INVESTIGATION OF SUPERHEATED LIQUID CARBON DIOXIDE JETS FOR CUTTING APPLICATIONS

Size: px
Start display at page:

Download "INVESTIGATION OF SUPERHEATED LIQUID CARBON DIOXIDE JETS FOR CUTTING APPLICATIONS"

Transcription

1 INVESTIGATION OF SUPERHEATED LIQUID CARBON DIOXIDE JETS FOR CUTTING APPLICATIONS L. Engelmeier, S. Pollak*, E. Weidner Chair of Particle Technology, Ruhr-University Bochum Universitätsstraße 150, Bochum, Germany INTRODUCTION High pressure water jets are commonly used in cutting applications. If carbon dioxide is used instead of water, a residue free and dry processing is possible. Furthermore, improved cutting properties are expected, in comparison to the water jet technology. The premise for using CO 2 as a cutting fluid is the formation of liquid and coherent jets with a high specific energy. [1, 2] Coherent jets are characterized by an intact column with a constant diameter for a certain distance from the nozzle exit. In thermodynamic equilibrium, CO 2 does not exist in a liquid state at atmospheric pressure (figure 1). Below its triple point pressure of p T = 5,18 bar CO 2 exists only in a gaseous or solid state. Therefore, during the isentropic expansion through a nozzle from a liquid state to atmospheric pressure the saturation curve is crossed and a phase transition to gaseous/solid expected. 40 critical point Temperature in C solid 3000 bar 2000 bar 1000 bar solid/liquid gaseous 50 bar liquid liquid/ gaseous triple point pressure = 5,18 bar solid gaseous 1 bar Entropy in J/(mol K) Figure 1: Ts-diagram of carbon dioxide, calculated with [3]. The aim of this study is to investigate the possibilities for generating liquid and coherent CO 2 - jets. For this purpose CO 2 is compressed up to 350 MPa, cooled and expanded via a cylindrical, sharp edged nozzle. A particle image velocimetry system is used to investigate the influence of the injection temperature, injection pressure and post-expansion pressure on phase state and jet structure.

2 MATERIALS AND METHODS Experimental Setup Figure 2 shows a photograph of the experimental setup. Liquid carbon dioxide is compressed in a high pressure pump up to 3500 bar, is led via high pressure tubing to a heat exchanger, cooled, and is expanded through a nozzle. The nozzle is made of sapphire as commonly used in water jet cutting applications. These nozzles have a sharp edged entrance enabling the formation of long and coherent jets with a high specific energy density. The experiments were conducted under variation of injection pressure (50 bar < p < 3500 bar), injection temperature (minus 30 C < T < 20 C) and nozzle diameter (0,08 mm < d < 0,17 mm). nozzle high pressure intensifier thermostat II heat exchanger II (on the back of the front panel) heat exchanger I thermostat I Visualisation of the carbon dioxide jets Figure 2: Experimental setup. A particle-image-velocimetry system is used to analyse the jet phase composition and jet geometry. A laser light source, the camera and the jet are arranged along an optical axis as shown in figure 3. The laser light is expanded by a diffusor unit and illuminates a dye plate which in turn emits diffuse light with a wave length of 574 to 580 nm and a pulse duration of 20 ns. Thereby sharp images of the jets in spite of high jet velocities can be taken. nozzle lens jet dye plate camera object plane diffusor unit laser Figure 3: Arrangement of the particle-image-velocimetry system for flow visualisation.

3 RESULTS Influence of injection temperature The influence of injection temperature is shown in figure 4. The jets are formed with a nozzle diameter d = 0,08 mm, the injection pressure is increased from 200 bar to 1000 bar in steps of 200 bar. The injection temperature of the jets shown in the upper row is 20 C, the temperature of the jets in the second row is minus 14 C. At 20 C the jets fan out at the nozzle exit, the angle increases with increased injection pressure. The phase behaviour cannot be clearly identified by the photographs, but it is presumed that the continuous phase is in a gaseous state and the discontinuous phase consists of dry ice particles. With decreasing the injection temperature the jet structure changes considerably. The jets have a constant diameter over a certain distance from the nozzle exit. Magnifications show a wavy but closed, liquid column in the coherent portion of the jet. As CO 2 does not exist in a liquid phase at atmospheric pressure in thermodynamic equilibrium, the carbon dioxide must be in a metastable, superheated state. That implies that when crossing the saturation curve the phase change does not happen instantaneously and liquid, superheated jets can be formed. Within an injection pressure range of 50 to 3500 bar and with nozzle diameter of d = 0,08 mm and d = 0,1 mm liquid jets can be formed if the injection temperature is sufficiently low. Measurements show that the formation of liquid jets works well with injection temperatures close to the melting temperature. Figure 4: Influence of injection temperature on jet appearances.

