(aq) + 5e - Mn 2+ (aq) + 4H 2

Size: px
Start display at page:

Download "(aq) + 5e - Mn 2+ (aq) + 4H 2"

Transcription

1 EXPERIMENT 20 Titrimetric Determination of Iron INTRODUCTION Potassium permanganate is widely used as an oxidizing agent in titrimetric analysis. In acidic solution, a permanganate ion undergoes reduction to manganese (II) ion as shown in the following equations: 8H + (aq) + MnO 4 - (aq) + 5e - Mn 2+ (aq) + 4H 2 O (l) Since the permanganate ion is violet and the manganese (II) ion is nearly colorless, the endpoint in titrations using potassium permanganate as the titrant can be taken as the first permanent pink color that appears in the solution. This experiment will utilize potassium permanganate to determine the molarity and mass percent of iron (II) ions in an unknown solution containing iron (II) ammonium sulfate hexahydrate, Fe(NH 4 ) 2 (SO 4 ) 2. 6H 2 O. The titration involves the oxidation of iron (II) to iron (III): Fe 2+ (aq) Fe 3+ (aq) + e- The titration is carried out in a sulfuric acid solution to prevent air-oxidation of iron (II). The overall oxidation-reduction reaction between the permanganate ion and the iron (II) ion is: 8H + (aq) + MnO 4 - (aq) + 5Fe 2+ (aq) Mn 2+ (aq) + 5Fe 3+ (aq) + 4H 2 O (l) The volume of the potassium permanganate solution required is noted, and using this volume and the molarity of the potassium permanganate solution, the moles of iron (II) can be calculated. By knowing the volume of the unknown solution used, the molarity of the iron (II) can be calculated. By knowing the mass of the unknown solution used, the mass percent of iron (II) can be calculated. In this experiment you will test both your accuracy and precision. Students with the same unknown sample will compile their data, and you will submit a mean molarity of iron (II) in the unknown. Before calculating the mean molarity of iron (II), a Q-test will be applied to the data to insure that all of the calculated molarities should be included in the calculation of the mean, and Q 95% values are given in the table below. Number of Data Points : Q 95% : Your group s mean molarity of iron (II) will then be checked against its accepted value by the instructor, and the agreement between the two will demonstrate your group s accuracy. Once the mean is determined, the standard deviation and relative standard deviation can be calculated. The relative standard deviation for the molarity of iron (II) will show the agreement between the multiple trials performed by your group, and will demonstrate your group s precision. 203

2 PROCEDURE 1. Students will work individually for this experiment. Except for the laboratory handout, remove all books, purses, and such items from the laboratory bench top, and placed them in the storage area by the front door. For laboratory experiments you should be wearing closed-toe shoes. Tie back long hair, and do not wear long, dangling jewelry or clothes with loose and baggy sleeves. Open you lab locker. Put on your safety goggles, your lab coat, and gloves. PART A - CALIBRATING THE BURET 2. Attach a support rod to a stirring plate, and attach a double buret clamp to the support rod. Obtain a buret (tolerance 0.03 ml), always carrying a buret in a vertical position. Attach a double buret clamp to a ring stand attached to a stirring plate. Attach the buret to the double buret clamp. 3. Prepare a buret card to be used every time you read your buret. Obtain a 3"x5" card from drawer 019 and using a black felt tip pen make a horizontal mark on your card, one centimeter thick and practically the length of the card. When the top of the black band is held just below the bottom of a meniscus you will see a reflection of the band in the meniscus against the white of the card behind. This offers you a repeatable method of determining the position of the meniscus. You must make sure during your readings that your line of sight is perpendicular to the buret so as to avoid parallax. If your line of sight is looking downward or looking upward, the meniscus will appear to be higher or lower, respectively, than its true value. 4. Using a funnel, and with the top of the funnel below eye level, fill the buret with deionized water. Run some of the deionized water through the buret tip into the waste beaker until you are sure that all the bubbles are removed from the buret tip. Add enough deionized water so that the water level is above the 0.00 ml mark, then drain the water slowly into the beaker until the meniscus is at the 0.00 ml mark (as read with your buret card). Touch the tip of the buret to the side of a beaker to remove the drop hanging from the tip. After about a minute, to allow for drainage, make an initial reading of the meniscus with your buret card, estimating the volume to the nearest 0.01 ml. Record the calibration reading in your Data Table. Allow the buret to stand for 5 minutes and recheck the reading. If the stopcock is tight, there should be no noticeable change in the reading. If the reading has changed tighten the locking nut on the stopcock and let stand for another 5 minutes. Check the reading again. If the buret continues to leak consult your instructor. 5. Empty the deionized water out of your buret. 204

