X-RAY DIFFRACTION. Fatma Defne Kocaayan Buket Sinem Gökhan Cesur

Size: px
Start display at page:

Download "X-RAY DIFFRACTION. Fatma Defne Kocaayan Buket Sinem Gökhan Cesur"

Transcription

1 X-RAY DIFFRACTION BY Fatma Defne Kocaayan Buket Sinem Gökhan Cesur

2 HISTORY OF X-RAY DIFFRACTION 1895: Roentgen discovered x-rays 1912: von Laue, Friedrich, and Knipping passed x-rays through crystal of ZnS and concluded that: a) Crystals are composed of periodic arrays of atoms b) Crystals cause distinct x-ray diffraction patterns due to atoms

3 HISTORY OF X-RAY DIFFRACTION 1914: Bragg and Lawrence showed that diffraction pattern can be used to determine relative positions of atoms within a single crystal (i.e., molecular structure) 1953 : Rosalind Franklin: collected X-ray diffraction data on Na salt of DNA.Guides Watson and Crick to determine that DNA is a double helix.

4 HISTORY OF X-RAY DIFFRACTION NOW: Determined atomic structures and in medical applications

5 WHAT IS X-RAY DIFFRACTION?

6 WHAT IS X-RAY DIFFRACTION? Based on constructive interference of monochoromatic rays and crystalline sample

7 BRAGG S LAW Crystals composed of parallel atomic planes incoming waves undergo reflection separetly from each plane reflected light creates interference patterns

8 BRAGG S LAW İncoming angle equals to reflection angle

9 BRAGG S LAW Path lenght must equal integer multiples of wavelength (BRAGG S differraction rule) This rule are shown with the Bragg s equation 2d sin n

10 BRAGG S LAW If the bragg s equation is Not satisfied NO REFLECTION can occur, If the bragg s equation is satisfied REFLECTION may occur,

11 INSTRUMANTATION The instrumantation consist of four parts and they are; Production of x-rays Collimator Monochromators Detector

12

13 PRODUCTION OF X-RAYS X-rays are generated when high velocity electrons impinge on a metal target which are having high melting point,good thermal conductivity and large atomic number.such as silver, iron,copper,tungsten. Approximately 1% of the total energy of the beam is converted into x-rays. The reminder being dissipated as heat.

14 COLLIMATOR A series of closely spaced parallel metal plates. The collimator absorbs all the x-rays except the narrow beam that passes between gap.

15 MONOCHROMATORS Absorb the undesireable radiation and allows required wavelength to pass.there is two types of monochromator; Filter : Using only short wavelength.zirconium Crystal : Using variety wavelength.sodium Chloride, Lithium Floride

16 DETECTOR The x-ray intensities can be measured and recorded either by photographic or counter methods. Both these thypes of methods depends upon ability of x-rays to ionize matter and differ only in the subsequent fate of electrons produces by ionizing process.

17 TYPES OF DETECTOR Photographic Method In order to record position and intensity of x-ray beam a plane cylindrical film is used. Counter Methods Geiger-Muller tube counter(the most common) Propertional counter Scintillation counter Solid-state semi conducter detector Semiconductor detector

18 HOW DOES IT WORK? X-Rays are generated by cathode ray tube, Filtered to produce monochromatic radiation, Collimated to concentrate and directed towards the sample, The interaction of rays with the sample produces constructive interference.