4 Mechanical jet breakup of superheated jets Compared to water jets formed under similar pressure and nozzle conditions the coherent jet length is considerably shorter with CO 2. Water jets have a smooth and glassy appearance, whereas the CO 2 -jets have a wavy and ruffled surface. The shorter jet length and thus the jet breakup are caused by either thermodynamic or fluid-dynamic instabilities or a combination of both. The jet breakup mechanism of thermodynamic stable liquids is well known and dates back to the beginning of the 20 th century. Haenlein [4] identified four breakup regimes depending on jet velocity (figure 5a). The Rayleigh-regime is characterised by axisymmetric surface waves which are amplified by surface tension forces. The jet disintegrates into droplets with a diameter greater than the jet diameter. With increased jet velocity the surface waves become sinusoidal and are enhanced by aerodynamic forces resulting in a breakup of the jet into droplets with a diameter comparable to or smaller than the jet diameter (first and second wind induced jet breakup). With further increase in jet velocity the jet disintegrates into small droplets at the nozzle exit, also known as atomization. Ohnesorge [5] has shown that these four regimes can be depicted in the so called Oh-diagram, where the dimensionless Ohnumber is plotted against the Re-number (figure 5b). The Oh-number is a function of fluid properties (dynamic viscosity η L, density ρ L, surface tension σ) and the nozzle diameter. Oh = η L ρ l σ d d This classification predicts an atomization of high pressure water jets as well as of the liquid carbon dioxide jets that are shown in figure 4. These jets do not disintegrate at the nozzle exit. Thus the Oh-diagram is not suitable for the classification of these jets. The reason is that the influence of the nozzle geometry is not considered in the Oh-diagram. In sharped edged nozzles (as used in water jet cutting and in our experiments), the fluid is constricted at the nozzle entrance and emanates from the nozzle without any contact to the nozzle wall (figure 5c). Thereby friction is almost negligible and the jets are characterised by a smooth and glassy appearance. It is conceivable that due to the nozzle flow the boundaries in the Oh-diagram are shifted to higher Re-numbers st and 2nd wind induced L Rayleighregime L 1st and 2nd wind Atomization induced jet breakup regime regime (a) Ohnesorge number jet breakup Rayleigh-Regime Atomization HO 2 CO Reynolds number (b) (c) Figure 5: (a) Jet breakup regimes according to [4], (b) Oh-diagram according to [5], (c) Constricted jets according to [6].

5 Characteristic appearances of the jet breakup that strongly depend on the jet velocity are shown in figure 6. The nozzle diameter is d = 0,08 mm and the injection temperature is T = minus 14 C. At relatively low jet velocity of 70 m/s the jet shows axisymmetric as well as sinusoidal waves, which are enhanced with increasing distance from the nozzle exit. Further down the jet breaks up into droplets with a diameter twice the jet diameter. This behaviour shows similarities to the Rayleigh- and first wind induced breakup regime. Therefore it can be assumed that the jet breakup is dominated by surface tension forces. With increasing jet velocity (170 m/s) the wavelength of the surface waves becomes shorter. With increasing distance to the nozzle exit the displacement of the jet increases and the jet breaks up into droplets smaller that the jet diameter. With further increase in jet velocity the surface waves become more ruffled. Both jets (figure 6b and c) show similarities to the second wind induced breakup regime and aerodynamic forces seem to dominate the jet breakup. Figure 6: Jet breakup regimes of superheated, liquid carbon dioxide jets depending on jet velocity. The results show that similar breakup regimes to the ones shown in figure 5a can be observed, and the boundaries in the Oh-diagram are shifted to higher Re-numbers. That fact that the breakup length is considerably shorter than that of water jets at same pressure and nozzle conditions may be caused by properties of the liquids. The surface tension and the kinematic

6 viscosity of water are around 5 times as big as the ones of liquid carbon dioxide. In consequence carbon dioxide jets are more sensitive to aerodynamic forces and disintegrate in a shorter distance to the nozzle exit. Jet breakup due to flashing phenomena With increasing nozzle diameter the appearance of the liquid jets changes significantly. Characteristic jet images using the example of a nozzle diameter d = 0,15 mm, an injection pressure p = 80 bar and an injection temperature T = 14 C are shown in figure 7, but similar observations are made for d = 0,12 mm and d = 0,15 mm in a pressure range of 50 to 1000 bar. The images show disturbances in the otherwise coherent portion of the jet. Magnifications clarify that the disturbances result from the formation of bubbles. The bubbles can be observed as scratches or round bubbles with a diameter bigger than the jet diameter. It can be assumed that these bubbles are formed due to nucleation phenomena and result in a disintegration of the jet, also known as flashing. Within a pressure range of 50 to 1000 bar jet patterns change randomly between all patterns shown in figure 7, whereby the bubble frequency increases with nozzle diameter and injection pressure. Above 1000 bar the jets become completely atomized. Figure 7: Thermodynamic jet instabilities.

7 SUMMARY AND CONCLUSION Up to a certain nozzle diameter and injection pressure liquid CO 2 -jets can be formed. The observed jet breakup regimes are similar to the jet breakup regimes of cold jets (saturation curve is not crossed during the expansion through a nozzle) and hence are dominated by fluiddynamic instabilities. To increase the breakup length of these jets one can decrease the ambient density to decrease the influence of aerodynamic forces acting on the jet surface. Above a certain nozzle diameter and injection pressure nucleation phenomena in the coherent portion of the jet dominate jet breakup. The relation between increased nucleation rate and both increased nozzle diameter and increased pressure are not known until now. The use of a superheated liquid jet enables residue free and precise cutting, which so far was successfully carried out for relatively soft materials. This gives rise to a number of interesting applications that require a gentle, precise and safe treatment of workpieces and their residues. Further investigations should lead to stabilization of the jet and subsequent increase in coherent jet length. Consequently, the cutting application of liquid superheated jets can be extended to harder and thicker materials. REFERENCES [1] WEIDNER, E., POLLAK, S., CO 2 : Abtrennung, Speicherung, Nutzung., 2015, p. 93 [2] ENGELMEIER, L., POLLAK, S. KRETZSCHMAR, M., WEIDNER; E., Chemie Ingenieur Technik, Vol. 88, 2016, p. 672 [3] SPAN, R., ECKERMANN, T., HERRIG, S., HIELSCHER, S., JÄGER, A., THOL, M., Thermodynamic Reference and Engineering Data, Version 2.0.1, 2015 [4] HAENLEIN, A., Forschung auf dem Gebiet des Ingenieurwesens, Vol. 2, 1931, p. 139 [5] OHNESORGE, W., Zeitschrift für angewandte Mathematik und Mechanik, Vol. 16, 1936, p. 355 [6] HIROYASU, H., ARAI, M., SHIMIZU, M., Recent advances in spray combustion, 1996, p. 173