3 PART B - DETERMINATION OF IRON (II) 6. Obtain a mL pipet (tolerance 0.02 ml), and an unknown solution containing iron (II) ions. Always carry pipets in a vertical position. Do not remove the code label from the unknown solution, but record the unknown number in the space provided in your Data Table. 7. Obtain a pipet bulb from drawer 014 or a pipet roller from drawer 013. Condition your pipet by drawing about 2 ml of the iron (II) solution into the pipet and, holding the pipet in a horizontal position, rolling it to make sure that the iron solution wets the entire inside surface. Drain the iron (II) solution through the pipet tip into the waste beaker. Do not use too much iron (II) solution for the conditioning process, or you may not have enough left for your titrations. Repeat this conditioning procedure two more times, each with about 2 ml of the iron (II) solution. All excess solutions in the waste beaker on your lab bench must be disposed of in the waste bottle in the fume hood. 8. Obtain a stopper from drawer 013. Measure the mass of a clean, dry, stoppered 125-mL Erlenmeyer flask and record it in the Data Table. Pipet a ml sample of the iron (II) solution into the flask, and record this volume in your Data Table. Measure the mass of the stoppered flask with the added sample of the iron (II) solution and record it in the Data Table. Calculate the mass of the sample and record it in the Data Table. Add about 5 ml of 6 M sulfuric acid to the flask. 9. Obtain 75 ml of the standardized potassium permanganate solution from the large container in the lab room. Read the container and record the concentration of the potassium permanganate solution in your Data Table. Condition your buret by rinsing it three times with 5 ml portions of the potassium permanganate solution. Drain the potassium permanganate solution through the buret tip into a waste beaker. Place all excess solutions in the waste beaker on your lab bench. Dispose of all excess solutions in the waste bottle in the Fume Hood A. Using a funnel, and with the top of the funnel below eye level, fill the buret with the potassium permanganate solution. Run some of the potassium permanganate solution through the buret tip into a waste beaker until (1) you are sure that all the bubbles are removed from the buret tip, and (2) the potassium permanganate meniscus is at or below the 0.00 ml mark on the buret. Remove the last drop from the tip of the buret, then remove the waste beaker 10. Obtain a clean and dry magnetic stirring bar from your locker, and carefully slide it into the Erlenmeyer flask containing the unknown iron (II) solution. Center the Erlenmeyer flask on the stirring plate, and adjust your buret so the tip is slightly inside the mouth of the flask. Read the buret and record it as the Initial Buret Reading. Have another student verify the reading. Turn on the stirring plate, slowly increasing the speed until that the stirring bar creates a vortex in the liquid, but does not collide with the sides of the vessel. 11. Add the potassium permanganate solution intermittently from the buret to the Erlenmeyer flask, noting the pink permanganate color that appears and disappears as the drops hit the liquid and mix with it. When the pink color begins to persist, slow down the rate of the addition of potassium permanganate until you are adding it drop by drop. In the final stages of the titration, rinse the inside wall of the flask with deionized water from your wash bottle, and add half drops until the entire solution just turns a pale pink, or salmon, color. If your solution turned from colorless to pale pink with the addition of only one drop of the potassium permanganate solution, use this titration to determine the molarity of iron (II) in the unknown solution. However, if your solution turned from colorless to pink with the addition of more than one drop of the potassium permanganate solution, this would be a gross error that caused the endpoint to be missed, and this titration should be discarded. 205

4 12. Read the buret and record it as the Final Buret Reading. Have another student verify the reading. Pour the contents of the Erlenmeyer flask through your funnel into the waste beaker to recover the magnetic stirring bar, then clean and dry it for the next titration. Refill the buret with potassium permanganate solution, repeat step 8, and do a second trial, titrating to a pale pink endpoint. 13. Complete two titrations in which you obtain a pale pink endpoint. Calculate the mass percent of iron (II) and the molarity of iron (II) for both trials. Precise work will give you two mass percents and two molarities that are nearly identical. The expected precision limit for volumetric analysis is 1%. For your individual work this means that your two mass percents and your two molarities should agree within 1% of each other. 14. Find your unknown number on the white board, and write your two calculated molarities of iron (II) underneath it. Record all of the calculated molarities for your unknown in your Data Table. List the molarities from lowest to highest, then apply a Q-Test to the highest and lowest molarities to determine if one of them should be rejected because it is an outlier. 15. The statistical analysis can be done on a TI-30 calculator. Clear the calculator by pressing. If Error appears, press. Enter the first molarity, then press. Enter the second molarity, press, and continue this until all of the non-rejected molarities have been entered. At this point you will see n = x, where x is the number of data points you have entered. To find the mean of the entered data, press, and you will see the mean displayed. To find the standard deviation, press, and you will see the standard deviation displayed. You will need to calculate the relative standard deviation on your own. Record each of these calculated values in your Data Table. Precise work will give multiple molarities that are nearly identical. The expected precision limit for volumetric analysis is less than 1%. For your group this means that the mean molarity of iron (II) should have a relative standard deviation of less than 1%. Accurate work will give you a mean molarity that is nearly identical with the accepted molarity. The expected accuracy limit for volumetric analysis is less than 1%. For your group this means that the mean molarity of iron (II) should agree within 1% of the accepted molarity of iron (II) when graded by the instructor. 16. At the end of the experiment, clean and dry the magnetic stirring bar and return it to your lab locker. Empty the permanganate solution out of your buret, then rinse the buret thoroughly, including the tip, with your remaining unknown. Dispose of this waste solution in the waste bottle in the Fume Hood A. Next, rinse the buret several times with tap water, then three times with deionized water, disposing of these washings down the sink, and then dry off the outside. Rinse your unknown container several times with tap water, then three times with deionized water, and then dry off the outside. Return these items to the back of the lab room. 17. Clean and wipe dry your laboratory work area and all apparatus. When you have completed your lab report have the instructor inspect your working area. Once your working area has been checked your lab report can then be turned in to the instructor. 206

5 EXPERIMENT 20 LAB REPORT Name: Student Lab Score: Date/Lab Start Time: Lab Station Number: DATA TABLE TRIAL 1 TRIAL 2 TRIAL 3 Calibration Buret Reading. ml Unknown Code Number Mass of Stopper, Flask... g Volume of Sample... ml Mass of Stopper, Flask, Sample... g 1-3 Mass of Sample... g Concentration of KMnO 4... M Concentration of MnO M Initial Buret Reading... ml Final Buret Reading... ml 4-6 Volume of KMnO 4 Used... ml 7-9 Mass % Iron (II) in Sample... % Concentration of Iron (II)... M Concentration from 2 nd Experimentor.. M Concentration from 3 rd Experimentor.. M Concentration from 4 th Experimentor.. M 13 Mean Concentration of Iron (II). M Standard Deviation. M 14 Relative Standard Deviation. % 207

