SECOND MIDTERM EXAM Chemistry April 2011 Professor Buhro

Size: px
Start display at page:

Download "SECOND MIDTERM EXAM Chemistry April 2011 Professor Buhro"

Transcription

1 SECOND MIDTERM EXAM Chemistry April 011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any other resource materials may be consulted or examined during the exam period. Calculators are permitted. Partial credit will be given for partially correct reasoning in support of incorrect or correct final answers. Additional space for answers is provided at the end of this exam; please clearly label any answers you place there. Please find Potentially Useful Information attached as the last pages of this exam. 1. (15 pts). (0 pts) 3. (5 pts) 4. (0 pts) 5. (10 pts) 6. (10 pts) Total (100 pts) 1

2 1. 15 total pts. The compound having the nominal composition CeO has the fluorite crystal structure and exhibits good oxide-ion (O ) conductivity. This compound easily becomes oxygen deficient, and its formula is best described as CeO -x where x may have the values 0 < x < 0.5. Ionic conductivity data for CeO -x specimens having different compositions are plotted below. Please answer the questions below. For your reference the ionic radii are r(ce 3+ ) = 1.8 Å, r(ce 4+ ) = 1.11 Å, and r(o ) = 1.4 Å. The Pauling electronegativities are (Ce) = 1.1 and (O) = ln CeO 1.75 CeO 1.9 1/T (a) 05 pts. The ln vs. T 1 data for both compounds give linear plots. What conclusion may be drawn from the linearity in these plots? Please explain briefly. (b) 05 pts. Please identify the conductivity mechanism or mechanisms active in CeO -x and provide a brief justification for your answer. (c) 05 pts. The plots above differ greatly (quantitatively) from one another. Please explain the physical or chemical origin of this difference.

3 . 0 total pts. The following description of the alumina-silica (Al O 3 -SiO ) phase diagram dates back to the 1960s (it has since been revised). Al O 3 and SiO melt at 060 and 170 C, respectively. Only one compound forms from alumina and silica, having the composition 3Al O 3 SiO or Al 6 Si O 13. This compound is known as mullite and it melts congruently at 1850 C. Eutectic points occur at 5 mol % Al O 3 and 1595 C, and at 67 mol % Al O 3 and 1840 C. Please sketch this 1960s-era phase diagram in the space below, and label all regions. (The corrected alumina-silica phase diagram is found in F. J. Klug et al. J. Am. Ceram. Soc. 1987, 70, ) T (C) Al O 3 mol % SiO SiO 3

4 3. 5 total pts. Please consider the Ti Ni phase diagram shown below and provide the requested information: (a) 01 pt. Please identify each line compound on the diagram by writing its formula below. (b) 04 pts. Please identify each congruent melting point on the diagram by writing its temperature and the corresponding component composition below. (c) 05 pts. Please identify each phase that forms solid solutions by writing its (nominal) formula below. 4

5 (d) 03 pts. Please identify each eutectic point on the diagram by writing its temperature and the corresponding component composition below. (e) 03 pts. Please identify the peritectic point on the diagram by writing its temperature and the corresponding component composition below. Please indicate if this peritectic point is also an incongruent melting point. (f) 04 pts. Assume that a liquid having a component composition of Ti:Ni = 30:70 is cooled infinitely slowly from 1600 o C to 1000 o C. Please give the component composition, the phase composition, and the composition(s) of the phase(s) present in the specimen at 1000 o C. (g) 05 pts. Now assume that the same liquid (as in part f) having a component composition of Ti:Ni = 30:70 is cooled at a normal cooling rate from 1600 o C to 1000 o C. Please sketch the microstructure of the specimen at 1000 o C. Please be sure to clearly label all phases and microconstituents that are present. 5

6 4. 0 total pts. The Madelung constant A for the NaCl structure is Here you will calculate the Madelung constants for three small fragments of (clusters from) the NaCl structure in (a)- (c) below. Assume that the nearest cation-anion separations in these clusters are the same as in a NaCl crystal. Please show your work, and then answer the following questions. (a) 05 pts. Determine A for a cluster consisting of one anion and one cation: + A = (b) 05 pts. Determine A for a cluster consisting of two anions and two cations positioned at the vertices of a square: + + A = (c) 05 pts. Determine A for a cluster consisting of four anions and four cations positioned at the vertices of a cube: A = (d) 05 pts. Why is NaCl normally found as an extended, nonmolecular crystal lattice rather than as small molecular clusters like those shown above? Please explain briefly. 6

