Application of infrared thermography to the characterization of multicristalline silicon solar cells

Size: px
Start display at page:

Download "Application of infrared thermography to the characterization of multicristalline silicon solar cells"

Transcription

1 Application of infrared thermography to the characterization of multicristalline silicon solar cells A. Kaminski, O. Nichiporuk*, J. Jouglar, P.L. Vuillermoz, A. Laugier Laboratoire de Physique de la Matière UMR 5511, Institut National des Sciences Appliquées de Lyon, 20 avenue A. Einstein, Villeurbanne Cedex, France * Radiophysics Department, Kiev University, Volodimirskaya Street, Kiev 01017, Ukraine Abstract In this study, infrared thermography is used to detect defects in large area (100 cm 2 ) multicrystalline silicon solar cells. Hot spot observed in biased solar cells are correlated to a critical processing step which needs to be improved. Usually these shunts are due to short circuit of the junction which leads to a local heating. By this way infrared thermography appears as a very useful tool to improve solar cell fabrication and efficiency. 1. Introduction Photovoltaic industry needs non destructive techniques permitting the mapping and detection of defects in large area solar cells (100 cm 2 ). LBIC (Light Beam Induced Current) is a very useful method which gives photocurrent cartography. DPCT (Dynamic Precision Contact Thermography) [1] permits to visualize thermal distribution at the surface of a biased solar cell but it necessitates contact between the cell and a thermal sensor and it is long. In contrary, Infrared Thermography (IRT) allows the mapping of temperature without contact and with a shorter delay than DPCT. In this study we use infrared thermography in order to test the reliability of different technological steps of the elaboration of 100 cm 2 industrial multicrystalline silicon solar cells. The results allow to concentrate on critical steps and to improve the number of photovoltaic devices with good efficiency. First, we will present the experimental setup and describe the solar cells. Then we will discuss the results and the improvement performed owing to infrared experiments. 2. Experimental 2.1. Infrared camera The infrared scanner is an AGEMA 880 SW with an InSb monodetector (wavelength range : 3-5 m). A 12 lens with a 5 mm extension ring provides a field of view of 10 cm x 10 cm at the distance of 0.66 m. The image repetition frequency of the camera is 25 Hz Photovoltaic cells description Solar cells analysed are 100 cm 2 industrial multicrystalline silicon solar cells (average grain area : 1 cm 2 ) with submicronic junction (x j < 0.3 m). The structure of such solar cell is presented in figure 1. The basic component is a n + p junction realized by POCl 3 diffusion on the whole surface of the silicon. The wafer is then etched at the edges in order to avoid any short circuit between front and back surface of the solar cell. The surface of the cell is texturised (it has been submitted to a NaOH chemical attack giving to the surface a pyramidal aspect and improving photons absorption). A SiO 2 layer is grown for surface passivation and TiO 2 is deposited as antireflection coating. Front and rear grid metallisations are screen printed and annealed at the end of the process. Emitter thickness is 0.3 m and solar cell thickness is 200 m. Short circuit current is about 3A and open circuit voltage about

