Magnetic Properties of Electrodeposited Nanocrystalline Ni-Fe alloys

Size: px
Start display at page:

Download "Magnetic Properties of Electrodeposited Nanocrystalline Ni-Fe alloys"

Transcription

1 Magnetic Properties of Electrodeposited Nanocrystalline Ni-Fe alloys Minghe Wang Supervisor: Dr. Marek Niewczas 701 Graduate Seminar 18 th September, 2012

2 Origin of the magnetism Only atoms with partially filled electron shells have a magnetic moment. Schematics of the electron s motion around the nucleus Ferromagnetic materials Refrigerator magnet used to hold notes on a refrigerator door 2

3 Soft magnetic materials Large hysteresis loss Low permeability Large Coercivity values Low hysteresis loss High permeability Small Coercivity values 3

4 Nanocrystalline soft magnetic materials Read-write head 28 Ni Low λs Transformer cores 26 Fe Candidates 27 Co Magnetic shielding 4

5 Magnetocrystalline Anisotropy How do magnetic materials react to magnetic field? BCC-Fe FCC-Ni 5

6 Random Anisotropy Model D > L ex the magnetization will follow the individual easy magnetic directions of the structural units. D < L ex the effective anisotropy for the magnetic behavior will be an average over several structural units and, thus, be reduced in magnitude. D L ex = K = K A K 1 N = K 1 D L ex G. Herzer., Scripta Met. 33, Exchange stiffness Effective magnetocrystalline anisotropy 3/ 2 K 1 Exchange interaction averages over anisotropy of individual grains 6 L ex

7 Objectives Develop a better understanding of the relationship between composition, microstructure and the magnetic properties of NiFe nanocrystalline materials between 2K and 298K. Materials Nanocrystalline Ni - x% Fe alloys (x=24,32,43,53,59) samples produced by electrodeposition from Integran Technologies Inc. were in the form of foils (~ 50 µm). Circular disk samples with 3 mm in diameter were cut from the foils and were used for the characterization. Outline Structure and Texture characterization Magnetic property characterization Conclusions 7

8 Part 1: Texture and Structure 2D XRD instrument Materials: nc-ni-fe alloys provided by Integran Technologies Inc. ~50um 8

9 TEM characterization Grain size ~10nm --- G.A. Cingara Ni-32wt.% Fe 40 Ni-24wt.% Fe Grain size(nm) Grain size calculated from XRD Ni-43wt.% Fe Ni-53wt.% Fe Fe content (wt.%) Ni-59wt.% Fe

10 Structure determination For alloy with an iron content of 59 percent, a mixed BCC and FCC structure was obtained. All the other alloys with different iron content as expected are composed entirely of γ phase FCC structure. (111) BCC FCC (200) BCC (220) Intensity(a.u.) FCC + BCC Fe content (wt.%) Theta(Degree) The Fe-Ni phase diagram from literature (G. Cacciamani, Intermetallics, Vol. 18, No. 6, 2010, pp ) X-ray diffraction pattern of nanocrystalline Ni-x wt. % Fe alloys (x=24,32,43,53,59) 10

11 Structure determination Solid solution structure of Fe in Ni is confirmed. The lattice parameters increased linearly with increasing the iron content of FCC Ni-Fe alloys, and reached a maximum value at Ni- 53wt. % Fe Lattice parameter a (Å) Ni atoms Fe atoms Schematic representation of solid solution of Fe in Ni Fe CONTENT(wt.%) Lattice parameter as a function of the Fe content in electrodeposited Ni-Fe alloys 11

12 Texture analysis Major component of the <100> fibre texture, and some contribution of the <111> and <110> component. Ni-24wt.%Fe Ni-32wt.%Fe Ni-43wt.%Fe Ni-53wt.%Fe Ni-59wt.%Fe Calculated pole figures of Ni-Fe alloys with different Fe content 12

13 Texture analysis The maximum value of the random orientation fraction was obtained for the Ni-43wt.% Fe nanocrystalline alloy. Spread angle 10 degree Volume fraction (%) (100) (111) Fe CONTENT(wt.%) Random orientation fraction(%) Fe CONTENT (wt.%) Calculated Fe content dependence of volume fraction (a) <100> and <111> fibre, (b) random 13

14 Part 2: Magnetic property characterization (PPMS & SQUID) Out of plane ~50um In plane 14

15 H, T=2K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe H, T=298K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe H, T=2K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe µ 0 H (Telsa) µ H (Tesla) H, T=298K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe µ 0 H (Tesla) µ H (Tesla) 15

16 Magnetic properties H, T=2K H, T=298K H, T=2K H, T=298K D 6 1/D Ms (emu/g) Hc(Oe) H, T=2K H, T=298K H, T=2K H, T=298K Fe content Coercivity as function of grain size for numerous materials After G. Herzer, Nanocrystalline soft magnetic alloys. In: Buschow KHJ, editor. Handbook of Magnetic Materials, vol. 10. Elsevier Science B.V., p.415 (1997) In plane and out of plane saturation magnetization and coercivity as a function of Fe content at 2K and 298K 16