SUPERCRITICAL ANTISOLVENT PRECIPITATION: ATOMIZATION AND PRODUCT QUALITY

SUPERCRITICAL ANTISOLVENT PRECIPITATION: ATOMIZATION AND PRODUCT QUALITY SUPERCRITICAL ANTISOLVENT PRECIPITATION: ATOMIZATION AND PRODUCT QUALITY H. Kröber* and U. Teipel Fraunhofer Institut für Chemische Technologie, J.-v.-Fraunhofer-Str. 7, D-76327 Pfinztal, Germany, *Fax:

More information

Spray Formation from Homogeneous Flash-Boiling Liquid Jets

Spray Formation from Homogeneous Flash-Boiling Liquid Jets Spray Formation from Homogeneous Flash-Boiling Liquid Jets E. Sher and M. Levi Department of Mechanical Engineering The Pearlstone Center for Aeronautical Studies Ben-Gurion University Beer-Sheva, Israel

More information

Spray Characteristics of Prefilming Type of Airblast Atomizer

Spray Characteristics of Prefilming Type of Airblast Atomizer ICLASS 1, 1 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 6, 1 Spray Characteristics of Prefilming Type of Airblast Atomizer T. Inamura*,

More information

The influence of the lengths of turbine blades on the power produced by miniature wind turbines that operate in non-uniform flow fields

The influence of the lengths of turbine blades on the power produced by miniature wind turbines that operate in non-uniform flow fields World Transactions on Engineering and Technology Education Vol.10, No.2, 2012 2012 WIETE The influence of the lengths of turbine blades on the power produced by miniature wind turbines that operate in

More information

Generation of small batch high quality metal powder

Generation of small batch high quality metal powder Generation of small batch high quality metal powder Daniel Nils Ellendt 2 Lutz Mädler 2 Jörg Fischer- Peter Hofmann 3 Volker Schwenck Bühner 3 Uhlenwinkel schwenck@iwt.unibremen.de Ellendt@iwt.unibremen.de

More information

Liquid Column Deformation and Particle Size Distribution in Gas Atomization

Liquid Column Deformation and Particle Size Distribution in Gas Atomization Materials Sciences and Applications, 2011, 2, 87-96 doi:10.4236/msa.2011.22012 Published Online February 2011 (http://www.scirp.org/journal/msa) 87 Liquid Column Deformation and Particle Size Distribution

More information

Journal of Applied Science and Agriculture. Time Dependent Droplet Size Transport Along the Spray Centerline of Non-Newtonian Solution

Journal of Applied Science and Agriculture. Time Dependent Droplet Size Transport Along the Spray Centerline of Non-Newtonian Solution AENSI Journals Journal of Applied Science and Agriculture ISSN 1816-9112 Journal home page: www.aensiweb.com/jasa Time Dependent Droplet Size Transport Along the Spray Centerline of Non-Newtonian Solution

More information

Effect of temperature on atomization in gas centered coaxial injection systems

Effect of temperature on atomization in gas centered coaxial injection systems Effect of temperature on atomization in gas centered coaxial injection systems V. Sasi Prabhakaran, D. Sivakumar, C. Oommen, and T. J. Tharakan Abstract This paper summarizes the current status of research

More information

Numerical method for modelling spray quenching of cylindrical forgings

Numerical method for modelling spray quenching of cylindrical forgings Modellazione Numerical method for modelling spray quenching of cylindrical forgings M. Soltani, A. Pola, G. M. La Vecchia, M. Modigell Nowadays, in steel industries, spray quenching has been used as a

More information

Numerical modelling of shielding gas flow and heat transfer in laser welding process

Numerical modelling of shielding gas flow and heat transfer in laser welding process Numerical modelling of shielding gas flow and heat transfer in laser welding process Alireza Javidi Shirvan 1, Isabelle Choquet 1, Håkan Nilsson 2 1 University West, Department of Engineering Science,

More information

TECHNOLOGIES FOR APPLYING FLUIDS IN SEMICONDUCTOR PACKAGING

TECHNOLOGIES FOR APPLYING FLUIDS IN SEMICONDUCTOR PACKAGING TECHNOLOGIES FOR APPLYING FLUIDS IN SEMICONDUCTOR PACKAGING Alec J. Babiarz Asymtek Carlsbad, CA, USA ajbabiarz@asymtek.com ABSTRACT Jetting fluids in semiconductor packaging and assembly has become an

More information

A new Technique for Molten Metal Atomization

A new Technique for Molten Metal Atomization A new Technique for Molten Metal Atomization 1. Introduction V. Uhlenwinkel 1, L. Achelis 1, S. Sheikhaliev 2 and S. Lagutkine. 2 1. Institut fuer Werkstofftechnik, Badgassteiner Str. 2, 28359 Bremen,

More information

Properties on the Breakup of a Tiro-Dimensional

Properties on the Breakup of a Tiro-Dimensional THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, ft..y. 10017 s The Society shall not tr responsible for ntatement9 or opinions adva^c d in papers or In di5- cussion at meetings of