2 0.6V. During the measurements, the cell is in dark conditions and biased either in forward or in reverse polarization Measurements description For the measurements, we are using averaging and subtraction of image of the cell not biased and of the cell polarized under stable DC conditions [2,3,4,5]. This permits to attenuate constrast due to emissivity differences between grains, particularly important in multicrystalline cells (between 0.5 and 0.8 [6]). Another way to proceed is to bias the cell with a periodical pulse and to synchronize the acquisition time with the pulse. In order to measure the transmission coefficient of the solar cell, we have used a spectrophotometer working in the spectral range : 2.6 m to 16 m. For the solar cell, the transmission was equal to zero for the whole spectral range probably because of contacts, antireflection coating and texturisation. For the emissivity, we use an average value of 0.66, determined by measurements of the luminance emitted by the solar cell heated at different known temperatures. Another way to proceed is to cover the cell with a blackened plastic foil [7]. TiO 2 SiO 2 Front contact n + Junction at 0.3 m Si p Rear contact SiO 2 Figure 1 : Structure of the solar cell used for the characterization. Total thickness : 200 m 3. Results In order to find which step needs to be improved, we have first characterised many solar cells with good and bad efficiencies. Some of the problems and defects detected are presented elsewhere Defects under interconnections Sometimes, hot spots are present under interconnections between copper wires and solar cells contacts (see top right interconnection on figure 2). Welding step has been lightly modified in order to avoid these shuntings. Moreover a study has been performed in order to improve the solderability of contacts of multicrystalline silicon photovoltaic devices by electroless deposition of a thin layer of nickel or copper [8] Solar cells with acid texturisation If an acid solution is used instead of NaOH for the texturisation of the silicon, the optical properties of the solar cells are improved (lower reflectivity in visible range) because we obtain an uniform texturisation. We have measured the emissivity of such cells and a value of 0.7 has been found which is not very different than a NaOH texturised solar cells. Heatings are more important in acid texturized cells because of higher mechanical strains. That is why

3 the solution used for acid texturisation has been greatly optimized (see figure 3) and solar cells with this type of texturisation are nearly commercialised. Copper wires used for current collection Interconnections between solar cell metallization and copper wires Figure 2 : IRT of 100 cm 2 solar cell under a current of 1A. Figure 3 : IRT of a 100 cm 2 solar cell biased at -1V. Maximum heating : 0.5 C Shunting at the edges of the cell There are often hot spots at the boundary of the solar cell due to an insufficient etching of the silicon edges during diode opening (see figure 4). Two process have been compared : a plasma etching (figure 4) already industrialized and a chemical (wet) etching (figure 5) tested on five solar cells. The first still gives best results and is more easily industrialized ; however the second one may give good results if chemical solutions would be improved.

4 Figure 4 : IRT of a 100 cm 2 solar cell biased at -3V. Maximum heating : 3.15 C. Figure 5 : IRT of a 100 cm 2 solar cell biased at -3V. Maximum heating : 3.2 C Defects in the material or at grain boundaries Material quality could be also responsible of hot spots especially in multicrystalline silicon solar cells where recombinations could occur at grain boundaries. In this case, a correlation with LBIC mapping is interesting to perform. LBIC method consists in measuring the photocurrent of the cell scanned by a laser beam [9]. An exemple of LBIC picture of a hot spot detected by IRT is presented on figure 6 (left). A recombination area is visible. SEM picture (figure 6 right) reveals the presence of a grain boundary probably responsible of the hot spot in infrared picture. 2 mm 2 mm

5 Figure 6 : left : LBIC mapping of part of the cell where a hot spot is present in IRT picture ; right : SEM picture of the recombination region. 4. Conclusion In conclusion, we have shown with this work that infrared thermography is a tool that can help to improve technological process of solar cells elaboration. It is interesting to correlate this technique to others non destructive methods of characterization like LBIC or EBIC (Electron Beam Induced Current) [7]. The application of IRT to the testing of modules on roofs is also useful to detect defectuous modules but images are more difficult to interprete [10]. References [1] O. Breitenstein, W. Eberhardt, K. Iwig, First World Conf. On Photovoltaic Energy Conversion, Hawaii, 1994, [2] M. Mergui, thesis n 95 ISAL 0093, Lyon, [3] J.Jouglar, M. Mergui, P.L.. Vuillermoz, Quantitative Infrared Thermography QIRT 96, Stuttgart, [4] J. Jouglar, M. Mergui, A. Kaminski, P.L. Vuillermoz, Congrès Cofrend sur les essais non destructifs, Nantes, [5] A. Kaminski, J. Jouglar, M. Mergui, Y. Jourlin, A. Bouillé, P.L. Vuillermoz, A. Laugier, Solar Energy Materials and Solar Cells, 51 (1998) 233. [6] A. Kaminski, J. Jouglar, M. Moreau, V. Lombard, P.L. Vuillermoz, A. Laugier, 2 nd World Conference on Photovoltaic Solar Energy Conversion, Vienne (Autriche), (1998), [7] M. Langenkamp, O. Breitenstein, M.E. Nell, A. Braun, H.-G. Wagemann, L. Elstner, 16 th European Photovoltaic Solar Energy Conference, Glasgow (UK), 1-5 May [8] A.Kaminski, B. Thuillier, J.P. Boyeaux, A. Laugier, 5 th International Conference on Intermolecular Interactions in Matter, Lublin (Poland), 2-4 September 1999, [9] J.P. Boyeaux and A. Laugier, Rev. Phys. Appl., C6 N 24 (1989) 111. [10] M. Danner, K. Bücher, 26 th IEEE Photovoltaic Specialists Conference, Anaheim (USA), 1997.