17 Law of Approach To Saturation structural defects and non-magnetic inclusions uniform magnetocrystalline anisotropy high field susceptibility H, T=2K µ 0 H (Telsa) e d c b a H, T=298K µ 0 H (Tesla) Open square: experimental curve (dots) Straight lines: best fit Ni-xwt.%Fe a)x=24,b)x=32,c)x=43,d)x=53,e)x=59 17 e d c b a

18 Effective Magnetocrystalline Anisotropy K eff = = K M s 105 a 8 The values of Ms and a2 obtained from fitting the experimental data 2 Sample Ni- 24wt.%Fe Ni- 32wt.%Fe Ni- 43wt.%Fe Ni- 53wt.%Fe Ni- 59wt.%Fe Ms (emu/g) T=2K a 2 (10 4 Oe) 2 K eff (erg/cm 3 ) Ms (emu/g) T=298K a 2 (10 4 Oe) 2 K eff (erg/cm 3 ) *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E *E5 18

19 Effective Magnetocrystalline Anisotropy The maximum value K eff was obtained with Ni-43wt.%Fe alloy Keff(10 5 erg/cm 3 ) T=2K T=298K Random orientation fraction(%) Fe CONTENT(wt.%) The effective magnetocrystalline anisotropy as a function of Fe content Fe CONTENT (wt.%) Calculated Fe content dependence of random orientation fraction 19

20 Exchange Length Exchange length decreases with increasing Fe content L ex > D Samples Exchange length L ex (nm) T=2K T=298K Grain size D (nm) Ni-24wt.%Fe Ni-32wt.%Fe Ni-43wt.%Fe Ni-53wt.%Fe Ni-59wt.%Fe

21 Inverted hysteresis loops Regular B H, T=2K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe -150 µ 0 H (Telsa) H, T=2K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe µ 0 H (Telsa) µ 0 H (Tesla) µ 0 H (Tesla) H, T=298K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe -150 µ 0 H (Tesla) H, T=298K Ni-24 % Fe Ni-32 % Fe Ni-43 % Fe Ni-53 % Fe Ni-59 % Fe µ 0 H (Tesla) µ 0 H (Tesla) µ 0 H (Tesla) Mr (emu/g) Inverted H, T=2K H, T=298K H, T=2K H, T=298K B Fe (wt.%) H H In plane and out of plane remance as a function of Fe content at 2K and 298K Inverted parallel and perpendicular hysteresis loops (Inset) An enlarged view of the same curves. 21

22 Inverted hysteresis loops Two-phase model: The crystalline component and the boundary component featured antiferromagnetic exchange interaction. Schematic representation of a nanocrystalline material :. Black: atoms within the crystallite lattice, White: atoms at the grain boundaries. (R. BIRRINGER, Materials Science and Engineering, A117(1989) ) The exchange interaction between the oxide layer on the surface and the NiFe nanocrystalline alloy. 22

23 Conclusions The nanocrystalline Ni-xwt.%Fe alloys (x = 24,32,43,53) are comprised exclusively of the γ-fcc phase, whereas the coexistence of Ni-rich FCC and Fe-rich BCC phases are clearly observed from the X-ray diffraction patterns of Ni-59wt.%Fe alloy. The lattice parameter calculations have shown that the addition of Fe to Ni expanded the lattices. all the samples have fibre texture with strong <100> component and some contribution of the <111> component. With increasing Fe content, the Hc decreased until 43wt.%Fe. (The lowest Hc is around 6 Oe.) whereas the Ms increased monotonously and approached the highest value at 170 emu/g (with 59 wt.%fe), remnant magnetization are negative for all samples. The highest value of K eff is obtained for 43 wt. % Fe samples. The ferromagnetic exchange length decreases with increasing Fe content. the Random Anisotropy Model is suitable to describe properties of nanocrystalline Ni-Fe alloys. 23

24 Acknowledgement Dr. Marek Niewczas Integran Technologies Inc. for electrodeposited Ni-Fe alloys. Prof. Uwe Erb, University of Toronto Dr. Gordana Cingara and Dr. Qiuping Bian Financial support Ontario Research Fund in U of T/McMaster/ Integran Technologies Research Project on Electrodeposited Soft Magnetic Nanomaterials 24

25

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak 3.014 Materials Laboratory November 13 th 18 th, 2006 Lab week 3 Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak Objectives: a) Understand magnetic and thermal

More information

Hf Doping Effect on Hard Magnetism of Nanocrystalline Zr18-x HfxCo82 Ribbons

Hf Doping Effect on Hard Magnetism of Nanocrystalline Zr18-x HfxCo82 Ribbons University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ralph Skomski Publications Research Papers in Physics and Astronomy 7-2013 Hf Doping Effect on Hard Magnetism of Nanocrystalline

More information

Soft Magnetic Nanocrystalline Alloys for High Temperature Applications. 1. U.S. Naval Research Laboratory, Materials Physics Branch, Code 6340,

Soft Magnetic Nanocrystalline Alloys for High Temperature Applications. 1. U.S. Naval Research Laboratory, Materials Physics Branch, Code 6340, Soft Magnetic Nanocrystalline Alloys for High Temperature Applications Matthew A. Willard 1, Frank Johnson 2, John H. Claassen 1, Rhonda M. Stroud 1, Michael E. McHenry 2, and Vincent G. Harris 1 1. U.S.