More information

Study of Liquid Dispersal from a Missile Impacting a Wall

Study of Liquid Dispersal from a Missile Impacting a Wall Study of Liquid Dispersal from a Missile Impacting a Wall Ari Silde Ari Kankkunen Juha Juntunen Simo Hostikka SMiRT-20 Conference, Espoo, Finland 9-14 August, 2009. Contents Introduction Objectives Status

More information

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Luke T. Gritter 1, Jeffrey S. Crompton *1, and Kyle C. Koppenhoefer 1 1 AltaSim Technologies, LLC 130 E. Wilson Bridge Rd, Suite

More information

EXPERIMENTAL AERODYNAMICS FLOW TROUGH AN ORIFICE LAB SHEET

EXPERIMENTAL AERODYNAMICS FLOW TROUGH AN ORIFICE LAB SHEET EXPERIMENTAL AERODYNAMICS FLOW TROUGH AN ORIFICE LAB SHEET EMRE KOÇ ONUR GÜNEL 1- Introduction When a fluid passes through a constriction, such as through a sharp-edged hole or over a weir, the constriction

More information

USN. Hosur : 6A/6B/6C 10ME665. Discuss briefly. 1 a.

USN. Hosur : 6A/6B/6C 10ME665. Discuss briefly. 1 a. USN 1 P E PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Mechanical Engineering INTERNAL ASSESSMENT TEST 3 Solutions Subject & Code : NTM 10ME665 Name

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting T. Scharowsky, A. Bauereiß, R.F. Singer, C. Körner *Department of Materials

More information

Ligament and Droplet Characteristics in Prefilming Airblast Atomization. Karlsruhe, Germany. and

Ligament and Droplet Characteristics in Prefilming Airblast Atomization. Karlsruhe, Germany. and ICLASS 2012, 12 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 2-6, 2012 Ligament and Droplet Characteristics in Prefilming Airblast Atomization

More information

Paper ID ICLASS SURFACE WAVE PROPAGATION AND BREAKUP IN PLANAR LIQUID SHEETS OF PREFILMING AIRBLAST ATOMISERS

Paper ID ICLASS SURFACE WAVE PROPAGATION AND BREAKUP IN PLANAR LIQUID SHEETS OF PREFILMING AIRBLAST ATOMISERS ICLASS-2006 Aug.27-Sept.1, 2006, Kyoto, Japan Paper ID ICLASS06-073 SURFACE WAVE PROPAGATION AND BREAKUP IN PLANAR LIQUID SHEETS OF PREFILMING AIRBLAST ATOMISERS Umesh Bhayaraju 1 and Christoph Hassa 2

More information

Droplet formation mechanisms in metallurgical processes

Droplet formation mechanisms in metallurgical processes EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling Droplet formation mechanisms in metallurgical processes Jane J. E. Lee Table of Contents 1. Introduction...2 Background...2

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 9, September -2017 Review of Thermal Characteristics of Diesel Fired

More information

Splashing of a Drop Impacting on a Thin Liquid Film

Splashing of a Drop Impacting on a Thin Liquid Film ILASS Americas 27th Annual Conference on Liquid Atomization and Spray Systems, Raleigh, NC, May 2015 Splashing of a Drop Impacting on a Thin Liquid Film S. Rajendran, M.A. Jog*, and R.M. Manglik Thermal-Fluids

More information

Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall

Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall Experimental and Numerical Studies of Liquid Dispersal from a Soft Projectile Impacting a Wall Ari Silde 1), Simo Hostikka 1), Ari Kankkunen 2), Juhani Hyvärinen 3) and Ilkka Hakola 1) 1) Technical Research

More information

Analysis of the corrosion test process for heat exchangers in corrosion test chambers by CFD simulation

Analysis of the corrosion test process for heat exchangers in corrosion test chambers by CFD simulation Analysis of the corrosion test process for heat exchangers in corrosion test chambers by CFD simulation STAR Global Conference, Wien, March 17-19, 2014 R. Stauch, F. Brändle, M. Pfitzer, W. Kühnel MAHLE

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

SPRAY STRUCTURE OF A PRESSURE-SWIRL ATOMIZER FOR COMBUSTION APPLICATIONS

SPRAY STRUCTURE OF A PRESSURE-SWIRL ATOMIZER FOR COMBUSTION APPLICATIONS EPJ Web of Conferences 25, 01010 (2012) DOI: 10.1051/epjconf/20122501010 Owned by the authors, published by EDP Sciences, 2012 SPRAY STRUCTURE OF A PRESSURE-SWIRL ATOMIZER FOR COMBUSTION APPLICATIONS Lukas

More information

STATISTICAL PROCESSING OF PLASMA JET IMAGES FOR VISUALIZATION OF FLOW INSTABILITIES

STATISTICAL PROCESSING OF PLASMA JET IMAGES FOR VISUALIZATION OF FLOW INSTABILITIES STATISTICAL PROCESSING OF PLASMA JET IMAGES FOR VISUALIZATION OF FLOW INSTABILITIES Oleksiy Chumak Institute of Plasma Physics, Thermal Plasma Department The structure and stability of a thermal plasma

More information

Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat

Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat Vol:2, No:7, 28 Study and Enhancement of Flash Evaporation Desalination Utilizing the Ocean Thermocline and Discharged heat Sami Mutair and Yasuyuki Ikegami International Science Index, Electrical and

More information

An overview of CFD applications in flow assurance From well head to the platform. Simon Lo

An overview of CFD applications in flow assurance From well head to the platform. Simon Lo An overview of CFD applications in flow assurance From well head to the platform Simon Lo Contents From well head to the platform Heat transfer in Christmas tree Multiphase flow in long pipe Severe slugging