19 HOW DOES IT WORK? Diffraction patterns are recorded on a photographic film.

20 APPLICATIONS OF X-RAY DİFFRACTION Find structure to determine function of proteins Example : To determine the DNA structure

21 APPLICATIONS OF X-RAY DİFFRACTION Differentiation between crystalline and amorphous materials; Determination of the structure of crystalline materials (crystal axes, size and shape of the unit cell, positions of the atoms in the unit cell)

22 APPLICATIONS OF X-RAY DİFFRACTION Study crystal deformation and stress properties

23 APPLICATIONS OF X-RAY DIFFRACTION Measurement of limits of solid solubility, and determination of phase diagrams; Measurement of strain and small grain size;

24 APPLICATIONS OF X-RAY DIFFRACTION Study of rapid biological and chemical processes In health sector Example : Qualitative Analysis Of Mineral Qualitative Analysis Of Kidney Stone

25

LECTURE 7. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 7. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 7 Dr. Teresa D. Golden University of North Texas Department of Chemistry Diffraction Methods Powder Method For powders, the crystal is reduced to a very fine powder or microscopic grains. The sample,

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

Dr. Teresa D. Golden University of North Texas Department of Chemistry

Dr. Teresa D. Golden University of North Texas Department of Chemistry Dr. Teresa D. Golden University of North Texas Department of Chemistry Advance X-Ray Diffraction Lecture: TTh 8:00 a.m. 9:20 p.m. CHEM 253 and CHEM 271 Instructor: Dr. Teresa D. Golden Office hours: 3:00-5:00

More information

X-ray diffraction. Talián Csaba Gábor University of Pécs, Medical School Department of Biophysics

X-ray diffraction. Talián Csaba Gábor University of Pécs, Medical School Department of Biophysics X-ray diffraction Talián Csaba Gábor University of Pécs, Medical School Department of Biophysics 2012.10.11. Outline of the lecture X-ray radiation Interference, diffraction Crystal structure X-ray diffraction

More information

Physics 6180: Graduate Physics Laboratory. Experiment CM5: X-ray diffraction and crystal structures

Physics 6180: Graduate Physics Laboratory. Experiment CM5: X-ray diffraction and crystal structures Physics 6180: Graduate Physics Laboratory Experiment CM5: X-ray diffraction and crystal structures References: Preston and Dietz, Expt. 10 pp. 180-197 Eisberg and Resnick, Quantum Physics, Sec. 9 Kittel,

More information

Identification of Crystal Structure and Lattice Parameter. for Metal Powders Using X-ray Diffraction. Eman Mousa Alhajji

Identification of Crystal Structure and Lattice Parameter. for Metal Powders Using X-ray Diffraction. Eman Mousa Alhajji Identification of Crystal Structure and Lattice Parameter for Metal Powders Using X-ray Diffraction Eman Mousa Alhajji North Carolina State University Department of Materials Science and Engineering MSE

More information

Single crystal X-ray diffraction. Zsolt Kovács

Single crystal X-ray diffraction. Zsolt Kovács Single crystal X-ray diffraction Zsolt Kovács based on the Hungarian version of the Laue lab description which was written by Levente Balogh, Jenő Gubicza and Lehel Zsoldos INTRODUCTION X-ray diffraction

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

X-ray diffraction

X-ray diffraction 2.2.3.- X-ray diffraction 2.2.3.1.- Origins and fundamentals of the technique The first experimental evidence concerning x-ray diffraction was given by Max von Laue who in 1912 demonstrated that x-rays

More information

X-Ray Analytical Methods

X-Ray Analytical Methods X-Ray Analytical Methods X-rays were discovered by W.C. Röentgen in 1895, and led to three major uses: X-ray radiography is used for creating images of light-opaque materials relies on the relationship

More information

Physical structure of matter. Monochromatization of molybdenum X-rays X-ray Physics. What you need:

Physical structure of matter. Monochromatization of molybdenum X-rays X-ray Physics. What you need: X-ray Physics Physical structure of matter Monochromatization of molybdenum X-rays What you can learn about Bremsstrahlung Characteristic radiation Energy levels Absorption Absorption edges Interference

More information

X-Ray Diffraction by Macromolecules

X-Ray Diffraction by Macromolecules N. Kasai M. Kakudo X-Ray Diffraction by Macromolecules With 351 Figures and 56 Tables Kodansha ~Springer ... Contents Preface v Part I Fundamental 1. Essential Properties of X-Rays................. 3 1.1