6 CALCULATIONS

7

8

9 (Q-test)

10 QUESTIONS 1. If today s first titration required only 15 ml of the standard KMnO 4 solution to neutralize the unknown iron (II) solution, what procedural change could be made to insure that subsequent titrations used at least 20 ml of the standard KMnO 4 solution? 2. When cleaning the pipet, if the pipet is rinsed with water but then is not rinsed several times with the iron (II) solution before being used to transfer the iron (II) solution into the 250-mL Erlenmeyer flask, is the calculated molarity of iron (II) in the unknown greater or less than the actual molarity of iron (II) in the unknown? Explain based upon your calculation in Box

11 3. A water supply was known to contain lead (II) ions. A ml aliquot of the solution was pipetted, and its mass determined to be g. The ml aliquot was acidified, and ml of a M potassium dichromate solution were required to oxidize all of the lead (II) ions. Calculate (1) the molarity of the lead (II) ions in the solution, and (2) the mass percent of the lead (II) ions in the solution. 213

12 4. A person s blood alcohol (C 2 H 5 OH) content can be determined by titrating a sample of blood plasma with potassium permanganate solution. A g sample of blood plasma from a suspected drunk driver was titrated, and ml of an acidified M potassium permanganate solution were required to convert all of the alcohol into carbon dioxide. Calculate the mass percent of alcohol in the blood, and determine if the driver was legally intoxicated. 214

LAD B3 (pg! 1 of 6! ) Analysis by Redox Titration Name Per

LAD B3 (pg! 1 of 6! ) Analysis by Redox Titration Name Per LAD B3 (pg! 1 of 6! ) Name Per Introduction As you know, one common type of reaction in chemistry is oxidation-reduction. It involves the transfer of electrons from one species to another. Atoms undergo

More information

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ LAB ADV COMP 8 From Advanced Chemistry with Vernier, Vernier Software & Technology, 2004 INTRODUCTION A titration, as you recall, is a

More information

EXPERIMENT 5. The Periodic Table INTRODUCTION

EXPERIMENT 5. The Periodic Table INTRODUCTION EXPERIMENT 5 The Periodic Table INTRODUCTION The modern periodic law states that when the chemical elements are arranged in order of increasing atomic number, chemical and physical properties repeat periodically

More information

Salinity in Seawater

Salinity in Seawater Salinity in Seawater Objective To familiarize students with the different methods used for measuring salinity of water. Introduction: Salinity exerts profound impacts on the marine environment. It controls

More information

Oxidation reduction reaction

Oxidation reduction reaction P.O. Box 219 Batavia, Illinois 60510 1-8 0 0-4 5 2-1 2 6 1 f l i n n @ f l i n n s c i. c o m Visit our website at: www. f l i n n s c i. c o m 2003 Flinn Scientific, Inc. All Rights Reserved. Your Safer

More information

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen EXPERIMENT The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen PURPOSE In this experiment you will determine the volume of the hydrogen gas which is produced when a sample of

More information

Copper Odyssey. Chemical Reactions of Copper

Copper Odyssey. Chemical Reactions of Copper Name Lab Partner(s) Copper Odyssey Chemical Reactions of Copper Date Period Elemental copper metal will be converted into copper (II) ion and then brought through a series of compound conversions until

More information

Experiment 2: The Chromatography of Organic Compounds

Experiment 2: The Chromatography of Organic Compounds Experiment 2: The Chromatography of Organic Compounds INTRODUCTION When performing an organic reaction, it is very common to observe the formation of other compounds in addition to your desired product;

More information

Experiment 3: The Chromatography of Organic Compounds

Experiment 3: The Chromatography of Organic Compounds Experiment 3: The Chromatography of Organic Compounds INTRODUCTION Very often, in an organic synthesis, a reaction will proceed to produce multiple products or perhaps will only partially form the desired

More information

Analysis of Calcium Carbonate Tablets

Analysis of Calcium Carbonate Tablets Experiment 9 Analysis of Calcium Carbonate Tablets Prepared by Ross S. Nord, Eastern Michigan University PURPOSE To perform a gravimetric exercise to determine weight percent of active ingredient in a

More information

Determine whether the metal is magnesium, iron, or zinc based on the value of the calculated molar mass.

Determine whether the metal is magnesium, iron, or zinc based on the value of the calculated molar mass. Gases Part A: A student working at METAL Company found an unlabelled bottle of a metal in the lab. The metal could be magnesium, iron, or zinc. Each of these metals react with dilute hydrochloric acid

More information

Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at the

More information

Gravimetric Analysis: Determination of % Sulfur in Fertilizer

Gravimetric Analysis: Determination of % Sulfur in Fertilizer Gravimetric Analysis: Determination % Sulfur in Fertilizer This is another "real world" sample experiment in this case we will analyze a fertilizer sample for the sulfate content and express the result

More information

Chem 2115 Experiment #9. Consumer Chemistry: Determining the Iron Content in Supplements

Chem 2115 Experiment #9. Consumer Chemistry: Determining the Iron Content in Supplements Chem 2115 Experiment #9 Consumer Chemistry: Determining the Iron Content in Supplements OBJECTIVE: The goal of this experiment is to use the quantitative technique of spectrophotometry to determine the

More information

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES 1 CONSERVATION OF MATTER AND CHEMICAL PROPERTIES I. OBJECTIVES AND BACKGROUND The object of this experiment is to demonstrate the conservation of matter- or more particularly, the conservation of "atoms"

More information

Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1

Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1 Experiment. Molar Mass of an Unknown Sulfate Salt by Gravimetric Techniques 1 This lab is to reacquaint you with some basic laboratory techniques and serves as a warm-up to the experiments in this course.