TMAH texturisation and etching of interdigitated back-contact solar cells

TMAH texturisation and etching of interdigitated back-contact solar cells Materials Science-Poland, Vol. 24, No. 4, 2006 TMAH texturisation and etching of interdigitated back-contact solar cells P. PAPET, O. NICHIPORUK, A. FAVE, A. KAMINSKI *, B. BAZER-BACHI, M. LEMITI Laboratoire

More information

R&D ACTIVITIES AT ASSCP-BHEL,GURGAON IN SOLAR PV. DST-EPSRC Workshop on Solar Energy Research

R&D ACTIVITIES AT ASSCP-BHEL,GURGAON IN SOLAR PV. DST-EPSRC Workshop on Solar Energy Research R&D ACTIVITIES AT -BHEL,GURGAON IN SOLAR PV at the DST-EPSRC Workshop on Solar Energy Research (22 nd 23 rd April, 2009) by Dr.R.K. Bhogra, Addl. General Manager & Head Email: cpdrkb@bhel.co.in Dr.A.K.

More information

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING

COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING Lynne Michaelson 1, Anh Viet Nguyen 2, Krystal Munoz 1, Jonathan C. Wang

More information

Image Capture, Processing and Analysis of Solar Cells for Engineering Education

Image Capture, Processing and Analysis of Solar Cells for Engineering Education Paper ID #13580 Image Capture, Processing and Analysis of Solar Cells for Engineering Education Dr. Michael G Mauk P.E., Drexel University Dr. Richard Chiou, Drexel University (Eng. & Eng. Tech.) c American

More information

Surface Preparation Challenges in Crystalline Silicon Photovoltaic Manufacturing

Surface Preparation Challenges in Crystalline Silicon Photovoltaic Manufacturing Surface Preparation Challenges in Crystalline Silicon Photovoltaic Manufacturing Kristopher Davis 1,3, Andrew C. Rudack 2,3, Winston Schoenfeld 1,3 Hubert Seigneur 1,3, Joe Walters 1,3, Linda Wilson 2,3

More information

Microscopic Light-Beam Induced Current Measurement for High-Resolution Solar Cell Characterization

Microscopic Light-Beam Induced Current Measurement for High-Resolution Solar Cell Characterization Microscopic Light-Beam Induced Current Measurement for High-Resolution Solar Cell Characterization 28.09.2016 Susanne Richter, Stephan Großer, Tabea Luka, Marko Turek, Martina Werner, Christian Hagendorf

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

Chapter 3 Silicon Device Fabrication Technology

Chapter 3 Silicon Device Fabrication Technology Chapter 3 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world) are manufactured every year. VLSI (Very Large Scale Integration) ULSI (Ultra Large Scale

More information

Effect of Growth Process on Polycrystalline Silicon Solar Cells Efficiency.