7 5. 10 total pts. The compound formed when graphite is fully intercalated with elemental K has the formula KC 8. The XRD pattern in the region of the 004 reflection ( = 16.56º) of KC 8 is shown below. KC 8 can be de-intercalated by heating, which expels and vaporizes the K. The XRD pattern undergoes changes as this process occurs, as described below. The experiment considered here was discontinued before all of the K was removed. Intensity (a.u.) Degrees -Theta (a) 03 pts. As the de-intercalation proceeded, the XRD peak at 16.46º gradually disappeared as another peak grew in to a maximum intensity at one of the positions indicated by the vertical lines. This second peak then gradually disappeared as another peak grew in to a maximum intensity at one of the other positions indicated. Eventually peaks had appeared at all the positions marked by the verticals. What process was responsible for this behavior? Please give your answer in a single sentence. (b) 03 pts. Which new peak was the first to appear and which the last to appear as deintercalation proceeded? Please identify these peaks by their values. (c) 04 pts. Please provide an appropriate stage label for each vertical in the space above it. 7

8 6. 10 total pts. A and B are metallic elements having fcc crystal structures and the lattice parameters a = 3.5 and 4.95 Å, respectively. A partial A-B phase diagram, for the temperature range below the solidus, is given below. Please determine the lattice parameter(s) of the phase or phases present at state point p. Be sure to show your work. T (C) p A mol % B B 8

9 Extra Work Space Please clearly label any work placed here for grading. 9

10 Potentially Useful Information Engel-Brewer rules: s, p electrons structure bcc hcp fcc 4 diamond (cubic) 1 Å = 10 8 cm = m Cu K radiation ( = 1.54 Å) n = dsin d hkl = a(h + k + l ) -1/ for cubic systems (a = b = c, = = = 90 o ) 1/ 4 l d hkl ( ) h k hk for hexagonal systems (a = b c, = = 90 o, = 10 o ) 3a c d hkl = (h /a + k /b + l /c ) -1/ for orthonormal (including tetragonal and orthorhombic) crystal systems ( = = = 90 o ); for tetragonal systems, a = b c for orthorhombic systems, a b c sin ( 1 )/sin ( ) = m 1 /m, where m = (h + k + l ) In an ideal hcp metal, in which all 1 nearest neighbors are equidistant, c/a = The area of a parallelogram is: b = base h = height area = b h h parallelepiped b The volume of a parallelepiped is: h base area = parallelogram area h = height parallelepiped volume = (base area) h 10

11 The volume of a sphere is: V sphere = r 3 Definitions of sine and cosine functions: sin = opposite side/hypotenuse (of a right triangle) cos = adjacent side/hypotenuse (of a right triangle) Lowest-angle reflections in XRD powder patterns: Primitive-cubic lattice 100 Primitive but non-cubic lattice 100, or 010, or 001 bcc lattice 110 fcc lattice 111 simple hcp-based structure 100 or 00 Reflections present (allowed by symmetry): primitive (P) all hkl may be present* body-centered (I) h + k + l = n (even)* face-centered (F) hkl are all odd or all even* A-centered (A) k + l = n* B-centered (B) h + l = n* C-centered (C) h + k = n* Systematic absences (extinctions): primitive (P) no absences required by lattice type* body-centered (I) h + k + l = odd* face-centered (F) 100, 110, 10, 11, (300, 1), 310, 30, 31, etc.* diamond (F) 100, 110, 00, 10, 11, (300, 1), 310,, 30, 31, etc. *Note well: additional absences may be present, depending on the space-group symmetry (rather than lattice symmetry) of specific, individual cases. radius ratio rules: r M /r X = CN of M = CN of M = CN of M = 8 Z 1Ze VCoul 4 0d U ( d) U 0 ANZ1Ze 4 d 0 ANZ 1Ze d NB n d 1 1 n Structure Madelung constant A NaCl 1.75 CsCl 1.76 Zinc blende Wurtzite CaF.5 Rutile (TiO ).41 CdI.36 Ion configuration Born exponent, n He 5 Ne 7 Ar, Cu + 9 Kr, Ag + 10 Xe, Au