More information

Greenhouse Effect and Global Warming Environmental Science Student Laboratory Kit

Greenhouse Effect and Global Warming Environmental Science Student Laboratory Kit 4 Catalog No. AP7324 Introduction Publication No. 7324 Greenhouse Effect and Global Warming Environmental Science Student Laboratory Kit What is the greenhouse effect? How does the amount of greenhouse

More information

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES Introduction Electrochemical Cells In this part of the experiment, four half cells are created by immersing metal strips of zinc, copper,

More information

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions

Partner: Cathy 22 March Separation and Qualitative Determination of Cations and Anions Partner: Cathy 22 March 2012 Separation and Qualitative Determination of Cations and Anions Purpose: The purpose of this lab is to identify the cations and anions components in the unknown solution. This

More information

3. Add 0.4 ml of. 7. Use a TenSette

3. Add 0.4 ml of. 7. Use a TenSette Method 10129 ORGANIC CARBON, TOTAL, Low Range (0.0 20.0 mg/l C) Direct Method * For water, drinking water, and wastewater HRS MIN SEC 1. Turn on the DRB 200 reactor. Heat to 103-105 C. Note: See DRB 200

More information

SPECTROPHOTOMETRIC DETERMINATION OF IRON

SPECTROPHOTOMETRIC DETERMINATION OF IRON SPECTROPHOTOMETRIC DETERMINATION OF IRON In this experiment you will determine trace amounts of iron using spectrophotometric methods. BACKGROUND In solution ferrous iron combines with 2,2 bipyridyl to

More information

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION EXPERIMENT 10 (2 Weeks) Chemistry 100 Laboratory TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION It is useful to classify reactions into different types, because products of reactions can be predicted.

More information

Luster-On Products. Technical Data Sheet LUSTER-FOS 2900 CALCIUM MODIFIED, FINE GRAINED ZINC PHOSPHATE

Luster-On Products. Technical Data Sheet LUSTER-FOS 2900 CALCIUM MODIFIED, FINE GRAINED ZINC PHOSPHATE Luster-On Products I. GENERAL DESCRIPTION Technical Data Sheet LUSTER-FOS 2900 CALCIUM MODIFIED, FINE GRAINED ZINC PHOSPHATE Luster-Fos 2900 is a calcium modified, liquid zinc phosphate material primarily

More information

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1 CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1 TECHNIQUES: chemical and physical changes, reactions, observations READING: PHYSICAL AND CHEMICAL CHANGES e.g. Tro chapter 1 SAFETY: Safety

More information

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION

GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION GRAVIMETRIC DETERMINATION OF SULFATE IN AN UNKNOWN SOLUTION AIM The main objective of this experiment is to determine the concentration of sulfate ion in an unknown solution by using gravimetry. INTRODUCTION

More information

Experiment: Preparation of Adipic Acid by Oxidative Cleavage of Cyclohexene

Experiment: Preparation of Adipic Acid by Oxidative Cleavage of Cyclohexene Experiment: Preparation of Adipic Acid by xidative Cleavage of Cyclohexene Under mild conditions, only the pi bond of the alkene is cleaved to form 1,2-diols or epoxides. Under more rigorous oxidation

More information

DETERMINATION of the EMPIRICAL FORMULA

DETERMINATION of the EMPIRICAL FORMULA DETERMINATION of the EMPIRICAL FORMULA One of the fundamental statements of the atomic theory is that elements combine in simple whole number ratios. This observation gives support to the theory of atoms,

More information

Laser EX 50 Product Code: Revised Date: 03/17/2009. Laser EX 50

Laser EX 50 Product Code: Revised Date: 03/17/2009. Laser EX 50 DESCRIPTION Laser EX 50 Laser EX 50 is a peroxide-based chemical polishing product that will provide a high luster on brass and most copper alloys. In many cases the Laser EX 50 will give a chemical alternative

More information

Pre- Lab Questions: Synthesis and Crystallization of Alum

Pre- Lab Questions: Synthesis and Crystallization of Alum Name Date Grade Pre- Lab Questions: Synthesis and Crystallization of Alum MUST be completed before an experiment is started. Show all work and be sure to include units. Q1. Based on the general chemical

More information

Rev Experiment 10

Rev Experiment 10 Experiment 10 SPECTROPHOTOMETRIC DETERMINATION OF IRON IN DRINKING WATER 2 lab periods Reading: 1) Chapter 17, pg 393-403, Quantitative Chemical Analysis, 8 h Edition, Daniel C. Harris (7 th Edition: Chapter

More information

Experiment 2: Preparation of the Artificial Sweetener Dulcin

Experiment 2: Preparation of the Artificial Sweetener Dulcin Experiment 2: Preparation of the Artificial Sweetener Dulcin Organic compounds known as sugars are carbohydrates that occur widely in nature. For example, sucrose (aka table sugar) is found in sugar can,

More information

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley)

Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley) Experiment 1: The Densities of Liquids and Solids (from Masterson & Hurley) One of the fundamental properties of any sample of matter is its density, which is its mass per unit of volume. The density of

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

Scope and application: For water, wastewater, seawater, brine solutions, produced waters and hydraulic fracturing waters.