More information

STRUCTURE AND MAGNETIC PROPERTIES OF CoFeB ALLOYS PREPARED BY BALL MILLING

STRUCTURE AND MAGNETIC PROPERTIES OF CoFeB ALLOYS PREPARED BY BALL MILLING STRUCTURE AND MAGNETIC PROPERTIES OF CoFeB ALLOYS PREPARED BY BALL MILLING * Jozef BEDNARÍK, ** Jozef KOVÁ, ** Viktor KAVEANSKÝ, * Peter KOLLÁR, *** Krzysztof POLANSKI, **** Jana KVASNICOVÁ * Department

More information

Ab-initio Calculation of Structural and Magnetic Properties of Annealed Cu 2 MnAl Heusler Alloy

Ab-initio Calculation of Structural and Magnetic Properties of Annealed Cu 2 MnAl Heusler Alloy International Conference on Material Science and Application (ICMSA 2015) Ab-initio Calculation of Structural and Magnetic Properties of Annealed Cu 2 MnAl Heusler Alloy Hang SHI 1,a, Xin WANG 2,b*, Nan

More information

The Influence of Nanocrystalization of the FeSiB Amorphous Alloy by Means of Nd: YAG Pulsed Laser heating on its Magnetic Properties.

The Influence of Nanocrystalization of the FeSiB Amorphous Alloy by Means of Nd: YAG Pulsed Laser heating on its Magnetic Properties. Solid State Phenomena Vol. 94 (2003) pp 75-78 (2003) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.94.75 The Influence of Nanocrystalization of the FeSiB Amorphous Alloy by Means

More information

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys D I S S E R T A T I O N

Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys D I S S E R T A T I O N Structural and magnetic characterization of Nd-based Nd-Fe and Nd-Fe-Co-Al metastable alloys D I S S E R T A T I O N for the partial fulfillment of the requirements for the academic degree of Doctor rerum

More information

Magnetism of MnBi-Based Nanomaterials

Magnetism of MnBi-Based Nanomaterials University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ralph Skomski Publications Research Papers in Physics and Astronomy 7-2013 Magnetism of MnBi-Based Nanomaterials Parashu

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

Structural and Magnetic Properties of Neodymium - Iron - Boron Clusters

Structural and Magnetic Properties of Neodymium - Iron - Boron Clusters University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research Mechanical & Materials Engineering,

More information

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase Materials Transactions, Vol. 43, No. 9 (2002) pp. 2337 to 2341 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Texture and properties - II

Texture and properties - II Texture and properties - II Texture and Hall-Petch strength The Hall-Petch equation 0 k d - ½ where, 0 = k = d = lattice frictional stress locking parameter average grain size modifies for textured polycrystals

More information

ARTICLE IN PRESS. Journal of Magnetism and Magnetic Materials

ARTICLE IN PRESS. Journal of Magnetism and Magnetic Materials Journal of Magnetism and Magnetic Materials 322 (2010) 315 321 Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm Transmission

More information

High Anisotropy L1 0 FePt Media for Perpendicular Magnetic Recording Applications

High Anisotropy L1 0 FePt Media for Perpendicular Magnetic Recording Applications DISKCON 2008 High Anisotropy L1 0 FePt Media for Perpendicular Magnetic Recording Applications Boon Chow LIM Agency for Science Technology & Research (A*STAR) DATA STORAGE INSTITUTE 5 Engineering Drive

More information

CONTENTS INTRODUCTION EXPERIMENTAL

CONTENTS INTRODUCTION EXPERIMENTAL CONTENTS PREFACE 1. INTRODUCTION 1.1 Metal Oxides 1 1.2 Review of the methods and applications of metal/mixed metal oxides of transition metals 1.2.1 Catalyst 8 1.2.2 Photo catalyst 21 1.2.2 Sensors 30

More information

Mingzhong Wu 1,Y.D.Zhang *,S.Hui,andShihuiGe Inframat Corporation, 74 Batterson Park Road, Farmington, CT 06032, U.S.A.