Effect of Growth Process on Polycrystalline Silicon Solar Cells Efficiency. Effect of Growth Process on Polycrystalline Silicon Solar Cells Efficiency. ZOHRA BENMOHAMED, MOHAMED REMRAM* Electronic department university of Guelma Département d Electronique Université mai 195 BP

More information

Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells

Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells Point-contacting by Localised Dielectric Breakdown: A new approach for contacting solar cells SPREE Public Seminar 20 th February 2014 Ned Western Supervisor: Stephen Bremner Co-supervisor: Ivan Perez-Wurfl

More information

OPTIMIZATION OF A FIRING FURNACE

OPTIMIZATION OF A FIRING FURNACE OPTIMIZATION OF A FIRING FURNACE B. R. Olaisen, A. Holt and E. S. Marstein Section for Renewable Energy, Institute for Energy Technology P.O. Box 40, NO-2027 Kjeller, Norway email: birger.retterstol.olaisen@ife.no

More information

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? Bianca Lim *, Till Brendemühl, Miriam Berger, Anja Christ, Thorsten Dullweber Institute for Solar Energy Research

More information

TWO-DIMENSIONAL MODELING OF EWT MULTICRYSTALLINE SILICON SOLAR CELLS AND COMPARISON WITH THE IBC SOLAR CELL

TWO-DIMENSIONAL MODELING OF EWT MULTICRYSTALLINE SILICON SOLAR CELLS AND COMPARISON WITH THE IBC SOLAR CELL TWO-DIMENSIONAL MODELING OF EWT MULTICRYSTALLINE SILICON SOLAR CELLS AND COMPARISON WITH THE IBC SOLAR CELL Mohamed M. Hilali, Peter Hacke, and James M. Gee Advent Solar, Inc. 8 Bradbury Drive S.E, Suite,

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/13/2007 Fabrication Technology Lecture 1 Silicon Device Fabrication Technology Over 10 15 transistors (or 100,000 for every person in the world)

More information

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation.

Figure 2.3 (cont., p. 60) (e) Block diagram of Pentium 4 processor with 42 million transistors (2000). [Courtesy Intel Corporation. Figure 2.1 (p. 58) Basic fabrication steps in the silicon planar process: (a) oxide formation, (b) selective oxide removal, (c) deposition of dopant atoms on wafer, (d) diffusion of dopant atoms into exposed

More information

24th European Photovoltaic Solar Energy Conference and Exhibition, September 2009, Hamburg, Germany.

24th European Photovoltaic Solar Energy Conference and Exhibition, September 2009, Hamburg, Germany. STATUS OF N-TYPE SOLAR CELLS FOR LOW-COST INDUSTRIAL PRODUCTION Arthur Weeber*, Ronald Naber, Nicolas Guillevin, Paul Barton, Anna Carr, Desislava Saynova, Teun Burgers, Bart Geerligs ECN Solar Energy,

More information

Simplified interdigitated back contact solar cells

Simplified interdigitated back contact solar cells Vailable online at www.sciencedirect.com Energy Procedia 27 (2012 ) 543 548 SiliconPV: April 03-05, 2012, Leuven, Belgium Simplified interdigitated back contact solar cells C.E. Chana*, B.J. Hallam, S.R.

More information

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K Solar Spectrum 1 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K 2 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun

More information

INDUSTRIALLY FEASIBLE >19% EFFICIENCY IBC CELLS FOR PILOT LINE PROCESSING

INDUSTRIALLY FEASIBLE >19% EFFICIENCY IBC CELLS FOR PILOT LINE PROCESSING INDUSTRIALLY FEASIBLE >19% EFFICIENCY IBC CELLS FOR PILOT LINE PROCESSING F. J. Castaño 1, D. Morecroft 1, M. Cascant 1, H. Yuste 1, M.W.P.E. Lamers 2, A.A. Mewe 2, I.G. Romijn 2, E.E. Bende 2, Y. Komatsu

More information

Evaluating thermal imaging for identification and characterization of solar cell defects

Evaluating thermal imaging for identification and characterization of solar cell defects Graduate Theses and Dissertations Graduate College 2014 Evaluating thermal imaging for identification and characterization of solar cell defects Jiahao Chen Iowa State University Follow this and additional

More information

Lecture 22: Integrated circuit fabrication

Lecture 22: Integrated circuit fabrication Lecture 22: Integrated circuit fabrication Contents 1 Introduction 1 2 Layering 4 3 Patterning 7 4 Doping 8 4.1 Thermal diffusion......................... 10 4.2 Ion implantation.........................