Scope and application: For water, wastewater, seawater, brine solutions, produced waters and hydraulic fracturing waters. Iron, Ferrous DOC316.53.01049 1,10-Phenanthroline Method 1 Method 8146 0.02 to 3.00 mg/l Fe 2+ Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater, seawater, brine solutions,

More information

SIDE DISPLAY: Liesegang Reactions (revised)

SIDE DISPLAY: Liesegang Reactions (revised) Discussion The operating guide for Liesegang Rings is organized slightly differently than other operating guides. This is because there are recipes here for 5 different reactions. It is recommended that

More information

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document By the Authority Vested By Part 5 of the United States Code 552(a) and Part 1 of the Code of Regulations 51 the attached document has

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical , TNTplus 820, 10211 DOC316.53.01103 USEPA Reactor Digestion Method Method 10211 ULR (1 60 mg/l COD) TNTplus 820 Scope and Application: For wastewater, process water, surface water, and cooling water;

More information

H N 2. Decolorizing carbon O. O Acetanilide

H N 2. Decolorizing carbon O. O Acetanilide Experiment 1: Recrystallization of Acetanilide Reading Assignment Mohrig 2 4 (Glassware, Reagents, & Heating) & 14 15 (Melting Point & Recrystallization) The purification of organic compounds is a tedious,

More information

METHOD #: Approved for NPDES (Issued 1971) Oxygen, Dissolved (Modified Winkler, Full-Bottle Technique) ANALYTE: CAS # O Oxygen

METHOD #: Approved for NPDES (Issued 1971) Oxygen, Dissolved (Modified Winkler, Full-Bottle Technique) ANALYTE: CAS # O Oxygen METHOD #: 360.2 Approved for NPDES (Issued 1971) TITLE: Oxygen, Dissolved (Modified Winkler, Full-Bottle Technique) ANALYTE: CAS # O Oxygen 7782-44-7 INSTRUMENTATION: Titration, Probe STORET No. 00300

More information

Laser ACB 50 Product Code: Revised Date: 03/17/2009. Laser ACB 50

Laser ACB 50 Product Code: Revised Date: 03/17/2009. Laser ACB 50 DESCRIPTION Laser ACB 50 Laser ACB 50 is a peroxide/sulfuric acid system that replaces bichromate, chromic acid, or nitricsulfuric acid pickles commonly used for pickling copper, brass and bronze alloys.

More information

The Crystal Forest Favorite Holiday Demonstrations

The Crystal Forest Favorite Holiday Demonstrations The Crystal Forest Favorite Holiday Demonstrations SCIENTIFIC Introduction Put a new twist on crystal growing. In this class participation demonstration, students cut out and assemble miniature trees and

More information

VISCOSITY, INHERENT (One Point)

VISCOSITY, INHERENT (One Point) VISCO.02-1 VISCOSITY, INHERENT (One Point) PRINCIPLE SCOPE A weighed starch sample is dispersed in sodium hydroxide solution using a standard technique. Relative viscosity of the sample dispersion is determined

More information

Skills in Science. Lab equipment. (Always draw 2D) Drawings below are NOT to scale. Beaker - A general purpose container with a pouring lip.

Skills in Science. Lab equipment. (Always draw 2D) Drawings below are NOT to scale. Beaker - A general purpose container with a pouring lip. Skills in Science Safety: Do NOT enter or leave the lab without permission from a teacher. Keep the gaps between tables clear of stools and bags. Never run in the lab. Do not throw things around in the

More information

PVA polymer slime. PVA polymer slime

PVA polymer slime. PVA polymer slime PVA polymer slime PVA polymer slime A solution of polyvinyl alcohol (PVA) can be made into a slime by adding borax solution, which creates crosslinks between polymer chains. In this activity, some interesting

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / SOL Questions Chapter 1 Each of the following questions below appeared on an SOL Chemistry Exam. For each of the following bubble in the correct answer on your scantron. 1. The

More information

Mon. Tues. Wed. Thurs. Fri. AM or PM B

Mon. Tues. Wed. Thurs. Fri. AM or PM B Name: (cf. Honesty Declaration Statement on page 20) Laboratory Day (circle) Lab Room Locker Lab. Session (circle) Lab. Section Mon. Tues. Wed. Thurs. Fri. AM or PM B Date experiment is performed MARK:

More information

Experiment #3. Density and Specific Gravity.

Experiment #3. Density and Specific Gravity. Experiment #3. Density and Specific Gravity. Goals 1. To measure and calculate the density and specific gravity of various substances. 2. To use significant figures correctly in calculations. Background

More information

Name Lab Section Date. Sediment Lab

Name Lab Section Date. Sediment Lab Name Lab Section Date. Investigating Stokes Law Sediment Lab ds = density of solid, g/cm dw = density of water, g/cm g = gravity, 980 cm/second 2 D = particle diameter in centimeters μ = molecular viscosity,

More information

Ti-Pure TITANIUM DIOXIDE. CONCENTRATED ACID SOLUBILITY OF TiO 2 METHOD: T WP

Ti-Pure TITANIUM DIOXIDE. CONCENTRATED ACID SOLUBILITY OF TiO 2 METHOD: T WP Ti-Pure TITANIUM DIOXIDE CONCENTRATED ACID SOLUBILITY OF TiO 2 METHOD: T4400.315.07.WP 1 TITANIUM DIOXIDE (Ti-Pure ) Determination of Acid Solubility of TiO 2 by Spectrophotometer (TP-109.2) I. Principle

More information

EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS

EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS INTRODUCTION The objective of this experiment is to develop an abbreviated activity series of metals using: 1. Displacement reactions 2.