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

Flow visualization at suction of a twin screw compressor

Flow visualization at suction of a twin screw compressor Flow visualization at suction of a twin screw compressor A. Kovacevic, M. Arjeneh, S. Rane, N. Stosic, M. Gavaises, City University London Abstract Rotary twin screw machines are commonly used for handling

More information

Chapter 10, Phase Transformations

Chapter 10, Phase Transformations Chapter Outline: Phase Transformations Heat Treatment (time and temperature) Microstructure Kinetics of phase transformations Homogeneous and heterogeneous nucleation Growth, rate of the phase transformation

More information

THE CHARACTERISTICS OF BLACK LIQUOR SPRAYS

THE CHARACTERISTICS OF BLACK LIQUOR SPRAYS Colloquium on Black Liquor Combustion and Gasification, May 13-16, 23, Park City, Utah, USA THE CHARACTERISTICS OF BLACK LIQUOR SPRAYS Pasi Miikkulainen and Ari Kankkunen Helsinki University of Technology,

More information

Experimental Investigation on Spray Characteristics of Pressure-Swirl Atomizers. for a Small-Sized Jet Engine

Experimental Investigation on Spray Characteristics of Pressure-Swirl Atomizers. for a Small-Sized Jet Engine ICLASS 2012, 12 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 2-6, 2012 Experimental Investigation on Spray Characteristics of Pressure-Swirl

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Femtosecond laser pre-pulse technology for LPP EUV source

Femtosecond laser pre-pulse technology for LPP EUV source Femtosecond laser pre-pulse technology for LPP EUV source A. Vinokhodov*, V. Krivtsun*, **, M.Krivokorytov*, Yu. Sidelnikov*, **, S.Chekalin**, V.Kompanets**, A. Melnikov**, K. Koshelev*, ** * EUV Labs,

More information

Splat formation in plasma-spray coating process*

Splat formation in plasma-spray coating process* Pure Appl. Chem., Vol. 74, No. 3, pp. 441 445, 2002. 2002 IUPAC Splat formation in plasma-spray coating process* Javad Mostaghimi and Sanjeev Chandra Centre for Advanced Coating Technologies, University

More information

Performance of an Air-Assist Nozzle Using Heated Air

Performance of an Air-Assist Nozzle Using Heated Air ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 213 Performance of an -Assist Nozzle Using Heated Timothy E. Lane *, Brian R. Collett, and Richard J.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12740 1. Freezing of Impacting Droplets Ice build-up from freezing rain is problematic for variety of applications including aircraft surfaces, wind turbines, and power lines. If a water

More information

CFD SIMULATION AND EXPERIMENTAL VALIDATION OF FLUID FLOW IN LIQUID DISTRIBUTORS

CFD SIMULATION AND EXPERIMENTAL VALIDATION OF FLUID FLOW IN LIQUID DISTRIBUTORS CFD SIMULATION AND EXPERIMENTAL VALIDATION OF FLUID FLOW IN LIQUID DISTRIBUTORS Marc Heggemann 1, Sebastian Hirschberg 1, Lothar Spiegel 2, Christian Bachmann 2 1 Sulzer Innotec, Sulzer Markets & Technology

More information

Numerical study of the effect of the type of fuel on pollutant emissions in a diesel engine

Numerical study of the effect of the type of fuel on pollutant emissions in a diesel engine Advances in Fluid Mechanics VII 121 Numerical study of the effect of the type of fuel on pollutant emissions in a diesel engine S. Kabar & M. Kadja LEAP Laboratory, Département de Génie Mécanique, Université

More information

Appendix. Liquid Wall Science in other Scientific Pursuits and Applications

Appendix. Liquid Wall Science in other Scientific Pursuits and Applications Appendix Liquid Wall Science in other Scientific Pursuits and Applications Liquid Wall Science is important in many scientific pursuits and applications Liquid Jet and Film Stability and Dynamics: fuel

More information

Particle Injection and Mixing Experiments in a One Quarter Scale Model Bubbling Fluidized Bed

Particle Injection and Mixing Experiments in a One Quarter Scale Model Bubbling Fluidized Bed Particle Injection and Mixing Experiments in a One Quarter Scale Model Bubbling Fluidized Bed Leon Glicksman, Ezra Carr and Peter Noymer Massachusetts Institute of Technology Abstract One significant factor

More information

MODELING OF MICRO-EXPLOSION FOR MULTICOMPONENT DROPLETS

MODELING OF MICRO-EXPLOSION FOR MULTICOMPONENT DROPLETS MODELING OF MICRO-EXPLOSION FOR MULTICOMPONENT DROPLETS Yangbing Zeng and Chia-Fon Lee Department of Mechanical and Industrial Engineering University of Illinois at Urbana-Champaign INTRODUCTION Micro-explosion

More information

Texture and Wettability of Metallic Lotus Leaves

Texture and Wettability of Metallic Lotus Leaves Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Nanoscale Supplementary Information for: Texture and Wettability of Metallic Lotus Leaves C. Frankiewicz

More information

Application of Particle Image Velocimetry in Hydraulic Engineering Research. Michael Horst, Ph.D., P.E., ASCE 1

Application of Particle Image Velocimetry in Hydraulic Engineering Research. Michael Horst, Ph.D., P.E., ASCE 1 Application of Particle Image Velocimetry in Hydraulic Engineering Research Michael Horst, Ph.D., P.E., ASCE 1 Particle Image Velocimetry (PIV) is a non-intrusive method used for ascertaining hydraulic

More information

Comparison between micrometer and millimetre sized metal and ceramic lamellas, for a better understanding of the spray process.