More information

Silicon Wafer Processing PAKAGING AND TEST

Silicon Wafer Processing PAKAGING AND TEST Silicon Wafer Processing PAKAGING AND TEST Parametrical test using test structures regularly distributed in the wafer Wafer die test marking defective dies dies separation die fixing (not marked as defective)

More information

Influence of Different Metals Back Surface Field on BSF Silicon Solar Cell Performance Deposited by Thermal Evaporation Method

Influence of Different Metals Back Surface Field on BSF Silicon Solar Cell Performance Deposited by Thermal Evaporation Method Advances in Energy and Power 5(3): 27-31, 2017 DOI: 10.13189/aep.2017.050301 http://www.hrpub.org Influence of Different Metals Back Surface Field on BSF Silicon Solar Cell Performance Deposited by Thermal

More information

Quality requirements for wafers, cells and PV modules

Quality requirements for wafers, cells and PV modules Outdoor test-site PI Berlin Quality requirements for wafers, cells and PV modules Intersolar 2008 in Munich, 12th of June 2008 Stefan Krauter, Paul Grunow, Sven Lehmann PI Photovoltaik-Institut Berlin

More information

Challenges and Future Directions of Laser Fuse Processing in Memory Repair

Challenges and Future Directions of Laser Fuse Processing in Memory Repair Challenges and Future Directions of Laser Fuse Processing in Memory Repair Bo Gu, * T. Coughlin, B. Maxwell, J. Griffiths, J. Lee, J. Cordingley, S. Johnson, E. Karagiannis, J. Ehrmann GSI Lumonics, Inc.

More information

OPTICAL, ELECTRICAL AND STRUCTURAL PROPERTIES OF PECVD QUASI EPITAXIAL PHOSPHOROUS DOPED SILICON FILMS ON CRYSTALLINE SILICON SUBSTRATE

OPTICAL, ELECTRICAL AND STRUCTURAL PROPERTIES OF PECVD QUASI EPITAXIAL PHOSPHOROUS DOPED SILICON FILMS ON CRYSTALLINE SILICON SUBSTRATE OPTICAL, ELECTRICAL AN STRUCTURAL PROPERTIES OF PECV QUASI EPITAXIAL PHOSPHOROUS OPE SILICON FILMS ON CRYSTALLINE SILICON SUBSTRATE Mahdi Farrokh-Baroughi, Hassan El-Gohary, and Siva Sivoththaman epartment

More information

REDUCTION OF REFLECTION LOSSES IN SOLAR CELL BY USING TIAL2 AND ZR ANTI REFLECTIVE COATING

REDUCTION OF REFLECTION LOSSES IN SOLAR CELL BY USING TIAL2 AND ZR ANTI REFLECTIVE COATING IJRET: International Journal of Research in Engineering and Technology eissn: 2319-1163 pissn: 2321-738 REDUCTION OF REFLECTION LOSSES IN SOLAR CELL BY USING TIAL2 AND ZR ANTI REFLECTIVE COATING S. Anandhi

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

Presented at the 29th European PV Solar Energy Conference and Exhibition, September 2014, Amsterdam (NL)

Presented at the 29th European PV Solar Energy Conference and Exhibition, September 2014, Amsterdam (NL) POCL3-BASED CO-DIFFUSION PROCESS FOR N-TYPE BACK-CONTACT BACK-JUNCTION SOLAR CELLS R. Keding 1,2, M. Hendrichs 1, D.Stüwe 1, M. Jahn 1, C. Reichel 1, D. Borchert 1, A.Wolf 1, H. Reinecke 3, D.Biro 1 1