More information

TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER

TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER TESTING THE WATERS HOW GOOD IS THAT BOTTLED WATER AND HOW EFFECTIVE IS YOUR WATER FILTER TEACHER NOTES This experiment is designed for students working singly or in groups of two. One run through the series

More information

MS20 Laboratory: Physical and Biological Factors Affecting Oxygen in Sea Water

MS20 Laboratory: Physical and Biological Factors Affecting Oxygen in Sea Water MS20 Laboratory: Physical and Biological Factors Affecting Oxygen in Sea Water Objectives Understand the relationship between oxygen concentration and temperature Understand the relationship between oxygen

More information

Forensics with TI-Nspire Technology

Forensics with TI-Nspire Technology Forensics with TI-Nspire Technology 2013 Texas Instruments Incorporated 1 education.ti.com Science Objectives Identify characteristics of different soils to demonstrate that a suspect has been at a scene.

More information

ENVIRO/Etch Replenisher

ENVIRO/Etch Replenisher ENVIRO/Etch Replenisher Copper Etchant Product Description ENVIRO/Etch (ENVIRO/Etch) is a stabilized formulation designed to provide optimum micro-roughening and cleaning of copper surfaces prior to dry

More information

CH 149: Chemical Principles. Fall KP1019 Module TA Manual

CH 149: Chemical Principles. Fall KP1019 Module TA Manual CH 149: Chemical Principles Fall 2012 KP1019 Module TA Manual 2 Table of Contents KP1019 Synthesis 3 ORP Titrations...10 Electrochemistry 15 ph Kinetics 19 Temperature/NaCl Kinetics...24 3 Equipment (per

More information

TITANIUM DIOXIDE. SYNONYMS Titania; CI Pigment white 6; CI (1975) No ; INS No. 171 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

TITANIUM DIOXIDE. SYNONYMS Titania; CI Pigment white 6; CI (1975) No ; INS No. 171 DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS TITANIUM DIOXIDE Prepared at the 71 st JECFA (2009) and published in FAO JECFA Monographs 7 (2009), superseding specifications prepared at the 67 th JECFA (2006) and published in FAO JECFA Monographs 3

More information

Eutrophication: Too Much of a Good Thing?

Eutrophication: Too Much of a Good Thing? Name Class Date Skills Practice Lab DATASHEET FOR IN-TEXT LAB Eutrophication: Too Much of a Good Thing? Plants depend on nutrients such as phosphates and nitrates to survive. However, when people release

More information

SAMPLE LITERATURE Please refer to included weblink for correct version.

SAMPLE LITERATURE Please refer to included weblink for correct version. REVISED & UPDATED Edvo-Kit #269 Introduction to ELISA Reactions Experiment Objective: This experiment introduces concepts and methodologies of enzyme-linked immunosorbent assays (ELISA). See page 3 for

More information

To identify and classify various types of chemical reactions.

To identify and classify various types of chemical reactions. Cycle of Copper Reactions Minneapolis Community and Technical College v.11.17 Objectives: To observe and document copper s chemical changes in five different reactions and verify that copper is conserved

More information

The determination of copper in brass

The determination of copper in brass The determination of copper in brass Objective - To determine the amount of copper in a brass sample Background Brass is an alloy made of copper and zinc. Most brass contains about 60% copper. The proportions

More information

Chapter 8. Gravimetric Analysis

Chapter 8. Gravimetric Analysis Chapter 8 Gravimetric Analysis Gravimetric analysis is the use of weighing to determine the amount of a component in your sample. Gravimetric analysis, or gravimetry is normally performed either as a :

More information

Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell

Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell Hardness, Total DOC316.53.01045 Calcium and Magnesium; Chlorophosphonazo Rapid Liquid Method Method 8374 4 to 1000 µg/l Ca and Mg as CaCO 3 (ULR) Pour-Thru Cell Scope and application: For boiler and ultrapure

More information

Lab #2 Wafer Cleaning (RCA cleaning)

Lab #2 Wafer Cleaning (RCA cleaning) Lab #2 Wafer Cleaning (RCA cleaning) RCA Cleaning System Used: Wet Bench 1, Bay1, Nanofabrication Center Chemicals Used: H 2 O : NH 4 OH : H 2 O 2 (5 : 1 : 1) H 2 O : HF (10 : 1) H 2 O : HCl : H 2 O 2

More information

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

Experiment 13: Determination of Molecular Weight by Freezing Point Depression 1 Experiment 13: Determination of Molecular Weight by Freezing Point Depression Objective: In this experiment, you will determine the molecular weight of a compound by measuring the freezing point of a

More information

Periodic Trends and the Properties of Elements The Alkaline Earth Metals

Periodic Trends and the Properties of Elements The Alkaline Earth Metals Introduction Periodic Trends and the Properties of Elements The Alkaline Earth Metals The periodic table is the most recognized symbol of chemistry across the world. It is a valuable tool that allows scientists

More information

Group IV and V Qualitative Analysis

Group IV and V Qualitative Analysis Group IV/V Analysis Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Group IV and V Qualitative Analysis Name: Equipment 1-tray of dropper bottles 2-micro spatulas 2-wooden test tube blocks

More information

Periodic Trends and the Properties of Elements

Periodic Trends and the Properties of Elements Page 1 - The Alkaline Earth Metals Introduction The periodic table is the most recognized symbol of chemistry across the world. It is a valuable tool that allows scientists not only to classify the elements

