Chemistry May 2011 Professor Buhro. ID Number:

FINAL EXAM Chemistry May 2011 Professor Buhro. ID Number: FINAL EXAM Chemistry 465 10 May 011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any other resource

More information

Structure of Metals 1

Structure of Metals 1 1 Structure of Metals Metals Basic Structure (Review) Property High stiffness, better toughness, good electrical conductivity, good thermal conductivity Why metals have these nice properties - structures

More information

Single vs Polycrystals

Single vs Polycrystals WEEK FIVE This week, we will Learn theoretical strength of single crystals Learn metallic crystal structures Learn critical resolved shear stress Slip by dislocation movement Single vs Polycrystals Polycrystals

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

,A6ol31^,rne)1t JVo'L

,A6ol31^,rne)1t JVo'L CHPATER - SOLID STATE Very short answer questions,a6ol31^,rne)1t JVo'L Q.I Which stoichiometric defect in crystals increases the density of a solid? Q.2 Crystalline solids are anisotropic in nature. What

More information

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices

Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Outline: Review key concepts from last lecture (lattice + basis = unit cell) Bravais lattices Important crystal structures Intro to miller indices Review (example with square lattice) Lattice: square,

More information

atoms = 1.66 x g/amu

atoms = 1.66 x g/amu CHAPTER 2 Q1- How many grams are there in a one amu of a material? A1- In order to determine the number of grams in one amu of material, appropriate manipulation of the amu/atom, g/mol, and atom/mol relationships

More information

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity?

Free Electron Model What kind of interactions hold metal atoms together? How does this explain high electrical and thermal conductivity? Electrical Good conductors of heat & electricity Create semiconductors Oxides are basic ionic solids Aqueous cations (positive charge, Lewis acids) Reactivity increases downwards in family Mechanical Lustrous

More information

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

Defect in crystals. Primer in Materials Science Spring

Defect in crystals. Primer in Materials Science Spring Defect in crystals Primer in Materials Science Spring 2017 11.05.2017 1 Introduction The arrangement of the atoms in all materials contains imperfections which have profound effect on the behavior of the

More information

Chapter 3: Structures of Metals & Ceramics

Chapter 3: Structures of Metals & Ceramics Chapter 3: Structures of Metals & Ceramics School of Mechanical Engineering Professor Choi, Hae-Jin Chapter 3-1 Chapter 3: Structures of Metals & Ceramics ISSUES TO ADDRESS... How do atoms assemble into

More information

SOLID STATE

SOLID STATE SOLID STATE Short Answer Questions: 1. Derive Bragg s equation? Ans. Bragg s equation: W.H. Bragg has proposed an equation to explain the relation between inter planar distance (d) and wave length ( λ

More information

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES

CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES CHAPTER 3: CRYSTAL STRUCTURES & PROPERTIES ISSUES TO ADDRESS... How do atoms assemble into solid structures? (for now, focus on metals) How does the density of a material depend on its structure? When

More information

Solids SECTION Critical Thinking

Solids SECTION Critical Thinking SECTION 10.3 Solids A gas has neither a definite volume nor a definite shape. A liquid has a definite volume, but not a definite shape. A solid, the third state, has a definite volume and a definite shape.

More information

Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy. Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Continuous Cooling Diagrams

Continuous Cooling Diagrams Continuous Cooling Diagrams Isothermal transformation (TTT) diagrams are obtained by rapidly quenching to a given temperature and then measuring the volume fraction of the various constituents that form

More information

FINAL EXAM KEY. Professor Buhro. ID Number:

FINAL EXAM KEY. Professor Buhro. ID Number: FINAL EXAM Chemistry 465 KEY 10 May 011 Professor Buhro KEY Signature KEY Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or

More information

Now, let s examine how atoms are affected as liquids transform into solids.

Now, let s examine how atoms are affected as liquids transform into solids. Now, let s examine how atoms are affected as liquids transform into solids. 1 Before we deal with PROPERTIES of materials, it s beneficial to remember where we have come from, and where we are going. Later,

More information

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS

CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS MODULE ONE CRYSTAL STRUCTURE, MECHANICAL BEHAVIOUR & FAILURE OF MATERIALS CRYSTAL STRUCTURE Metallic crystal structures; BCC, FCC and HCP Coordination number and Atomic Packing Factor (APF) Crystal imperfections:

More information

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K)

Crystal Defects. Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Crystal Defects Perfect crystal - every atom of the same type in the correct equilibrium position (does not exist at T > 0 K) Real crystal - all crystals have some imperfections - defects, most atoms are

More information

A New Technique to Determine the Coordination Number of BCC, FCC and HCP Structures of Metallic Crystal Lattices using Graphs

A New Technique to Determine the Coordination Number of BCC, FCC and HCP Structures of Metallic Crystal Lattices using Graphs A New Technique to Determine the Coordination Number of BCC, FCC and HCP Structures of Metallic Crystal Lattices using Graphs Sucharita Chakrabarti Department of Applied Science and Humanities (Mathematics)

More information

How can we describe a crystal?

How can we describe a crystal? How can we describe a crystal? Examples of common structures: (1) The Sodium Chloride (NaCl) Structure (LiH, MgO, MnO, AgBr, PbS, KCl, KBr) The NaCl structure is FCC The basis consists of one Na atom and

More information

Chapter 8: Molecules and Materials

Chapter 8: Molecules and Materials Chapter 8: Molecules and Materials Condensed Phases - Solids Bonding in Solids Metals Insulators Semiconductors Intermolecular Forces Condensed Phases - Liquids Carbon There are three forms of the element

More information