More information

Diffraction Basics. The qualitative basics:

Diffraction Basics. The qualitative basics: The qualitative basics: Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure, x-rays scattered in

More information

X-Rays and X-ray Mineralogy

X-Rays and X-ray Mineralogy GLY 4200 X-Rays and X-ray Mineralogy X-radiation is a type of electromagnetic radiation, like visible light, UV, IR, etc. The range in wavelength from approximately 10-6 to 10-1 nm. They were first discovered

More information

Materials Lab 1(MT344) X-ray Diffractometer Operation and Data Analysis. Instructor: Dr. Xueyan Wu ( 吴雪艳 )

Materials Lab 1(MT344) X-ray Diffractometer Operation and Data Analysis. Instructor: Dr. Xueyan Wu ( 吴雪艳 ) Materials Lab 1(MT344) X-ray Diffractometer Operation and Data Analysis Instructor: Dr. Xueyan Wu ( 吴雪艳 ) Goals To give students a practical introduction into the use of X-ray diffractometer and data collection.

More information

UNIT V -CRYSTAL STRUCTURE

UNIT V -CRYSTAL STRUCTURE UNIT V -CRYSTAL STRUCTURE Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure

More information

Lecture course on solid state physics for Nano, 2019

Lecture course on solid state physics for Nano, 2019 Prof. U. Pietsch Department of Physics, University of Siegen Lecture course on solid state physics for Nano, 2019 Lecture 1 Introduction in crystallography Objectives of the course To provide the basic

More information

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4b Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

Background Statement for SEMI Draft Document 5945 New Standard: Test Method for Determining Orientation of A Sapphire Single Crystal

Background Statement for SEMI Draft Document 5945 New Standard: Test Method for Determining Orientation of A Sapphire Single Crystal Background Statement for SEMI Draft Document 5945 New Standard: Test Method for Determining Orientation of A Sapphire Single Crystal Notice: This background statement is not part of the balloted item.

More information

Advanced Methods for Materials Research. Materials Structure Investigations Materials Properties Investigations

Advanced Methods for Materials Research. Materials Structure Investigations Materials Properties Investigations Advanced Methods for Materials Research Materials Structure Investigations Materials Properties Investigations Advanced Methods for Materials Research 1. The structure and property of sample and methods

More information

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction.

Atomic Densities. Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Atomic Densities Linear Density Number of atoms per length whose centers lie on the direction vector for a specific crystallographic direction. Planar Density Number of atoms per unit area that are centered

More information

Atomic Densities. Linear Density. Planar Density. Linear Density. Outline: Planar Density

Atomic Densities. Linear Density. Planar Density. Linear Density. Outline: Planar Density Atomic Densities Outline: Atomic Densities - Linear Density - Planar Density Single- vs poly- crystalline materials X-ray Diffraction Example Polymorphism and Allotropy Linear Density Number of atoms per

More information

Travaux Pratiques de Matériaux de Construction

Travaux Pratiques de Matériaux de Construction Travaux Pratiques de Matériaux de Construction Section Matériaux 6 ème semestre 2009 Etude de Matériaux Cimentaire Par Diffraction des Rayons X Responsable: Silke Ruffing E-Mail: silke.ruffing@epfl.ch

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH

X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH X-RAY DIFFRACTION IN SEMICONDUCTOR INDUSTRY AND RESEARCH M. Leszczyński High Pressure Research Center UNIPRESS, Sokolowska 29/37, 01 142 Warsaw, Poland, e-mail: mike@unipress.waw.pl ABSTRACT The paper

More information

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/29/2014 8:52 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE 1 Chapter 3 The structure of crystalline solids 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 12/10/2014 Quiz # 1 will be held on Monday 13/10/2014 at 11:00 am

More information

Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing Lecture C4a Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing X-ray Diffraction Max von Laue won the 1914 Nobel Prize for his discovery of the diffraction of x-rays by crystals.