12 e = C 4 0 = = C J -1 m -1 1 Å = 10 8 cm = m n e i ii 1 i E Aexp a RT Coordination-number ratio: For a compound M n X m, CN M /CN X = m/n d-spacings in intercalated crystals: d 00l = d 1 + (n 1)d 0 where: d 00l is the characteristic spacing, the translational period length, in the z direction (such as d 001 ) d 1 is the interlayer spacing in the stage-1 compound d 0 is the interlayer spacing in the empty (non-intercalated) host crystal n is the stage number 1

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro

FIRST MIDTERM EXAM Chemistry March 2011 Professor Buhro FIRST MIDTERM EXAM Chemistry 465 1 March 2011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any

More information

FINAL EXAM Chemistry May 2011 Professor Buhro. ID Number:

FINAL EXAM Chemistry May 2011 Professor Buhro. ID Number: FINAL EXAM Chemistry 465 10 May 011 Professor Buhro Signature Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or any other resource

More information

KEY FIRST MIDTERM EXAM Chemistry February 2009 Professor Buhro

KEY FIRST MIDTERM EXAM Chemistry February 2009 Professor Buhro KEY FIRST MIDTERM EXAM Chemistry 465 19 February 2009 Professor Buhro Signature KEY Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student

More information

FINAL EXAM KEY. Professor Buhro. ID Number:

FINAL EXAM KEY. Professor Buhro. ID Number: FINAL EXAM Chemistry 465 KEY 10 May 011 Professor Buhro KEY Signature KEY Print Name Clearly ID Number: Information. This is a closed-book exam; no books, notes, other students, other student exams, or

More information

KEY. FINAL EXAM Chemistry May 2012 Professor Buhro. ID Number:

KEY. FINAL EXAM Chemistry May 2012 Professor Buhro. ID Number: KEY FINAL EXAM Chemistry 465 8 May 2012 Professor Buhro KEY Signature KEY Print Name Clearly ID Number: Information This is a closed-book exam; no books, notes, other students, other student exams, or

More information

These metal centres interact through metallic bonding

These metal centres interact through metallic bonding The structures of simple solids The majority of inorganic compounds exist as solids and comprise ordered arrays of atoms, ions, or molecules. Some of the simplest solids are the metals, the structures

More information

Solid State-1 1) Ionic solids are characterised by 1) Good conductivity in solid state 2) High vapour pressure 3) Low melting point 4) Solubility in polar solvents 2) Three metals X, Y and Z are crystallised

More information

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements

Problems. 104 CHAPTER 3 Atomic and Ionic Arrangements 104 CHAPTER 3 Atomic and Ionic Arrangements Repeat distance The distance from one lattice point to the adjacent lattice point along a direction. Short-range order The regular and predictable arrangement

More information

Chem 253, UC, Berkeley. Chem 253, UC, Berkeley

Chem 253, UC, Berkeley. Chem 253, UC, Berkeley 1 2 Theorem: For any family of lattice planes separated by distance d, there are reciprocal lattice vectors perpendicular to the planes, the shortest being 2 /d. Orientation of plane is determined by a

More information

CRYSTAL STRUCTURE TERMS

CRYSTAL STRUCTURE TERMS CRYSTAL STRUCTURE TERMS crystalline material - a material in which atoms, ions, or molecules are situated in a periodic 3-dimensional array over large atomic distances (all metals, many ceramic materials,

More information

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline

More information

CHAPTER. The Structure of Crystalline Solids

CHAPTER. The Structure of Crystalline Solids CHAPTER 4 The Structure of Crystalline Solids 1 Chapter 4: The Structure of Crystalline Solids ISSUES TO ADDRESS... What are common crystal structures for metals and ceramics? What features of a metal

More information

1.10 Close packed structures cubic and hexagonal close packing

1.10 Close packed structures cubic and hexagonal close packing 1.9 Description of crystal structures The most common way for describing crystal structure is to refer the structure to the unit cell. The structure is given by the size and shape of the cell and the position

More information

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics

بسم هللا الرحمن الرحیم. Materials Science. Chapter 3 Structures of Metals & Ceramics بسم هللا الرحمن الرحیم Materials Science Chapter 3 Structures of Metals & Ceramics 1 ISSUES TO ADDRESS... How do atoms assemble into solid structures? How does the density of a material depend on its structure?