More information

Human DNA Alu Amplification by Polymerase Chain Reaction (PCR)* Laboratory Procedure

Human DNA Alu Amplification by Polymerase Chain Reaction (PCR)* Laboratory Procedure Human DNA Alu Amplification by Polymerase Chain Reaction (PCR)* Laboratory Procedure *Polymerase Chain Reaction is covered by patents owned by Hoffmann-La Roche, Inc. This experiment was adapted from Laboratory

More information

Activity 5.1.4: Gram Staining

Activity 5.1.4: Gram Staining Activity 5.1.4: Gram Staining Introduction In the last activity, you isolated the bacteria that was responsible for Anna s illness and performed a gross examination of the resultant colonies. While gross

More information

[ Cl ] - [[Mg 2+ ] ] Experiment 7: Oxidation-Reduction Reactions. transfer e -

[ Cl ] - [[Mg 2+ ] ] Experiment 7: Oxidation-Reduction Reactions. transfer e - Experiment 7: OxidationReduction Reactions PURPOSE Become familiar with the concepts of oxidation and reduction and how these reactions occur. Carry out several such reactions and learn to recognize when

More information

PORTABLE ph METER PRICE CODE NUMBER MODEL 100

PORTABLE ph METER PRICE CODE NUMBER MODEL 100 PORTABLE METER MODEL 100 PRICE CODE NUMBER 56-0032 Refer to Bulletin A-301. OPERATION AND SERVICE GUIDE O-670A DEC. 1997 GENERAL INFORMATION Model 100 meter is designed for measuring over the entire 0

More information

Copper Smelting by an Ancient Method

Copper Smelting by an Ancient Method Copper Smelting by an Ancient Method EXPERIMENT ## Prepared by Paul C. Smithson, Berea College, based on Yee et al., 004 Using beads of a copper-containing mineral, students will produce beads of nearly

More information

Method 108C - Determination of Arsenic Content in Ore Samples From Nonferrous Smelters (Molybdenum Blue Photometric Procedure)

Method 108C - Determination of Arsenic Content in Ore Samples From Nonferrous Smelters (Molybdenum Blue Photometric Procedure) While we have taken steps to ensure the accuracy of this Internet version of the document, it is not the official version. Please refer to the official version in the FR publication, which appears on the

More information

solvent diffusion dissolving soluble

solvent diffusion dissolving soluble What do we call it when a liquid changes into a solid? What do we call it when a liquid turns into a gas? What do we call it when a gas turns into a liquid? What do we call the solid that dissolves in

More information

Students will predict the net movement of molecules across a semipermeable membrane.

Students will predict the net movement of molecules across a semipermeable membrane. Edvo-Kit #S-74 What is Osmosis? S-74 Experiment Objective: Students will predict the net movement of molecules across a semipermeable membrane. Students will defi ne what molecules move during diffusion

More information

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017)

BIOLOGY 163 LABORATORY. RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) BIOLOGY 163 LABORATORY RESTRICTION MAPPING OF PLASMID DNA (Revised Fall 2017) Physical mapping of genomes is an important part of modern molecular genetics. As it's name implies, physical mapping seeks

More information

Equation Writing and Predicting Products Chemistry I Acc

Equation Writing and Predicting Products Chemistry I Acc Introduction: Equation Writing and Predicting Products Chemistry I Acc If you examine your bicycle after it has been left out in the rain a number of times you will find that it has begun to rust. Rust

More information

Method to 500 µg/l CH 2 O Powder Pillows

Method to 500 µg/l CH 2 O Powder Pillows , 8110 DOC316.53.01042 MBTH Method 1 Method 8110 3 to 500 µg/l CH 2 O Powder Pillows Scope and Application: For water. 1 Adapted from Matthews, T.G. and Howell, T.C., Journal of the Air Pollution Control

More information

Wood Ash Titration: A Greener Titration Experiment

Wood Ash Titration: A Greener Titration Experiment Wood Ash Titration: A Greener Titration Experiment A case study prepared by Beyond Benign as part of the Green Chemistry in Higher Education program: A workshop for EPA Region 2 Colleges and Universities

More information

Acid Rain and Its Effect on Surface Water. Evaluation copy. Figure 1: Typical rain ph in United States.

Acid Rain and Its Effect on Surface Water. Evaluation copy. Figure 1: Typical rain ph in United States. Acid Rain and Its Effect on Surface Water Computer 16 Acid rain can be very harmful to the environment. It can kill fish by lowering the ph of lakes and rivers. It can harm trees and plants by burning

More information

EXPERIMENT 3: Identification of a Substance by Physical Properties

EXPERIMENT 3: Identification of a Substance by Physical Properties EXPERIMENT 3: Identification of a Substance by Physical Properties Materials: Hot plate Digital balance Capillary tubes (3) Thermometer Beakers (250 ml) Watch glass Graduated Cylinder (10 ml) Mel-Temp

More information

Metal Finishing Products and Service META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS"

Metal Finishing Products and Service META-MATE ZINCATE 40 A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS Metal Chem,inc. Metal Finishing Products and Service 29 Freedom Court Greer, SC 29650 864.877.6175 Fax 864.877.6176 DATA SHEET META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT

More information

Quenching of Pyrophoric Materials

Quenching of Pyrophoric Materials Quenching of Pyrophoric Materials H250 H251 H252 Examples: tert-butyllithium, sec-butyllithium, n-butyllithium, DiethylZinc, Organoaluminum compounds (as Et 3 Al, Et 2 AlCl, EtAlCl 2, Me 3 Al), Raney Nickel