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

Characterization of Materials Using X-Ray Diffraction Powder Diffraction

Characterization of Materials Using X-Ray Diffraction Powder Diffraction Praktikum III, Fall Term 09 Experiment P1/P2; 23.10.2009 Characterization of Materials Using X-Ray Diffraction Powder Diffraction Authors: Michael Schwarzenberger (michschw@student.ethz.ch) Philippe Knüsel

More information

The object of this experiment is to test the de Broglie relationship for matter waves,

The object of this experiment is to test the de Broglie relationship for matter waves, Experiment #58 Electron Diffraction References Most first year texts discuss optical diffraction from gratings, Bragg s law for x-rays and electrons and the de Broglie relation. There are many appropriate

More information

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s].

Example: Compute the wavelength of a 1 [kg] block moving at 1000 [m/s]. Example: Calculate the energy required to excite the hydrogen electron from level n = 1 to level n = 2. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state

More information

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma Chapter 3 Basic Crystallography and Electron Diffraction from Crystals Lecture 9 Outline The geometry of electron diffraction Crystallography Kinetic Theory of Electron diffraction Diffraction from crystals

More information

X-RAY DIFFRACTION. X- Ray Sources Diffraction: Bragg s Law Crystal Structure Determination

X-RAY DIFFRACTION. X- Ray Sources Diffraction: Bragg s Law Crystal Structure Determination X-RAY DIFFRACTION X- Ray Sources Diffraction: Bragg s Law Crystal Structure Determination Part of MATERIALS SCIENCE & ENGINEERING A Learner s Guide AN INTRODUCTORY E-BOOK Anandh Subramaniam & Kantesh Balani

More information

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems James R. Connolly Dept. of Earth & Planetary Sciences University of New Mexico 401/501

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5 X-RAYS AND X-RAY DIFFRACTION

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5 X-RAYS AND X-RAY DIFFRACTION 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5 X-RAYS AND X-RAY DIFFRACTION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Sources

More information

X-Ray Diffraction. Nicola Pinna

X-Ray Diffraction. Nicola Pinna X-Ray Diffraction Nicola Pinna Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal. School of Chemical and Biological Engineering, College of Engineering, Seoul National University

More information

X-rays were discovered by the German physicist

X-rays were discovered by the German physicist Calculating Crystal Structure and Lattice Parameters Using X-ray Diffraction Robert Welch Abstract Certain materials, such as Molybdenum and NaCl, have repeating crystal structures with lattice parameters

More information

Lesson 1 X-rays & Diffraction

Lesson 1 X-rays & Diffraction Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 14, 2013, Riga, Latvia Electromagnetic Spectrum X rays: Wavelength λ: 0.01 10 nm Energy: 100 ev 100 kev Interatomic

More information

GEOLOGY 333 LAB 14. Lab Final Exam See information sheet for details

GEOLOGY 333 LAB 14. Lab Final Exam See information sheet for details GEOLOGY 333 LAB 14 X-RAY DIFFRACTION OF EVERYDAY MATERIALS Lab Final Exam See information sheet for details! Next week during Lab (10 am - noon, May 2, 69 CAB).! 25% of Lab grade, out of 65 points plus

More information

Characterisation of materials using x-ray diffraction and X-ray powder diffraction. Cristina Mercandetti Nicole Schai

Characterisation of materials using x-ray diffraction and X-ray powder diffraction. Cristina Mercandetti Nicole Schai P1 and P2 Characterisation of materials using x-ray diffraction and X-ray powder diffraction Cristina Mercandetti Nicole Schai Supervised by Taylan Oers and Pawel Kuczera Report ETH Zurich 2012 TABLE OF

More information

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10.

Answer All Questions. All Questions Carry Equal Marks. Time: 20 Min. Marks: 10. Code No: 09A1BS02 Set No. 1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD I B.Tech. I Mid Examinations, November 2009 ENGINEERING PHYSICS Objective Exam Name: Hall Ticket No. A Answer All Questions.