Comparison between micrometer and millimetre sized metal and ceramic lamellas, for a better understanding of the spray process. Comparison between micrometer and millimetre sized metal and ceramic lamellas, for a better understanding of the spray process. S. Goutier, M. Vardelle, and P. Fauchais SPCTS Laboratory, University of

More information

semester + ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III

semester + ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III ME6404 THERMAL ENGINEERING UNIT III NOZZLES, TURBINES & STEAM POWER CYCLES UNIT-III 3. 1 CONTENTS 3.1 Flow of steam through nozzles: 3.2 Continuity and steady flow energy equations 3.3 Types of Nozzles

More information

5. INVESTIGATION OF POROSITY IN THE PASTILLES

5. INVESTIGATION OF POROSITY IN THE PASTILLES 5. INVESTIGATION OF POROSITY IN THE PASTILLES 5.1. Introduction Many different types of controlled dosage forms have been developed to improve clinical efficiency of drug and patient compliance. In vivo

More information

Fundamental Course in Mechanical Processing of Materials. Exercises

Fundamental Course in Mechanical Processing of Materials. Exercises Fundamental Course in Mechanical Processing of Materials Exercises 2017 3.2 Consider a material point subject to a plane stress state represented by the following stress tensor, Determine the principal

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

Introduction. Objective

Introduction. Objective Introduction Pelton Wheel Turbine is an impulse or a constant pressure water turbine. In this case water head is very high. Pelton wheel consists of a wheel called rotor. The rotor of the turbine consists

More information

TIE-27: Stress in optical glass

TIE-27: Stress in optical glass PAGE 1/13 0 Introduction The amount and distribution of permanent inherent stress in glass depends on the annealing conditions, the glass type, size and geometry of the glass part This stress causes birefringence

More information

PAPER-I (Conventional)

PAPER-I (Conventional) 1. a. PAPER-I (Conventional) 10 kg of pure ice at 10 ºC is separated from 6 kg of pure water at +10 O C in an adiabatic chamber using a thin adiabatic membrane. Upon rupture of the membrane, ice and water

More information

Experimental study of the impingement process of a liquid droplet upon a corrugated cardboard surface

Experimental study of the impingement process of a liquid droplet upon a corrugated cardboard surface Computational Methods in Multiphase Flow VII 235 Experimental study of the impingement process of a liquid droplet upon a corrugated cardboard surface X. Zhou FM Global, Norwood, MA, USA Abstract A water

More information

ON THE FLOW DYNAMICS AND OUT-OF-PHASE PHENOMENA IN ORBITALLY SHAKEN BIOREACTORS

ON THE FLOW DYNAMICS AND OUT-OF-PHASE PHENOMENA IN ORBITALLY SHAKEN BIOREACTORS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 ON THE FLOW DYNAMICS AND OUT-OF-PHASE PHENOMENA IN ORBITALLY SHAKEN BIOREACTORS W. Weheliye, M. Yianneskis and A. Ducci University College

More information

Size-velocity pdfs for Drop Fragments Formed via Multi-mode Breakup

Size-velocity pdfs for Drop Fragments Formed via Multi-mode Breakup ILASS-Americas 29th Annual Conference on Liquid Atomization and Spray Systems, Atlanta, GA, May 2017 Size-velocity pdfs for Drop Fragments Formed via Multi-mode Breakup G. Sondgeroth,+ C.M.L. White,* W.

More information

Influence of a Coaxial Gas Flow on a Flashing Liquid Jet: Implications for Flame Spray Synthesis of Nanoparticles

Influence of a Coaxial Gas Flow on a Flashing Liquid Jet: Implications for Flame Spray Synthesis of Nanoparticles ILASS Americas, 21 th Annual Conference on Liquid Atomization and Spray Systems, Orlando, Florida, May18-2, 28 Influence of a Coaxial Gas Flow on a Flashing Liquid Jet: Implications for Flame Spray Synthesis

More information

High-Efficiency Joule-Thomson Cryocoolers Incorporating an Ejector

High-Efficiency Joule-Thomson Cryocoolers Incorporating an Ejector 1 High-Efficiency Joule-Thomson Cryocoolers Incorporating an Ejector H.S. Cao 1, S. Vanapalli 1, H.J. Holland 1, C.H. Vermeer 2, T. Tirolien 3, H.J.M. ter Brake 1 1 University of Twente, 7500 AE, Enschede,

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035

R13 SET - 1 '' ''' '' ' '''' Code No: RT31035 R13 SET - 1 III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2016 THERMAL ENGINEERING II (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists

More information

Quenching steels with gas jet arrays

Quenching steels with gas jet arrays Quenching steels with gas jet arrays PAUL F STRATTON ANDREW P RICHARDSON BOC Rother Valley Way, Holbrook, Sheffield UNITED KINGDOM Paul.stratton@boc.com http://www.catweb.boc.com Abstract: - Single components

More information

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers)

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) ME 3610 Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) (18 points) 1. A gasoline engine operating on the ideal

More information

Application of disc lasers in Medical device manufacturing

Application of disc lasers in Medical device manufacturing Application of disc lasers in Medical device manufacturing Ramasamy Elavarasan, Peter Jepsen Jan Scheftlein * Prosint, 2220 Oakland Road, San Jose, CA 96131, USA * Prenovatec GmbH, Nachtigallenstr, 13

More information

Flow and phase transitions in micellar systems

Flow and phase transitions in micellar systems Flow and phase transitions in micellar systems Shear thickening & time-dependent rheology Outline Basic shear thickening phenomena Wormlike micelles Experimental approach light scattering microscopy Rheological

More information

System Level Overview of the Hypergolic Gelled Propellant Lab (GPL)