Mingzhong Wu 1,Y.D.Zhang *,S.Hui,andShihuiGe Inframat Corporation, 74 Batterson Park Road, Farmington, CT 06032, U.S.A. Mat. Res. Soc. Symp. Proc. Vol. 755 23 Materials Research Society DD5.17.1 Temperature-Dependent Magnetic Properties of SiO 2 -Coated Ni 75 Fe 25 Nanoparticles Mingzhong Wu 1,Y.D.Zhang *,S.Hui,andShihuiGe

More information

Energy Efficiency of Amorphous Metal Based Transformers. R. Hasegawa Metglas, Inc 440 Allied Drive, SC USA

Energy Efficiency of Amorphous Metal Based Transformers. R. Hasegawa Metglas, Inc 440 Allied Drive, SC USA Energy Efficiency of Amorphous Metal Based Transformers R. Hasegawa Metglas, Inc 440 Allied Drive, SC 29526 USA October 2004 OVERVIEW Basics Introduction Amorphous versus crystalline magnetic material

More information

Preparation and Characterization of Nickel and Copper Ferrite Nanoparticles by Sol-Gel Auto-Combustion Method

Preparation and Characterization of Nickel and Copper Ferrite Nanoparticles by Sol-Gel Auto-Combustion Method Preparation and Characterization of Nickel and Copper Ferrite Nanoparticles by Sol-Gel Auto-Combustion Method Anitha Rani. K* and Senthil Kumar. V* *Department of Physics, Karpagam University, Coimbatore-21.

More information

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields Hyperfine Interactions 156/157: 151 155, 2004. 2004 Kluwer Academic Publishers. Printed in the Netherlands. 151 Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External

More information

INTRODUCTION:- 1.Classification of magnetic material Diamagnetic

INTRODUCTION:- 1.Classification of magnetic material Diamagnetic INTRODUCTION:- Ferrites are ferromagnetic material containing predominantly oxides iron along with other oxides of barium, strontium, manganese, nickel, zinc, lithium and cadmium.ferrites are ideally suited

More information

Magnetic Domain Structure of Nanocrystalline Zr 18-x Hf x Co 82 Ribbons: Effect of Hf

Magnetic Domain Structure of Nanocrystalline Zr 18-x Hf x Co 82 Ribbons: Effect of Hf Mater. Res. Soc. Symp. Proc. Vol. 1557 2013 Materials Research Society DOI: 10.1557/opl.2013.1105 Magnetic Domain Structure of Nanocrystalline Zr 18-x Hf x Co 82 Ribbons: Effect of Hf Lanping Yue 1, I.

More information

Superparamagnetic properties of ɣ-fe 2 O 3 particles: Mössbauer spectroscopy and DC magnetic measurements

Superparamagnetic properties of ɣ-fe 2 O 3 particles: Mössbauer spectroscopy and DC magnetic measurements Superparamagnetic properties of ɣ-fe 2 O 3 particles: Mössbauer spectroscopy and DC magnetic measurements K. Závěta 1, A. Lančok, M. Maryško, E. Pollert Institute of Physics, AS CR, Praha, Czech Republic

More information

Effects of Bath Temperature on Electrodeposited Permanent Magnetic Co-Pt-W(P) Films

Effects of Bath Temperature on Electrodeposited Permanent Magnetic Co-Pt-W(P) Films 2214 Bull. Korean Chem. Soc. 2007, Vol. 28, No. 12 Hongliang Ge et al. Effects of Bath Temperature on Electrodeposited Permanent Magnetic Co-Pt-W(P) Films Hongliang Ge, * Qiong Wu, Guoying Wei, Xinyan

More information

6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations

6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations C. Epitaxial Growth 6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations M. Rickart, A.R. Frank, J. Jorzick, Ch. Krämer, S.O.

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Fe-based Amorphous Powder for Soft-Magnetic Composites

Fe-based Amorphous Powder for Soft-Magnetic Composites Fe-based Amorphous Powder for Soft-Magnetic Composites Oskar Larsson Master Thesis Department of Material Science and Engineering Royal Institute of Technology Stockholm, Sweden 2013 Abstract Fe-based

More information

Hybrid magnetic/semiconductor spintronic materials and devices

Hybrid magnetic/semiconductor spintronic materials and devices Journal of Magnetism and Magnetic Materials 00 (2006) 000--000 Hybrid magnetic/semiconductor spintronic materials and devices Y.B. Xu, E. Ahmad, J. S. Claydon, Y.X. Lu, S. S. A. Hassan, I. G. Will and

More information

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I Module 31 Heat treatment of steel I Lecture 31 Heat treatment of steel I 1 Keywords : Transformation characteristics of eutectoid steel, isothermal diagram, microstructures of pearlite, bainite and martensite,

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials

Point Defects. Vacancies are the most important form. Vacancies Self-interstitials Grain Boundaries 1 Point Defects 2 Point Defects A Point Defect is a crystalline defect associated with one or, at most, several atomic sites. These are defects at a single atom position. Vacancies Self-interstitials

More information

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE Gayathri.S 1, Kalainathan.S 2 1,2 Center for Crystal Growth, VIT University, Vellore - 14, Tamil

More information

EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece.

EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece. EBSD Marco Cantoni 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME EBSD Basics Quantitative, general microstructural characterization in the SEM Orientation measurements, phase

More information

Dilute magnetic semiconductors. Iuliia Mikulska University of Nova Gorica Doctoral study, programme physics

Dilute magnetic semiconductors. Iuliia Mikulska University of Nova Gorica Doctoral study, programme physics Dilute magnetic semiconductors Iuliia Mikulska University of Nova Gorica Doctoral study, programme physics Spintronics Spintronics (a neologism meaning "spin transport electronics"), also known as magnetoelectronics

More information

Exchange bias. J. Nogués, Ivan K. Schuller *

Exchange bias. J. Nogués, Ivan K. Schuller * Journal of Magnetism and Magnetic Materials 192 (1999) 203 232 Exchange bias J. Nogués, Ivan K. Schuller * Grup d+electromagnetisme, Department de Fı&sica, Universitat Auto% noma de Barcelona, 08193 Bellaterra,

More information

Magnetic properties of hematite with large coercivity

Magnetic properties of hematite with large coercivity Noname manuscript No. (will be inserted by the editor) Magnetic properties of hematite with large coercivity P. G. Bercoff 1 and H. R. Bertorello 1 FaMAF, Universidad Nacional de Córdoba. IFEG, Conicet.

More information

Cu/Ag Eutectic System

Cu/Ag Eutectic System Eutectic Systems The simplest kind of system with two solid phases is called a eutectic system. A eutectic system contains two solid phases at low temperature. These phases may have different crystal structures,

More information

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Study theme outcomes: After studying this chapter, students should or should be able to: - know and understand

More information

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 213 217. Indian Academy of Sciences. XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel LI YAJIANG*, WANG

More information

Anisotropic Mechanical Properties of Pr(Co,In) 5 -type Compounds and Their Relation to Texture Formation in Die-upset Magnets

Anisotropic Mechanical Properties of Pr(Co,In) 5 -type Compounds and Their Relation to Texture Formation in Die-upset Magnets Journal of Magnetics 16(3), 220-224 (2011) http://dx.doi.org/10.4283/jmag.2011.16.3.220 Anisotropic Mechanical Properties of Pr(Co,In) 5 -type Compounds and Their Relation to Texture Formation in Die-upset

More information

Magnetotransport properties of oxidized iron thin films

Magnetotransport properties of oxidized iron thin films Magnetotransport properties of oxidized iron thin films Jolanta Stankiewicz, 1, * Félix Jiménez-Villacorta, 2 and Carlos Prieto 2 1 Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones

More information

Magnetoelectric nano-fe 3 O 4 /CoFe 2 O 4 //PbZr 0.53 Ti 0.47 O 3 Composite 1/11

Magnetoelectric nano-fe 3 O 4 /CoFe 2 O 4 //PbZr 0.53 Ti 0.47 O 3 Composite 1/11 Magnetoelectric nano-fe 3 O 4 /CoFe2O4//PbZr0.53Ti0.47O3 Composite Department of Materials Science and Engineering University of Maryland, College Park, MD, 20742 Abstract A new magnetoelectric hybrid

More information

Magnetostriction Effect of Amorphous CoFeB Thin Films and. Application in Spin Dependent Tunnel Junctions

Magnetostriction Effect of Amorphous CoFeB Thin Films and. Application in Spin Dependent Tunnel Junctions Magnetostriction Effect of Amorphous CoFeB Thin Films and Application in Spin Dependent Tunnel Junctions Dexin Wang, Cathy Nordman, Zhenghong Qian, James M. Daughton, and John Myers, NVE Corporation, 11409

More information

Extruded Rods with <001> Axial Texture of Polycrystalline Ni-Mn-Ga Alloys

Extruded Rods with <001> Axial Texture of Polycrystalline Ni-Mn-Ga Alloys Materials Science Forum Online: 2009-12-03 ISSN: 1662-9752, Vol. 635, pp 189-194 doi:10.4028/www.scientific.net/msf.635.189 2010 Trans Tech Publications, Switzerland Extruded Rods with Axial Texture

More information

Stress controlled magnetic properties of Cobalt nanowires

Stress controlled magnetic properties of Cobalt nanowires Stress controlled magnetic properties of Cobalt nanowires Jaivardhan Sinha and S. S. Banerjee* Department of Physics, Indian Institute of Technology, Kanpur-208016, U. P., India. *E-mail: satyajit@iitk.ac.in

More information

Monitoring Magnetic Anisotropy Variations in Cold-Rolled Steels by Magnetic Barkhausen Noise Method

Monitoring Magnetic Anisotropy Variations in Cold-Rolled Steels by Magnetic Barkhausen Noise Method 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16706 Monitoring Magnetic Anisotropy Variations

More information

Phase Diagrams. Phases

Phase Diagrams. Phases Phase Diagrams Reading: Callister Ch. 10 What is a phase? What is the equilibrium i state t when different elements are mixed? What phase diagrams tell us. How phases evolve with temperature and composition

More information

Nd-Fe-B permanent magnets. M. J. O Shea. Kansas State University

Nd-Fe-B permanent magnets. M. J. O Shea. Kansas State University Nd-Fe-B permanent magnets Return to main webpage of mick O Shea M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy

More information

Ion Nitriding of Stainless Steel: III

Ion Nitriding of Stainless Steel: III Ion Nitriding of Stainless Steel: III INFLUENCE OF MICROSTRUCTURE ON NITRIDING PROPERTIES OF STAINLESS STEEL D. Manova, S. Heinrich, I. Eichentopf, S. Mändl, H. Neumann, B. Rauschenbach Financial Support

More information

DEFENSE TECHNICAL INFORMATION CENTER

DEFENSE TECHNICAL INFORMATION CENTER DEFENSE TECHNICAL INFORMATION CENTER DT!C has determined on 1/6 /ffi//?that this Technical Document has the Distribution Statement checked below. The current distribution for this document can be found

More information

Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance

Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance Magneto-impedance of [Co 40Fe 40B 20/Cu] Multilayer Films S. U. Jen, T. Y. Chou, C. K. Lo,.................................................................

More information

S trong permanent magnets are important for many clean energy applications such as wind turbines and

S trong permanent magnets are important for many clean energy applications such as wind turbines and OPEN SUBJECT AREAS: FERROMAGNETISM PHYSICS CONDENSED-MATTER PHYSICS Received 7 July 2014 Accepted 24 October 2014 Published 12 November 2014 Ferromagnetism of Fe 3 Sn and Alloys Brian C. Sales, Bayrammurad

More information

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram Steels: alloys of Iron (Fe) and Carbon (C). Fe-C phase diagram is complex. Will only consider the steel part of the diagram, up to around 7% Carbon. University

More information

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys

Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys Materials Transactions, Vol. 43, No. 5 (2002) pp. 1230 to 1234 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Formation and Soft Magnetic Properties of Co Fe Si B Nb Bulk Glassy Alloys Akihisa

More information

Magnetic properties and retained austenite quantification in SAE 4340 steel

Magnetic properties and retained austenite quantification in SAE 4340 steel ISSN 1517-7076 Revista Matéria, v. 14, n. 3, pp. 993 999, 2009 http://www.materia.coppe.ufrj.br/sarra/artigos/artigo11069 Magnetic properties and retained austenite quantification in SAE 4340 steel AJUS

More information

Ph.D. Admission 20XX-XX Semester X

Ph.D. Admission 20XX-XX Semester X Ph.D. Admission 20XX-XX Semester X Written Examination Materials Science & Engineering Department, IIT Kanpur Date of Examination: XX XXXX 20XX Timing: XX:XX XX:XX XX Application# Please read these instructions

More information

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor

Phase Diagrams of Pure Substances Predicts the stable phase as a function of P total and T. Example: water can exist in solid, liquid and vapor PHASE DIAGRAMS Phase a chemically and structurally homogenous region of a material. Region of uniform physical and chemical characteristics. Phase boundaries separate two distinct phases. A single phase

More information

Continuous Cooling Diagrams

Continuous Cooling Diagrams Continuous Cooling Diagrams Isothermal transformation (TTT) diagrams are obtained by rapidly quenching to a given temperature and then measuring the volume fraction of the various constituents that form

More information

Synthetic antiferromagnet with Heusler alloy Co 2 FeAl ferromagnetic layers

Synthetic antiferromagnet with Heusler alloy Co 2 FeAl ferromagnetic layers Synthetic antiferromagnet with Heusler alloy Co 2 FeAl ferromagnetic layers X. G. Xu, D. L. Zhang, X. Q. Li, J. Bao, Y. Jiang State Key Laboratory for Advanced Metals and Materials, School of Materials

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

Fabrication and Properties of Nd(Tb,Dy)Co/Cr Films with Perpendicular Magnetic Anisotropy

Fabrication and Properties of Nd(Tb,Dy)Co/Cr Films with Perpendicular Magnetic Anisotropy Fabrication and Properties of (,Dy)/Cr Films with Perpendicular Magnetic Anisotropy Weiming Cheng 1,2, Xiangshui Miao * 1,2, Junbing Yan 2, Xiaomin Cheng 1,2 1 Department of Electronic cience and Technology,

More information

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE

STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE STATE OF SOLIDIFICATION & CRYSTAL STRUCTURE Chapter Outline Determination of crystal properties or properties of crystalline materials. Crystal Geometry! Crystal Directions! Linear Density of atoms! Crystal

More information

Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys

Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys 19 th Plansee Seminar RM 54/1 Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys S. Marschnigg*, C. Gierl-Mayer*, H. Danninger*, T. Weirather**, T. Granzer**,

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( =

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS ev /atom = exp. kt ( = CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

GRADED MEDIA: Towards to more than 1 Tbit/in 2 magnetic recording. Dr. D. Niarchos. Th. Speliotis V. Alexandrakis G. Giannopoulos