More information

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature

Metallic crystal structures The atomic bonding is metallic and thus non-directional in nature Chapter 3 The structure of crystalline solids Hw: 4, 6, 10, 14, 18, 21, 26, 31, 35, 39, 42, 43, 46, 48, 49, 51, 56, 61 Due Wensday 14/10/2009 Quiz1 on Wensday 14/10/2009 Why study the structure of crystalline

More information

Griffith and Transformation

Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying to learn how certain types of bacteria caused pneumonia. He isolated two different strains of pneumonia bacteria from mice and grew them in his lab.

More information

X-ray production and applications. by: Dr. Ahmed M. Maghraby

X-ray production and applications. by: Dr. Ahmed M. Maghraby X-ray production and applications by: Dr. Ahmed M. Maghraby I - Discovery During the early 1890 s many physicists had been studying electrical conduction in gases at low pressures. Wilhelm Conrad Roentgen

More information

Instrument Configuration for Powder Diffraction

Instrument Configuration for Powder Diffraction Instrument Configuration for Powder Diffraction Advanced X-ray Workshop S.N. Bose National Centre for Basic Sciences, 14-15/12/2011 Innovation with Integrity Overview What is the application? What are

More information

CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING

CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING 86 CURVATURE MEASUREMENTS OF STRESSED SURFACE-ACOUSTIC- WAVE FILTERS USING BRAGG ANGLE CONTOUR MAPPING ABSTRACT Paul M. Adams The Aerospace Corporation Los Angeles, CA 90009 Surface-acoustic-wave (SAW)

More information

Supplemental Exam Problems for Study

Supplemental Exam Problems for Study 3.091 OCW Scholar Self-Asessment Crystalline Materials Supplemental Exam Problems for Study Solutions Key 3.091 Fall Term 2007 Test #2 page 2 Problem #1 z z y y x x (a) Using proper crystallographic notation

More information

Multiple film plane diagnostic for shocked lattice measurements invited

Multiple film plane diagnostic for shocked lattice measurements invited REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 74, NUMBER 3 MARCH 2003 Multiple film plane diagnostic for shocked lattice measurements invited Daniel H. Kalantar, a) E. Bringa, M. Caturla, J. Colvin, K. T. Lorenz,

More information

THE EVALUATION OF QUARTZ RESONATORS VIA X-RAY DIFFRACTION TOPOGRAPHY

THE EVALUATION OF QUARTZ RESONATORS VIA X-RAY DIFFRACTION TOPOGRAPHY THE EVALUATION OF QUARTZ RESONATORS VIA X-RAY DIFFRACTION TOPOGRAPHY INTRODUCTION K. G. Lipetzky and R. E. Green, Jr. Center for Nondestructive Evaluation The Johns Hopkins University Baltimore, MD 21218

More information

X-RAY DIFFRACTIO N B. E. WARREN

X-RAY DIFFRACTIO N B. E. WARREN X-RAY DIFFRACTIO N B. E. WARREN Chapter 1 X-Ray Scattering by Atom s 1.1 Classical scattering by a free electron 1 1.2 Polarization by scattering 4 1.3 Scattering from several centers, complex representation

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

X-ray Diffraction (XRD)

X-ray Diffraction (XRD) هب انم خدا X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s

More information

This lecture is part of the Basic XRD Course.