System Level Overview of the Hypergolic Gelled Propellant Lab (GPL) System Level Overview of the Hypergolic Gelled Propellant Lab (GPL) Dr. Timothée L. Pourpoint Dr. Steve Heister Dr. William Anderson Dr. Robert Lucht Dr. Steven Son Purdue University Maurice J. Zucrow

More information

GAS QUENCHING WITH CONTROLLABLE HEAT EXTRACTION

GAS QUENCHING WITH CONTROLLABLE HEAT EXTRACTION GAS QUENCHING WITH CONTROLLABLE HEAT EXTRACTION B. LISCIC Faculty for Mechanical Engineering and Naval Architecture University of Zagreb Croatia THERMEC' 2006, July 4-8, 2006, Vancouver Modern vacuum furnaces

More information

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch WDS'05 Proceedings of Contributed Papers, Part II, 337 342, 2005. ISBN 80-86732-59-2 MATFYZPRESS Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch T. Kavka, M. Hrabovsky, O. Chumak, and V.

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING CE6451-FLUID MECHANICS AND MACHINERY UNIT- I: FLUID PROPERTIES AND FLOW CHARACTERISTICS PART-A 1. Find the surface tension in a soap

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

MEASURING MICROPARTICLE IMPACT CHARACTERISTICS UNDER REALISTIC GAS TURBINE CONDITIONS. A.G. Friedman, W.F. Ng Virginia Tech

MEASURING MICROPARTICLE IMPACT CHARACTERISTICS UNDER REALISTIC GAS TURBINE CONDITIONS. A.G. Friedman, W.F. Ng Virginia Tech MEASURING MICROPARTICLE IMPACT CHARACTERISTICS UNDER REALISTIC GAS TURBINE CONDITIONS Abstract A.G. Friedman, W.F. Ng Virginia Tech Gas turbines can be exposed to microparticle ingestion throughout their

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Simultaneous PM10 And PM2.5 Measurement From Stacks According to New ISO 23210 Standard Erkki J. Lamminen Dekati Ltd. Osuusmyllynkatu 13, 33700 Tampere, Finland ABSTRACT A new ISO standard 23210 for simultaneous

More information

Recent Progress in Droplet-Based Manufacturing Research

Recent Progress in Droplet-Based Manufacturing Research Recent Progress in Droplet-Based Manufacturing Research H.-Y. Kim, J.-P. Cherng, and J.-H. Chun Abstract This article reports the recent progress of research made in the Droplet-Based Manufacturing Laboratory

More information

A STUDY ON FLOW BEHAVIOR INSIDE A SIMPLE MODEL OF EJECTOR

A STUDY ON FLOW BEHAVIOR INSIDE A SIMPLE MODEL OF EJECTOR A STUDY ON FLOW BEHAVIOR INSIDE A SIMPLE MODEL OF EJECTOR Taketoshi Koita 1 and Junjiro Iwamoto ABSTRACT This paper is concerned with the experimental results on the internal flow of the ejector. To improve

More information

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1

Biophotonics. Light Matter Interactions & Lasers. NPTEL Biophotonics 1 Biophotonics Light Matter Interactions & Lasers NPTEL Biophotonics 1 Overview In this lecture you will learn, Light matter interactions: absorption, emission, stimulated emission Lasers and some laser

More information

LIST OF ACRONYMS / ABBREVIATIONS USED IN THIS DOCUMENT Acronym / abbreviation Definition

LIST OF ACRONYMS / ABBREVIATIONS USED IN THIS DOCUMENT Acronym / abbreviation Definition LIST OF ACRONYMS / ABBREVIATIONS USED IN THIS DOCUMENT Acronym / abbreviation Definition ACC CCGT CFD CSP DNI DoW EC GE IP IPR LCA LDA LSV MACC MENA MS/RA PIV PM PTC RANS SME WP WPS WT Air Cooled Condenser

More information

UNIT I FLUID PROPERTIES AND FLUID STATICS

UNIT I FLUID PROPERTIES AND FLUID STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM & HM (16CE112) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

More information

Metal vapor micro-jet controls material redistribution in laser powder. bed fusion additive manufacturing

Metal vapor micro-jet controls material redistribution in laser powder. bed fusion additive manufacturing Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing Sonny Ly 1, Alexander M. Rubenchik 2, Saad A. Khairallah 3, Gabe Guss 4 and Manyalibo J. Matthews

More information

NUMERICAL INVESTIGATION ON PITCH DISTANCE, COMPOUND ANGLE AND TURBULENCE INTENSITY OFDOUBLE CYLINDRICAL FILM COOLING HOLE GEOMETRY

NUMERICAL INVESTIGATION ON PITCH DISTANCE, COMPOUND ANGLE AND TURBULENCE INTENSITY OFDOUBLE CYLINDRICAL FILM COOLING HOLE GEOMETRY NUMERICAL INVESTIGATION ON PITCH DISTANCE, COMPOUND ANGLE AND TURBULENCE INTENSITY OFDOUBLE CYLINDRICAL FILM COOLING HOLE GEOMETRY Hazim Fadli Aminnuddin and Kamil Abdullah Center for Energy and Industrial

More information

Modeling and experimental results of heavy oil injection into a high pressure entrained flow gasifier

Modeling and experimental results of heavy oil injection into a high pressure entrained flow gasifier Modeling and experimental results of heavy oil injection into a high pressure entrained flow gasifier André Bader 1, Paul Tischer 1, Peter Seifert 1, Andreas Richter 2, Bernd Meyer 1 Institute of Energy