GRADED MEDIA: Towards to more than 1 Tbit/in 2 magnetic recording. Dr. D. Niarchos. Th. Speliotis V. Alexandrakis G. Giannopoulos IMS, NCSR Demokritos Athens, Greece www.teramagstor.eu GRADED MEDIA: Towards to more than 1 Tbit/in 2 magnetic recording Dr. D. Niarchos Th. Speliotis V. Alexandrakis G. Giannopoulos CAN YOU IMAGINE ~7

More information

TEXTURE IN METALLIC AND CERAMIC

TEXTURE IN METALLIC AND CERAMIC Textures and Microstructures, Vol. 32, pp. 107-118 Reprints available directly from the publisher Photocopying permitted by license only (C) 1999 OPA (Overseas Publishers Association) N.V. Published by

More information

Part IV. Solid-solid transformations I

Part IV. Solid-solid transformations I Part IV : Solid-Solid Phase Transformations I Module 1 : Precipitation Part IV. Solid-solid transformations I In this part, we discuss a few of the important solid-solid transformations, namely, precipitation,

More information

Lecture 31-36: Questions:

Lecture 31-36: Questions: Lecture 31-36: Heat treatment of steel: T-T-T diagram, Pearlitic, Martensitic & Bainitic transformation, effect of alloy elements on phase diagram & TTT diagram, CCT diagram, Annealing, normalizing, hardening

More information

The effect of driving force in Gibbs energy on the fraction of martensite

The effect of driving force in Gibbs energy on the fraction of martensite The effect of driving force in Gibbs energy on the fraction of martensite Erik Andersson Andreas Johansson Supervisor: Associate Prof. Annika Borgenstam 2013 Dept. of Material Science and Engineering Royal

More information

Exchange Bias and Bi- stable Magneto- Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

Exchange Bias and Bi- stable Magneto- Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films Exchange Bias and Bi- stable Magneto- Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films Chung Ting (Marco) Ma University of Virginia 4th Year Seminar 1 Outline Background Why are we interested

More information

Phase error in current transformers with nanocrystalline alloys core

Phase error in current transformers with nanocrystalline alloys core Phase error in current transformers with nanocrystalline alloys core Thiago C. Batista, Benedito A. Luciano 2, Raimundo C. S. Freire 2 Coordenação de pós-graduação em Engenharia Elétrica (Universidade

More information

Nanomagnetism. R. A. Buhrman. Center for Nanoscale Systems (www.cns.cornell.edu) Cornell University

Nanomagnetism. R. A. Buhrman. Center for Nanoscale Systems (www.cns.cornell.edu) Cornell University Nanomagnetism R. A. Buhrman Center for Nanoscale Systems (www.cns.cornell.edu) Cornell University Magnetism! Before Nanoscience and Nanotechnology there was The nation that controls magnetism will control

More information

Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying

Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying Hyperfine Interactions 148/149: 295 305, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 295 Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying G.

More information

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed crystal structures Density computations Crystal structure

More information

11.3 The analysis of electron diffraction patterns

11.3 The analysis of electron diffraction patterns 11.3 The analysis of electron diffraction patterns 277 diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the slight buckling of the thin foil specimens all of which serve

More information

EDDY CURRENT AND MICROWAVE CHARACTERIZATION OF (FE 65 CO 35 ) 70 AL 30 NANOCRYSTALLINE ALLOY SYNTHESIZED BY MECHANICAL ALLOYING PROCESS

EDDY CURRENT AND MICROWAVE CHARACTERIZATION OF (FE 65 CO 35 ) 70 AL 30 NANOCRYSTALLINE ALLOY SYNTHESIZED BY MECHANICAL ALLOYING PROCESS The 10 th International Conference of the Slovenian Society for Non-Destructive Testing»Application of Contemporary Non-Destructive Testing in Engineering«September 1-3, 2009, Ljubljana, Slovenia, 531-537

More information

Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications

Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications Graduate Theses and Dissertations Graduate College 2014 Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications Haley

More information

Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition

Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition Materials Transactions, Vol. 44, No. 10 (2003) pp. 1948 to 1954 Special Issue on Nano-Hetero Structures in Advanced Metallic Materials #2003 The Japan Institute of Metals Nanocrystalline structure and

More information

Development of Low Noise Fluxgate Sensors

Development of Low Noise Fluxgate Sensors Development of Low Noise Fluxgate Sensors Luiz C.C. Benyosef* Resumen Este trabajo resume los resultados de cintas amorfas de dos aleaciones de CoFeSiB y otras dos de CoFeSiBCr, como sensores del dispositivo

More information

Magnetic properties of iron-filled multiwalled carbon nanotubes

Magnetic properties of iron-filled multiwalled carbon nanotubes Magnetic properties of iron-filled multiwalled carbon nanotubes N. Aguiló-Aguayo, J. García-Céspedes, E. Pascual and E. Bertran FEMAN Group, IN 2 UB, Departament de Física Aplicada i Òptica, Universitat