This lecture is part of the Basic XRD Course. This lecture is part of the Basic XRD Course. Basic XRD Course 1 A perfect polycrystalline sample should contain a large number of crystallites. Ideally, we should always be able to find a set of crystallites

More information

Introduction to Powder Diffraction/Practical Data Collection

Introduction to Powder Diffraction/Practical Data Collection Durham University Chemistry Department Introduction to Powder Diffraction/Practical Data Collection Dr Ivana Evans Durham, January 2007 Durham Outline Information in a powder pattern What is diffraction

More information

A Short History of Crystallographic Technology. Dr. Frank Burgäzy President Bruker AXS

A Short History of Crystallographic Technology. Dr. Frank Burgäzy President Bruker AXS A Short History of Crystallographic Technology Dr. Frank Burgäzy President Bruker AXS 1 X-ray Diffraction X-ray Source Crystal Detector Software Structure 2 X-ray Diffraction 3 Number of Chemical and Protein

More information

UNIT 24: Nucleic Acids Essential Idea(s): The structure of DNA allows efficient storage of genetic information.

UNIT 24: Nucleic Acids Essential Idea(s): The structure of DNA allows efficient storage of genetic information. UNIT 24: Nucleic Acids Name: Essential Idea(s): The structure of DNA allows efficient storage of genetic information. IB Assessment Statements 2.6.U1 The nucleic acids DNA and RNA are polymers of nucleotides.

More information

Diffraction: Powder Method

Diffraction: Powder Method Diffraction: Powder Method Diffraction Methods Diffraction can occur whenever Bragg s law λ = d sin θ is satisfied. With monochromatic x-rays and arbitrary setting of a single crystal in a beam generally

More information

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p.

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. Preface p. xvii Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. 6 Content of the unit cell p. 7 Asymmetric

More information

The ILL Millennium Programme - a Bridge to ESS. Alan Hewat, ILL Grenoble, FRANCE

The ILL Millennium Programme - a Bridge to ESS. Alan Hewat, ILL Grenoble, FRANCE The ILL Millennium Programme - a Bridge to ESS Alan Hewat, ILL Grenoble, FRANCE ILL (neutrons) & ESRF (synchrotron) in Grenoble The ILL Millennium Programme New 10 year ILL contract just signed Millennium

More information

This experiment is included in the upgrade packages: XRC 4.0 X-ray characteristics and XRS 4.0 X-ray structural analysis.

This experiment is included in the upgrade packages: XRC 4.0 X-ray characteristics and XRS 4.0 X-ray structural analysis. Characteristic X-rays of copper TEP Related Topics X-ray tube, bremsstrahlung, characteristic radiation, energy levels, crystal structures, lattice constant, absorption, absorption edges, interference,

More information

Smithsonian Museum Conservation Institute

Smithsonian Museum Conservation Institute Smithsonian Museum Conservation Institute XRD Analysis of the Corrosion Products from a Tlingit Copper Rattle MCI#6241 Object: Tlingit Stikine Rattle Owner/Custodian: National Museum of the American Indian

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 7

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 7 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 7 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3+4. Basics

More information

Early Papers On Diffraction Of X-rays By Crystals: Volume 2

Early Papers On Diffraction Of X-rays By Crystals: Volume 2 Early Papers On Diffraction Of X-rays By Crystals: Volume 2 If searched for the book Early Papers on Diffraction of X-rays by Crystals: Volume 2 in pdf form, in that case you come on to faithful site.

More information

Microstructural Characterization of Materials

Microstructural Characterization of Materials Microstructural Characterization of Materials 2nd Edition DAVID BRANDON AND WAYNE D. KAPLAN Technion, Israel Institute of Technology, Israel John Wiley & Sons, Ltd Contents Preface to the Second Edition

More information

Now, let s examine how atoms are affected as liquids transform into solids.

Now, let s examine how atoms are affected as liquids transform into solids. Now, let s examine how atoms are affected as liquids transform into solids. 1 Before we deal with PROPERTIES of materials, it s beneficial to remember where we have come from, and where we are going. Later,

More information

Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre

Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre Travaux Pratiques de Matériaux de Construction Section Matériaux 6 ème semestre 2015 Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre Study Cementitious Materials by X-ray diffraction

More information

Quiz on Monday covering: -symmetry operations -notations of axes, vectors, and face notation -Miller indices

Quiz on Monday covering: -symmetry operations -notations of axes, vectors, and face notation -Miller indices OTHER ANNOUNCEMENTS Quiz on Monday covering: -symmetry operations -notations of axes, vectors, and face notation -Miller indices 2 nd Draft of References due Monday Field Trip Saturday 10/4 and Sunday

More information

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p.