More information

Nickel Electroplating

Nickel Electroplating Nickel Electroplating In a galvanic or voltaic electrochemical cell, the spontaneous reaction occurs and electrons flow from the anode (oxidation) to the cathode (reduction). In an electrolytic cell, a

More information

Scibond SL-23 Polymeric Lubrication System for Tube Drawing

Scibond SL-23 Polymeric Lubrication System for Tube Drawing Scibond SL-23 Polymeric Lubrication System for Tube Drawing I. Introduction: Scibond SL-23 is a novel water-based a polymeric lubrication system. It was developed under National Science Foundation grant

More information

Technical Process Bulletin

Technical Process Bulletin ALODINE 1600 Technical Process Bulletin Technical Process Bulletin No. This Revision: 02/12/2007 1. Introduction: ALODINE 1600 is a concentrated two-package liquid chemical used to produce a hexavalent

More information

Preparation of Cyclohexene From Cyclohexanol

Preparation of Cyclohexene From Cyclohexanol EXPERIMENT 9 Alkene Synthesis From Alcohol Preparation of Cyclohexene From Cyclohexanol Purpose: a) Preparation of an alkene by dehydration (elimination of water) of an alcohol in the presence of an acid

More information

edna PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University Revised November 2015

edna PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University Revised November 2015 edna PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University Revised November 2015 MATERIALS 1. Cellulose nitrate disposable filter funnels or other field-tested,

More information

1,10 Phenanthroline Method * (Powder Pillows or AccuVac Ampuls) Using Powder Pillows

1,10 Phenanthroline Method * (Powder Pillows or AccuVac Ampuls) Using Powder Pillows IRON, FERROUS (0 to 3.00 mg/l) Method 8146 For water, wastewater, and seawater 1,10 Phenanthroline Method * (Powder Pillows or AccuVac Ampuls) Using Powder Pillows 1. Enter the stored program number for

More information

DURNI-COAT DNC

DURNI-COAT DNC RIAG Oberflächentechnik AG Postfach 169 CH-9545 Wängi TG 25.04.2014 DURNI-COAT DNC 520-12-50 Electroless plating nickel bath for high wear and corrosion resistant applications DNC 520-12-50 is a process

More information

LABORATORY 3 SOIL ANALYSIS

LABORATORY 3 SOIL ANALYSIS VEGETATION DESCRIPTION AND ANALYSIS 2017 LABORATORY 3 SOIL ANALYSIS OBJECTIVE This lab will obtain four key soil parameters from the samples collected from Shawnee Gowan s Grizzly Glacier project relevés.

More information

Analysis of soda and sulfate white and green liquors

Analysis of soda and sulfate white and green liquors T 6 cm-85 TENTATIVE STANDARD 19 OFFICIAL STANDARD 19 TENTATIVE STANDARD 1960 OFFICIAL STANDARD 1968 CLASSICAL METHOD 1985 198 TAPPI The information and data contained in this document were prepared by

More information

EMPIRICAL FORMULA OF MAGNESIUM OXIDE

EMPIRICAL FORMULA OF MAGNESIUM OXIDE EXPERIMENT 7 Chemistry 110 EMPIRICAL FORMULA OF MAGNESIUM OXIDE PURPOSE: The purpose of this experiment is to determine the empirical formula of a compound. I. INTRODUCTION The object of this experiment

More information

EXPERIMENT 15C. Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste

EXPERIMENT 15C. Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste EXPERIMENT 15C Qualitative Analysis Scheme of Main Group and Transition Metal Cations without Hazardous Waste The following experiment is intended to continue the introduction of qualitative analysis through

More information

Fermentation of Sucrose

Fermentation of Sucrose E x p e r i m e n t 6 Fermentation of Sucrose bjectives To produce ethanol from sucrose via a bioloical anaerobic process. To purify the ethanol usin both fractional and simple distillations. To evaluate

More information

Determination of the Empirical Formula of Magnesium Oxide

Determination of the Empirical Formula of Magnesium Oxide Determination of the Empirical Formula of Magnesium Oxide The quantitative stoichiometric relationships governing mass and amount will be studied using the combustion reaction of magnesium metal. Magnesium

More information

Preparation of copper(ii) sulfate from copper(ii) nitrate

Preparation of copper(ii) sulfate from copper(ii) nitrate Student s Name: Date: Background Preparation of copper(ii) sulfate from copper(ii) nitrate The purpose of this laboratory activity is to prepare copper(ii) sulfate from copper(ii) nitrate. This is done

More information

EMPIRICAL FORMULA OF MAGNESIUM OXIDE

EMPIRICAL FORMULA OF MAGNESIUM OXIDE EXPERIMENT 7 Chemistry 110 EMPIRICAL FORMULA OF MAGNESIUM OXIDE PURPOSE: The purpose of this experiment is to determine the empirical formula of a compound. I. INTRODUCTION The object of this experiment

More information

Soil Particle Density Protocol

Soil Particle Density Protocol Soil Particle Density Protocol Purpose To measure the soil particle density of each horizon in a soil profile Overview Students weigh a sample of dry, sieved soil from a horizon, mix it with distilled

More information

Approved for NPDES (Editorial Revision 1978) Silica, Dissolved (Colorimetric)

Approved for NPDES (Editorial Revision 1978) Silica, Dissolved (Colorimetric) METHOD #: 370.1 TITLE: Approved for NPDES (Editorial Revision 1978) Silica, Dissolved (Colorimetric) ANALYTE: Silica, SiO 2 INSTRUMENTATION: Spectrophotometer STORET No. Dissolved 00955 1.0 Scope and Application

More information