More information

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering

Solids. The difference between crystalline and non-crystalline materials is in the extent of ordering Chapter 3 The Structure t of Crystalline Solids The difference between crystalline and non-crystalline materials is in the extent of ordering Both materials have the same composition but one is ordered

More information

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures.

METALLIC CRYSTALS. tend to be densely packed. have several reasons for dense packing: have the simplest crystal structures. METALLIC CRYSTALS tend to be densely packed. have several reasons for dense packing: -Typically, only one element is present, so all atomic radii are the same. -Metallic bonding is not directional. -Nearest

More information

Introduction to Solid State Physics

Introduction to Solid State Physics z y x Introduction to Solid State Physics Lecture 2 Prof. Igor Shvets ivchvets@tcd.ie Slide 1Lecture 2 Primitive Vectors of a Bravais Lattice By definition all Bravais lattices must be described by a set

More information

SOLID-STATE STRUCTURE.. FUNDAMENTALS

SOLID-STATE STRUCTURE.. FUNDAMENTALS SOLID-STATE STRUCTURE.. FUNDAMENTALS Metallic Elements & Sphere Packing, Unit Celis, Coordination Number, Ionic Structures Stoichiometry PRELAB ASSIGNMENT Properties of Shapes & Patterns following question

More information

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart

CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES. Sarah Lambart CHAPTER 3: SYMMETRY AND GROUPS, AND CRYSTAL STRUCTURES Sarah Lambart RECAP CHAP. 2 2 different types of close packing: hcp: tetrahedral interstice (ABABA) ccp: octahedral interstice (ABCABC) Definitions:

More information

Chapter1: Crystal Structure 1

Chapter1: Crystal Structure 1 Chapter1: Crystal Structure 1 University of Technology Laser Engineering & Optoelectronic Department Glass: 3 rd year Optoelectronic Engineering Subject: Solid state physics & material science Ass. Prof.

More information

Structure of silica glasses (Chapter 12)

Structure of silica glasses (Chapter 12) Questions and Problems 97 Glass Ceramics (Structure) heat-treated so as to become crystalline in nature. The following concept map notes this relationship: Structure of noncrystalline solids (Chapter 3)

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Engineering 45 The Structure and Properties of Materials Midterm Examination October 26, 1987

Engineering 45 The Structure and Properties of Materials Midterm Examination October 26, 1987 Engineering 45 The Structure and Properties of Materials Midterm Examination October 26, 1987 Problem 1: (a) The compound CsCl is an ordered arrangement of Cs and Cl over the sites of a BCC lattice. Draw

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction

LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH PART 1: CRYSTAL GROWTH. I. Introduction LAB II CRYSTAL STRUCTURE AND CRYSTAL GROWTH This lab will be divided into two parts. In the first part, you will be growing crystals from a seed crystal in a very visual demonstration of heterogeneous

More information

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they?

Order in materials. Making Solid Stuff. Primary Bonds Summary. How do they arrange themselves? Results from atomic bonding. What are they? Making Solid Stuff Primary Bonds Summary What are they? Results from atomic bonding So the atoms bond together! Order in materials No long range order to atoms Gases little or no interaction between components

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1.

Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1. Inorganic Chemistry with Doc M. Day 10. Ionic Thrills, Part 1. Topics: 1. Properties of ionic substances 7. Octahedral and tetrahedral holes 2. Cubic lattices and the periodic table 8. The cesium chloride

More information

Close Packings of Spheres I.

Close Packings of Spheres I. Close Packings of Spheres I. close packed layer a non-close packed layer stacking of 2 close packed layers 3rd layer at position S: h.c.p. 3rd layer at position T: c.c.p. h.c.p.: hexagonal close packing

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3.