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. 7 Crystallographic Planes, Directions, and Indices p. 8 Crystallographic

More information

Condensed Matter in a Nutshell

Condensed Matter in a Nutshell PHYS 342/555 Condensed Matter in a Nutshell Instructor: Dr. Pengcheng Dai Professor of Physics The University of Tennessee (Room 407A, Nielsen, 974-1509) (Office hours: TR 1:10PM-2:00 PM) Lecture 2, room

More information

Spatially resolved crystal domain identification: Implementing Laue-mapping technique on the M4 TORNADO spectrometer

Spatially resolved crystal domain identification: Implementing Laue-mapping technique on the M4 TORNADO spectrometer Spatially resolved crystal domain identification: Implementing Laue-mapping technique on the M4 TORNADO spectrometer Bruker Nano Analytics, Berlin, Germany Webinar, July 14 th, 2016 Innovation with Integrity

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 12 1, 12.2 DNA 2 of 37 Griffith and Transformation Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying to learn how certain types of bacteria caused pneumonia.

More information

Powder X-ray Diffraction

Powder X-ray Diffraction Powder X-ray Diffraction The construction of a simple powder diffractometer was first described by Hull in 1917 1 which was shortly after the discovery of X-rays by Wilhelm Conrad Röntgen in1895 2. Diffractometer

More information

Chapter 12 The Solid State The Structure of Metals and Alloys

Chapter 12 The Solid State The Structure of Metals and Alloys Chapter 12 The Solid State The Structure of Metals and Alloys The Solid State Crystalline solid a solid made of an ordered array of atoms, ion, or molecules Amorphous solids a solid that lacks long-range

More information

SOLID STATE

SOLID STATE SOLID STATE Short Answer Questions: 1. Derive Bragg s equation? Ans. Bragg s equation: W.H. Bragg has proposed an equation to explain the relation between inter planar distance (d) and wave length ( λ

More information

Chapter 3 Structure of Crystalline Solids

Chapter 3 Structure of Crystalline Solids Chapter 3 Structure of Crystalline Solids Crystal Structures Points, Directions, and Planes Linear and Planar Densities X-ray Diffraction How do atoms assemble into solid structures? (for now, focus on

More information

Stress Mitigation of X-ray Beamline Monochromators using a Topography Test Unit

Stress Mitigation of X-ray Beamline Monochromators using a Topography Test Unit 128 Stress Mitigation of X-ray Beamline Monochromators using a Topography Test Unit J. Maj 1, G. Waldschmidt 1 and A. Macrander 1, I. Koshelev 2, R. Huang 2, L. Maj 3, A. Maj 4 1 Argonne National Laboratory,

More information

Carnegie Mellon MRSEC

Carnegie Mellon MRSEC Carnegie Mellon MRSEC Texture, Microstructure & Anisotropy, Fall 2009 A.D. Rollett, P. Kalu 1 ELECTRONS SEM-based TEM-based Koseel ECP EBSD SADP Kikuchi Different types of microtexture techniques for obtaining

More information

12 1 DNA Slide 1 of 37

12 1 DNA Slide 1 of 37 1 of 37 Griffith and Transformation Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying to learn how certain types of bacteria caused pneumonia. He isolated two different

More information

The application of scanning electron beam anomalous transmission patterns in mineralogy

The application of scanning electron beam anomalous transmission patterns in mineralogy MINERALOGICAL MAGAZINE, JUNE 1969, VOL. 37, NO. 286 The application of scanning electron beam anomalous transmission patterns in mineralogy M. P. JONES, B.SC., D.I.C., A.M.I.M.M., AND J. GAVRILOVIC, PH.D.,