More information

Department of Chemical Engineering 1, Lund Institute of Technology, Lund, Sweden

Department of Chemical Engineering 1, Lund Institute of Technology, Lund, Sweden Atomization by Nozzles an Empirical Study Simon Smrtnik Department of Chemical Engineering 1, Lund Institute of Technology, Lund, Sweden Abstract The formation of droplets by nozzles is studied with the

More information

NONTRADITIONAL MANUFACTURING PROCESSES

NONTRADITIONAL MANUFACTURING PROCESSES NONTRADITIONAL MANUFACTURING PROCESSES Lasers & Laser Beam Machining Basic NTM Process Groups: * Thermal NTM Processes - Laser Beam Machining (LBM) - Electron Beam Machining (EBM) - Plasma Arc Machining

More information

Experimental investigations on impaction pin nozzles for inlet fogging system

Experimental investigations on impaction pin nozzles for inlet fogging system Journal of Mechanical Science and Technology 25 (4) (2011) 839~845 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-011-0143-3 Experimental investigations on impaction pin nozzles for inlet fogging

More information

Simulation of Binary Mixture Droplet Evaporation using VOF Methods

Simulation of Binary Mixture Droplet Evaporation using VOF Methods Peter Keller and Christian Hasse Department of Energy Process Engineering and Chemical Engineering TU Bergakademie Freiberg Simulation of Binary Mixture using VOF Methods June 14, 2011 6 th OpenFOAM R

More information

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth?

Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? Part II: Worked Examples H. K. D. H. Bhadeshia Question 14 Why does the growth rate slow down as a precipitate thickens during diffusion-controlled growth? The surface of a metal can be nitrided to form

More information

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering

S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering S.Y. Diploma : Sem. III [PG/PT/ME] Thermal Engineering Time: 3 Hrs. Prelim Question Paper Solution [Marks : 70 Q.1 Attempt any FIVE of the following. [10] Q.1(a) Explain difference between Thermodynamic

More information

Plating HIGH ASPECT RATIO PCBs

Plating HIGH ASPECT RATIO PCBs Plating HIGH ASPECT RATIO PCBs Achieving proper copper deposition in holes on thicker boards is no easy task, even with reverse pulse plating. Understanding the ins and outs of electrolyte agitation is

More information

How iron ore pelletizing has recently gained new kiln efficiencies

How iron ore pelletizing has recently gained new kiln efficiencies How iron ore pelletizing has recently gained new kiln efficiencies More stable kilns, improved productivity and enhanced process control are delivering more for the industry than ever before. Extract from

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

AN INTRUSIVE METHOD FOR FILM THICKNESS MEASUREMENT ON SMOOTH HORIZONTAL TUBES FOR SUBCOOLED WATER

AN INTRUSIVE METHOD FOR FILM THICKNESS MEASUREMENT ON SMOOTH HORIZONTAL TUBES FOR SUBCOOLED WATER HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 6 9 July 2014 Orlando, Florida AN INTRUSIVE METHOD FOR FILM THICKNESS MEASUREMENT ON SMOOTH HORIZONTAL TUBES

More information

Simulation of the Spray Characteristics of Black Liquor. Colloquium on BL Combustion and Gasification Denise Levesque

Simulation of the Spray Characteristics of Black Liquor. Colloquium on BL Combustion and Gasification Denise Levesque Simulation of the Spray Characteristics of Black Liquor Colloquium on BL Combustion and Gasification Denise Levesque May 2003 1 Co-Authors Mohammad Fard, Simulent Inc. Stuart Morrison, ALSTOM Canada Javad

More information

Problems in chapter 9 CB Thermodynamics

Problems in chapter 9 CB Thermodynamics Problems in chapter 9 CB Thermodynamics 9-82 Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet

More information

DIGITAL HOLOGRAPHIC DIAGNOSTICS OF AERATED-LIQUID JETS IN A SUBSONIC CROSSFLOW BRIAN DERRICK MILLER. Bachelor of Science Mechanical Engineering

DIGITAL HOLOGRAPHIC DIAGNOSTICS OF AERATED-LIQUID JETS IN A SUBSONIC CROSSFLOW BRIAN DERRICK MILLER. Bachelor of Science Mechanical Engineering DIGITAL HOLOGRAPHIC DIAGNOSTICS OF AERATED-LIQUID JETS IN A SUBSONIC CROSSFLOW By BRIAN DERRICK MILLER Bachelor of Science Mechanical Engineering Oklahoma Christian University Oklahoma City, Oklahoma 2004

More information

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform ICCM2015, 14-17 th July, Auckland, NZ Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform *G. Song¹, J.Wang¹,

More information

CONDENSATION IMPLOSION EVENT IN STRATIFIED WATER- STEAM SYSTEM

CONDENSATION IMPLOSION EVENT IN STRATIFIED WATER- STEAM SYSTEM V Minsk International Seminar Heat Pipes, Heat Pumps, Refrigerators Minsk, Belarus, September 8-11, 2003 CONDENSATION IMPLOSION EVENT IN STRATIFIED WATER- STEAM SYSTEM Marijus Seporaitis, Kazys Almenas,

More information

Automated Methanol dosage using Liquid Flow Controllers: How Nitrogen-Methanol processes for the heat treatment of steel can get more transparent and

Automated Methanol dosage using Liquid Flow Controllers: How Nitrogen-Methanol processes for the heat treatment of steel can get more transparent and : How Nitrogen-Methanol processes for the heat treatment of steel can get more transparent and efficient White Paper Juni 2010 Automated Methanol dosage using Liquid Flow Controllers: How Nitrogen-Methanol

More information