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3. Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 13. Ionic Thrills Part 3. Name(s): Element: Topics: 1. Octahedral and tetrahedral holes and the hcp lattice 2. Occupying the octahedral and tetrahedral

More information

ENGINEERING MATERIALS LECTURE #4

ENGINEERING MATERIALS LECTURE #4 ENGINEERING MATERIALS LECTURE #4 Chapter 3: The Structure of Crystalline Solids Topics to Cover What is the difference in atomic arrangement between crystalline and noncrystalline solids? What features

More information

PROPERTIES OF MATERIALS IN ELECTRICAL ENGINEERING MIME262 MID-TERM EXAM

PROPERTIES OF MATERIALS IN ELECTRICAL ENGINEERING MIME262 MID-TERM EXAM MID-TERM EXAM, Oct 16 th, 008 DURATION: 50 mins Version CLOSED BOOK McGill ID Name All students must have one of the following types of calculators: CASIO fx-115, CASIO fx-991, CASIO fx-570ms SHARP EL-50,

More information

CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES. Sarah Lambart

CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES. Sarah Lambart CHAPTER 2: ATOMIC ARRANGEMENTS AND MINERALOGICAL STRUCTURES Sarah Lambart RECAP CHAP. 1 Mineral: naturally occurring (always) a structure and a composition that give it defined macroscopic properties (always)

More information

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model.

Stacking Oranges. Packing atoms together Long Range Order. What controls the nearest number of atoms? Hard Sphere Model. Hard Sphere Model. { Stacking atoms together Crystal Structure Stacking Oranges Packing atoms together Long Range Order Crystalline materials... atoms pack in periodic, 3D arrays typical of: -metals -many ceramics -some

More information

Intermolecular Forces. Part 2 The Solid State: Crystals

Intermolecular Forces. Part 2 The Solid State: Crystals Intermolecular Forces Part 2 The Solid State: Crystals 1 Prof. Zvi C. Koren 20.07.2010 Calculation of Lattice Energy, U, from a Thermodynamic Cycle What are the energies, virtual and real, involved in

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE 1 Chapter 3 The structure of crystalline solids 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 12/10/2014 Quiz # 1 will be held on Monday 13/10/2014 at 11:00 am

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10

Materials Science ME 274. Dr Yehia M. Youssef. Materials Science. Copyright YM Youssef, 4-Oct-10 ME 274 Dr Yehia M. Youssef 1 The Structure of Crystalline Solids Solid materials may be classified according to the regularity with which atoms or ions are arranged with respect to one another. A crystalline

More information

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved.

Chapter 3: Atomic and Ionic Arrangements. Chapter 3: Atomic and Ionic Arrangements Cengage Learning Engineering. All Rights Reserved. Chapter 3: Atomic and Ionic Arrangements 3-1 Learning Objectives 1. 2. 3. 4. 5. 6. 7. 8. Short-range order versus long-range order Amorphous materials Lattice, basis, unit cells, and crystal structures

More information

www-materials.eng.cam.ac.uk/typd

www-materials.eng.cam.ac.uk/typd Part IB Paper 3: MATERIALS Examples Paper 3/1: TEACH YOURSELF PHASE DIAGRAMS This examples paper forms part of an interactive online resource Teach Yourself Phase Diagrams which is available at: www-materials.eng.cam.ac.uk/typd

More information

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa

E45 Midterm 01 Fall 2007! By the 0.2% offset method (shown on plot), YS = 500 MPa 1.!Mechanical Properties (20 points) Refer to the following stress-strain plot derived from a standard uniaxial tensile test of a high performance titanium alloy to answer the following questions. Show

More information

Point Defects in Metals

Point Defects in Metals CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Point Defects in Metals 5.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 327 C (600 K). Assume an energy

More information

CHAPTER9. Phase Diagrams Equilibrium Microstructural Development

CHAPTER9. Phase Diagrams Equilibrium Microstructural Development CHAPTER9 Phase Diagrams Equilibrium Microstructural Development The microstructure of a slowly cooled eutectic soft solder ( 38 wt%pb wt % Sn) consists of a lamellar structure of tin-rich solid solution

More information

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy.