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in MENA3100 Characterization of materials Day of exam: 12th. June 2015 Exam hours: 14:30 This examination paper consists of 5

More information

LECTURE 3 OPTICAL PROPERTIES AND MINERALOGICAL DETERMINATIONS

LECTURE 3 OPTICAL PROPERTIES AND MINERALOGICAL DETERMINATIONS LECTURE 3 OPTICAL PROPERTIES AND MINERALOGICAL DETERMINATIONS 3.1 LECTURE OUTLINE Welcome to lecture 3. In this lecture you will learn some optical properties of minerals and mineralogical determinations

More information

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation IOP Publishing Journal of Physics: Conference Series 59 (2007) 11 15 doi:10.1088/1742-6596/59/1/003 Eighth International Conference on Laser Ablation Time-resolved diffraction profiles and structural dynamics

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Tel Room 3N16.

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Tel Room 3N16. DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Tel. 0711 689 3325 Email: zotov@imw.uni-stuttgart.de Room 3N16 Lecture 5 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials

More information

NEMI Sn Whisker Modeling Group Part 2:Future Work

NEMI Sn Whisker Modeling Group Part 2:Future Work NEMI Sn Whisker Modeling Group Part 2:Future Work IPC/NEMI Meeting Maureen Williams, NIST Irina Boguslavsky, NEMI Consultant November 7, 2002 New Orleans, LA Capabilities of NEMI Modeling Group NEMI Fundamental

More information

A. KISHI AND H. TORAYA

A. KISHI AND H. TORAYA THE RIGAKU JOURNAL VOL. 21 / NO. 1 / 2004, 25 30 SIMULTANEOUS MEASUREMENTS OF X-RAY DIFFRACTION (XRD) AND DIFFERENTIAL SCANNING CALORIMETRY (DSC) DATA UNDER CONTROLLED HUMIDITY CONDITION: INSTRUMENTATION

More information

X-RAY DIFFRACTION in POWDERS

X-RAY DIFFRACTION in POWDERS X-RAY DIFFRACTION in POWDERS PURPOSE: To learn x-ray powder-pattern diffraction techniques, to verify Vegard's law for copper-nickel alloys, to determine the nickel content in some American and Canadian

More information

Engineering Materials Department of Physics K L University

Engineering Materials Department of Physics K L University Engineering Materials Department of Physics K L University 1 Crystallography Bonding in solids Many of the physical properties of materials are predicated on a knowledge of the inter-atomic forces that

More information

Thermo Scientific ARL EQUINOX X-ray Diffractometers

Thermo Scientific ARL EQUINOX X-ray Diffractometers Thermo Scientific ARL EQUINOX 1000 X-ray Diffractometers High performance in a compact size Thermo Scientific ARL EQUINOX 1000 X-ray diffractometer (XRD) is designed to meet structural and phase analysis

More information

INGE Engineering Materials. Chapter 3 (cont.)

INGE Engineering Materials. Chapter 3 (cont.) Some techniques used: Chapter 3 (cont.) This section will address the question how do we determine the crystal structure of a solid sample? Electron microscopy (by direct and indirect observations) Scanning

More information

11.3 The analysis of electron diffraction patterns

11.3 The analysis of electron diffraction patterns 11.3 The analysis of electron diffraction patterns 277 diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the slight buckling of the thin foil specimens all of which serve

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 2 of 37 Griffith and Transformation Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying to learn how certain types of bacteria caused pneumonia. He isolated

More information

Basic Crystallography

Basic Crystallography Basic Crystallography Data collection and processing Louise N. Dawe, PhD Wilfrid Laurier University Department of Chemistry and Biochemistry References and Additional Resources Faculty of Science, Bijvoet

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 2 of 37 Essential Question What is the overall structure of DNA? 3 of 37 Griffith and Transformation Griffith and Transformation In 1928, British scientist Fredrick Griffith was trying

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information