More information

Rina Consulting CSM introduction

Rina Consulting CSM introduction Rina Consulting CSM introduction CSM was started in 1963, as CORPORATE research centre of FINSIDER (nationalized steelmaking corporation). CSM experience on Electrical Steel started at beginning of 70

More information

Texture and magneto-crystalline anisotropy of an oriented ferrimagnetic ErMn 4 Fe 8 C powder sample

Texture and magneto-crystalline anisotropy of an oriented ferrimagnetic ErMn 4 Fe 8 C powder sample Texture and magneto-crystalline anisotropy of an oriented ferrimagnetic ErMn 4 Fe 8 C powder sample M. Morales 1, D. Chateigner 2 and D. Fruchart 3 1 Lab. Physique de l'etat Condensé, Université du Maine,

More information

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling Materials Transactions, Vol. 48, No. 2 (07) pp. 121 to 126 #07 The Japan Institute of Metals Effect of Li Addition on Synthesis of - BCC Alloys by means of Ball Milling Kohta Asano, Hirotoshi Enoki and

More information

CHAPTER 5: DIFFUSION IN SOLIDS

CHAPTER 5: DIFFUSION IN SOLIDS CHAPTER 5: DIFFUSION IN SOLIDS ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion

More information

Fe-Fe 3 C phase diagram is given on the last page of the exam. Multiple choices (2.5 points each):

Fe-Fe 3 C phase diagram is given on the last page of the exam. Multiple choices (2.5 points each): Materials Science and Engineering Department MSE 200, Exam #3 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be used. Cheating will be

More information

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Ferrite - BCC Martensite - BCT Fe 3 C (cementite)- orthorhombic Austenite - FCC Chapter 10 Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Why do we study

More information

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM

University of Pretoria Z Tang (2006) Chapter 8 Studies of acicular ferrite by thin foil TEM 8.2 Two types of acicular ferrite 8.2.1 Structure with parallel laths There appeared to be two types of acicular ferrite laths that were observed in those alloys cooled with a rapid cooling rate of 47

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS CHAPTER 5 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and Self-Interstitials 5.1 Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 C (1357 K). Assume

More information

NO NEGATIVE MARKINGS. SECTIONS A

NO NEGATIVE MARKINGS. SECTIONS A Application No. Department of Materials Science & Engineering, IIT Kanpur **********: Written Examination: ******* Examination: ********* Duration: 1 hour Maximum Marks: 60 Please read these instructions

More information

Physics of Nanomaterials. Module II. Properties of Nanomaterials. Learning objectives

Physics of Nanomaterials. Module II. Properties of Nanomaterials. Learning objectives Physics of Nanomaterials Module II Properties of Nanomaterials Learning objectives Microstructure and defects in nanomaterials, dislocations, twins, stacking faults and voids, grain boundaries Effect of

More information

Module 23. Iron Carbon System I. Lecture 23. Iron Carbon System I

Module 23. Iron Carbon System I. Lecture 23. Iron Carbon System I Module 23 Iron Carbon System I ecture 23 Iron Carbon System I 1 NPTE Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials Engineering Keywords : Ferrite (), Austenite (), Ferrite

More information

Lab Materials Science

Lab Materials Science Institute for Micro- and Nanomaterials Lab Summer Term 2007 Group 9: Adelheid Grob & Sukhum Ruangchai & Brook Esseye lab on June, 21st 2007 1 Questions 1.1 What is the goal of metallographic sample preparation?

More information

Microforging Effect on the Microstructure and Magnetic Properties of FeSiB-based Nanoflakes

Microforging Effect on the Microstructure and Magnetic Properties of FeSiB-based Nanoflakes J. Mater. Sci. Technol., 212, 28(4), 33 37. Microforging Effect on the Microstructure and Magnetic Properties of FeSi-based Nanoflakes Wooseung Kang Department of Metallurgical & Materials Engineering,

More information

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO Today the structure determinations etc are all computer -assisted It is instructive however for you to do a simple structure by hand Rocksalt Structure Quite common in nature KCl, NaCl, MgO 9-1 Typical

More information

Iron Oxide Scale Removal from Boiler Feed- Water in Thermal Power Plant by Magnetic Separation

Iron Oxide Scale Removal from Boiler Feed- Water in Thermal Power Plant by Magnetic Separation Construction of Low-Carbon Society Using Superconducting and Cryogenic Technology March 7 th 9 th, 2016 Cosmo Square Hotel & Congress, Osaka Japan Iron Oxide Scale Removal from Boiler Feed- Water in Thermal

More information

Huajing Song (Wilson) Supervisor: Dr. JJ Hoyt

Huajing Song (Wilson) Supervisor: Dr. JJ Hoyt Huajing Song (Wilson) Supervisor: Dr. JJ Hoyt Introduction Previous works Theory Approach Results and discussion Conclusion & future research 1 1184 K 1665 K α Υ δ Ferrite Austenite Melting point 1809

More information

Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing

Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Deformation behavior of electro-deposited pure Fe and its texture evolution during cold-rolling and subsequent annealing To cite

More information