Energy and Packing. typical neighbor bond energy. typical neighbor bond energy. Dense, regular-packed structures tend to have lower energy. Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Chapter 12 The Solid State The Structure of Metals and Alloys

Chapter 12 The Solid State The Structure of Metals and Alloys Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks long-range

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name METALLURGY AND MATERIAL SCIENCE Course Code AME005 Class III Semester

More information

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1)

Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) Solid State Physics 460- Lecture 2a Structure of Crystals (Kittel Ch. 1) See many great sites like ob s rock shop with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10. Liquids and Solids Three States of Matter H 2 O Volume constant constant no Shape constant no no Why in three different states? 1 Intermolecular Force dipole-dipole attraction V dip-dip : 1.

More information

CH445/545 Winter 2008

CH445/545 Winter 2008 CH445/545 Winter 2008 Assignment # 1 - due 01/18/08 60 total points SHOW ALL WORKING FOR FULL CREDIT, ANSWERS WITHOUT WORKING WILL BE PENALIZED! 1. Text Ch. 1 # 2 "Calculate the size of the largest sphere

More information

Ceramic Science 4RO3. Lecture 2. Tannaz Javadi. September 16, 2013

Ceramic Science 4RO3. Lecture 2. Tannaz Javadi. September 16, 2013 Ceramic Science 4RO3 Lecture 2 September 16, 2013 Tannaz Javadi Rule 5: In an Ionic structure the chemical environment (cations) that is surrounding an anion should be at least uniform and similar. Although

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

CHEM J-2 June 2014

CHEM J-2 June 2014 CHEM1102 2014-J-2 June 2014 The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. 2 What is

More information

Chapter 1. Crystal Structure

Chapter 1. Crystal Structure Chapter 1. Crystal Structure Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement Amorphous solids: No ordered structure to the particles of the solid. No well defined

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Interatomic bonding Bonding Forces and Energies Equilibrium

More information

Chem 241. Lecture 19. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 19. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 19 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Water Redox Comp/Disproportionation Latimer Diagram Frost Diagram Pourbaix Diagram... 2 Ellingham

More information

Lecture 3: Description crystal structures / Defects

Lecture 3: Description crystal structures / Defects Lecture 3: Description crystal structures / Defects Coordination Close packed structures Cubic close packing Hexagonal close packing Metallic structures Ionic structures with interstitial sites Important

More information

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially.

Crystal structure of the material :- the manner in which atoms, ions, or molecules are spatially. Crystal structure A crystalline material :- is one in which the atoms are situated in a repeating or periodic array over large atomic distances. Crystal structure of the material :- the manner in which

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

ECE440 Nanoelectronics. Lecture 08 Review of Solid State Physics

ECE440 Nanoelectronics. Lecture 08 Review of Solid State Physics ECE440 Nanoelectronics Lecture 08 Review of Solid State Physics A Brief review of Solid State Physics Crystal lattice, reciprocal lattice, symmetry Crystal directions and planes Energy bands, bandgap Direct

More information

Physics 6180: Graduate Physics Laboratory. Experiment CM5: X-ray diffraction and crystal structures

Physics 6180: Graduate Physics Laboratory. Experiment CM5: X-ray diffraction and crystal structures Physics 6180: Graduate Physics Laboratory Experiment CM5: X-ray diffraction and crystal structures References: Preston and Dietz, Expt. 10 pp. 180-197 Eisberg and Resnick, Quantum Physics, Sec. 9 Kittel,

More information

Development of Microstructure in Eutectic Alloys

Development of Microstructure in Eutectic Alloys CHAPTER 10 PHASE DIAGRAMS PROBLEM SOLUTIONS Development of Microstructure in Eutectic Alloys 10.16 Briefly explain why, upon solidification, an alloy of eutectic composition forms a microstructure consisting

More information

Physical Ceramics. Principles for Ceramic Science and Engineering. Yet-Ming Chiang Massachusetts Institute of Technology Cambridge, Massachusetts

Physical Ceramics. Principles for Ceramic Science and Engineering. Yet-Ming Chiang Massachusetts Institute of Technology Cambridge, Massachusetts Physical Ceramics Principles for Ceramic Science and Engineering Yet-Ming Chiang Massachusetts Institute of Technology Cambridge, Massachusetts Dunbar P. Birnie, III University of Arizona Tucson, Arizona

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

Chapter 16. Liquids and Solids. Chapter 16 Slide 1 of 87

Chapter 16. Liquids and Solids. Chapter 16 Slide 1 of 87 Chapter 16 Liquids and Solids Chapter 16 Slide 1 of 87 Chapter Preview Intramolecular forces determine such molecular properties as molecular geometries and dipole moments. Intermolecular forces determine

More information

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli

Chapter-3 MSE-201-R. Prof. Dr. Altan Türkeli Chapter-3 MSE-201-R Prof. Dr. Altan Türkeli The Structure of Crystalline Solids FUNDAMENTAL CONCEPTS Solid materials may be classified according to the regularity with which atoms or ions are arranged

More information

Chemistry/Materials Science and Engineering C150 Introduction to Materials Chemistry

Chemistry/Materials Science and Engineering C150 Introduction to Materials Chemistry Chemistry/Materials Science and Engineering C150 Introduction to Materials Chemistry Class will meet Tuesdays and Thursdays, 8:00-9:30 am, in 433 Latimer Hall. Instructor: Office Hours: Jeffrey Long (211

More information

Chapter 11. States of Matter Liquids and Solids. Enthalpy of Phase Change

Chapter 11. States of Matter Liquids and Solids. Enthalpy of Phase Change Chapter 11 solids: rigid ordered arrangement or particles fixed volume and shape not compressible particles very close together States of Matter Liquids and Solids liquids: fluid (flow) fixed volume but

More information

Energy and Packing. Materials and Packing

Energy and Packing. Materials and Packing Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS)

Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. What are anistropic substances. 2. Why are amorphous solids isotropic in nature?. Why glass is regarded as an amorphous solid? 4.

More information

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 3 Atomic and Ionic Arrangements The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé Chapter 3 Atomic and Ionic Arrangements 1 Objectives of Chapter 3 To learn classification of materials based on atomic/ionic

More information

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES

SECTION A. NATURAL SCIENCES TRIPOS Part IA. Friday 4 June to 4.30 MATERIALS AND MINERAL SCIENCES NATURAL SCIENCES TRIPOS Part IA Friday 4 June 1999 1.30 to 4.30 MATERIALS AND MINERAL SCIENCES Answer five questions; two from each of sections A and B and one from section C. Begin each answer at the

More information

Introduction to phase diagrams

Introduction to phase diagrams ASM Phase Diagram Database Diagram No. 901229 Department of Physics and Astronomy Introduction to phase diagrams William Meier Physics 590B Fall 2018 Outline Part 1 Introduction and basics Part 2 Fundamental

More information

General Objective. To develop the knowledge of crystal structure and their properties.

General Objective. To develop the knowledge of crystal structure and their properties. CRYSTAL PHYSICS 1 General Objective To develop the knowledge of crystal structure and their properties. 2 Specific Objectives 1. Differentiate crystalline and amorphous solids. 2. To explain nine fundamental

More information

Thermal Analysis phase diagrams

Thermal Analysis phase diagrams Thermal Analysis phase diagrams R W McCallum Ames Laboratory And Materials Science and Engineering Why Phase Diagrams Thermal analysis gives us information about phase transitions which are the lines on

More information

Packing of atoms in solids

Packing of atoms in solids MME131: Lecture 6 Packing of atoms in solids A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s topics Atomic arrangements in solids Points, directions and planes in unit cell References:

More information

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

Materials Science. Why?

Materials Science. Why? Materials Science and Engineering, 2012 Compiled by Greg Heness & Mike Cortie Chapter 3 Crystalline Structure - Perfection, pp. 40-101 Materials Science A knowledge of this material is needed for diverse

More information

MME 2001 MATERIALS SCIENCE

MME 2001 MATERIALS SCIENCE MME 2001 MATERIALS SCIENCE 1 20.10.2015 crystal structures X tal structure Coord. # Atoms/ unit cell a=f(r) APF % SC 6 1 2R 52 BCC 8 2 4R/ 3 68 FCC 12 4 2R 2 74 HCP 12 6 2R 74 Theoretical Density, knowing

More information

Solids SECTION Critical Thinking

Solids SECTION Critical Thinking SECTION 10.3 Solids A gas has neither a definite volume nor a definite shape. A liquid has a definite volume, but not a definite shape. A solid, the third state, has a definite volume and a definite shape.

More information

MSE 513 Homework #1 Due Jan. 21, 2013

MSE 513 Homework #1 Due Jan. 21, 2013 Reading: My class notes, pgs. 22-27. http://www1.asminternational.org/asmenterprise/apd/help/help.aspx Introduction to Phase diagrams, particularly: o Common terms o Binary diagrams o Features of phase

More information

Chapter One: The Structure of Metals

Chapter One: The Structure of Metals Fourth Edition SI Version Chapter One: The Structure of Metals 2010. Cengage Learning, Engineering. All Rights Reserved. 1.1 Importance of the structure: Structures Processing Properties Applications Classification

More information

USE OF IN-SITU XRD TO DEVELOP CONDUCTING CERAMICS WITH THE AURIVILLIUS CRYSTAL STRUCTURE

USE OF IN-SITU XRD TO DEVELOP CONDUCTING CERAMICS WITH THE AURIVILLIUS CRYSTAL STRUCTURE Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 117 USE OF IN-SITU XRD TO DEVELOP CONDUCTING CERAMICS WITH THE AURIVILLIUS CRYSTAL STRUCTURE Scott

More information

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples

Two marks questions and answers. 1. what is a Crystal? (or) What are crystalline materials? Give examples UNIT V CRYSTAL PHYSICS PART-A Two marks questions and answers 1. what is a Crystal? (or) What are crystalline materials? Give examples Crystalline solids (or) Crystals are those in which the constituent

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

Cu/Ag Eutectic System

Cu/Ag Eutectic System Eutectic Systems The simplest kind of system with two solid phases is called a eutectic system. A eutectic system contains two solid phases at low temperature. These phases may have different crystal structures,

More information

Phase diagrams are diagrammatic representations of the phases present in a

Phase diagrams are diagrammatic representations of the phases present in a Chapter 4 What is a binary phase diagram? Phase diagrams are diagrammatic representations of the phases present in a system under specified equilibrium conditions, most often composition, temperature and

More information

Two Components System

Two Components System Two Components System Three independent variables: T, P, compositions In general, constant pressure (fixed parameter). P+F=C+1 Simple Eutectic System The binary eutectic phase diagram explains the chemical

More information

Now, let s examine how atoms are affected as liquids transform into solids.

Now, let s examine how atoms are affected as liquids transform into solids. Now, let s examine how atoms are affected as liquids transform into solids. 1 Before we deal with PROPERTIES of materials, it s beneficial to remember where we have come from, and where we are going. Later,

More information

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 3: The Structure of Crystalline Solids Dr. Coates Learning Objectives I 1. Describe difference in atomic/molecular structure between crystalline/noncrystalline

More information

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space.

CRYSTAL LATTICE. Defining lattice: Mathematical construct; ideally infinite arrangement of points in space. CRYSTAL LATTICE How to form a crystal? 1. Define the structure of the lattice 2. Define the lattice constant 3. Define the basis Defining lattice: Mathematical construct; ideally infinite arrangement of

More information

(iii) Describe how you would use a powder diffraction pattern of this material to measure

(iii) Describe how you would use a powder diffraction pattern of this material to measure Supplemental Problems for Chapter 5 100 45.29 Intensity, au 80 60 40 20 38.95 65.98 30 40 50 60 70 2!, 1) The figure above shows a schematic diffraction pattern for a cubic material, recorded with an X-ray

More information

A - Transformation of anatase into rutile

A - Transformation of anatase into rutile Exercise-Course-XRD.doc 1/12 04/06/2012 A - Transformation of anatase into rutile Anatase and rutile are two distinct phases of titanium dioxide TiO 2. The stable phase is rutile. 1. Structural study Anatase:

More information

Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

CHAPTER THE SOLID STATE

CHAPTER THE SOLID STATE 133 CHAPTER THE SOLID STATE 1. The ability of a substances to assume two or more crystalline structures is called [1990] Isomerism Polymorphism Isomorphism Amorphism 2. Most crystals show good cleavage

More information

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor PHASE DIAGRAMS Phase a chemically and structurally homogenous region of a material. Region of uniform physical and chemical characteristics. Phase boundaries separate two distinct phases. A single phase

More information