More information

HF last passivation for high efficiency a-si:h/c-si heterojunction solar cells

HF last passivation for high efficiency a-si:h/c-si heterojunction solar cells HF last passivation for high efficiency a-si:h/c-si heterojunction solar cells Adrien Danel, F. Souche, PJ. Ribeyron : INES Y. Le Tiec : LETI T. Nolan : Akrion Systems 1 A. Danel, UCPSS 20-1 Heterojonction

More information

ANALYSIS OF BACKSHEET AND REAR COVER REFLECTION GAINS FOR BIFACIAL SOLAR CELLS

ANALYSIS OF BACKSHEET AND REAR COVER REFLECTION GAINS FOR BIFACIAL SOLAR CELLS ANALYSIS OF BACKSHEET AND REAR COVER REFLECTION GAINS FOR BIFACIAL SOLAR CELLS Max Mittag, Alex Grünzweig, Martin Wiese, Nabil Mahmoud, Alexandra Schmid, Martin Heinrich Fraunhofer Institute for Solar

More information

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers

Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers Process steps for Field Emitter devices built on Silicon wafers And 3D Photovoltaics on Silicon wafers David W. Stollberg, Ph.D., P.E. Research Engineer and Adjunct Faculty GTRI_B-1 Field Emitters GTRI_B-2

More information

Design & Fabrication of a High-Voltage Photovoltaic Cell. Jennifer Felder

Design & Fabrication of a High-Voltage Photovoltaic Cell. Jennifer Felder SLAC-TN-12-021 Design & Fabrication of a High-Voltage Photovoltaic Cell Jennifer Felder Office of Science, Science Undergraduate Laboratory Internship (SULI) North Carolina State University SLAC National

More information

Inductive Coupled Plasma (ICP) Textures as Alternative for Wet Chemical Etching in Solar Cell Fabrication

Inductive Coupled Plasma (ICP) Textures as Alternative for Wet Chemical Etching in Solar Cell Fabrication Inductive Coupled Plasma (ICP) Textures as Alternative for Wet Chemical Etching in Solar Cell Fabrication 1 Motivation 2 Experimental setup 3 ICP textures as alternative technique 3.1 Surface morphology

More information

Effects of CdCl 2 treatment on ultra-thin MOCVD-CdTe solar cells

Effects of CdCl 2 treatment on ultra-thin MOCVD-CdTe solar cells Effects of CdCl 2 treatment on ultra-thin MOCVD-CdTe solar cells A.J. Clayton, S. Babar, M.A. Baker, G. Kartopu, D.A. Lamb, V. Barrioz, S.J.C. Irvine Functional Thin Films, Thursday 17 th October 2013

More information

ARTICLE IN PRESS. Solar Energy Materials & Solar Cells

ARTICLE IN PRESS. Solar Energy Materials & Solar Cells Solar Energy Materials & Solar Cells 93 (9) 167 175 Contents lists available at ScienceDirect Solar Energy Materials & Solar Cells journal homepage: www.elsevier.com/locate/solmat Sliver cells in thermophotovoltaic

More information

Passive components : 5 years failure analysis feedback From all markets

Passive components : 5 years failure analysis feedback From all markets 2 nd SPCD 12-14 October 2016 Passive components : 5 years failure analysis feedback From all markets Eric ZAIA (Material Engineer) Béatrice MOREAU (Passive components & PCB dpt. Manager) SUMMARY 1 Introduction

More information

HIGH EFFICIENCY INDUSTRIAL SCREEN PRINTED N-TYPE SOLAR CELLS WITH FRONT BORON EMITTER

HIGH EFFICIENCY INDUSTRIAL SCREEN PRINTED N-TYPE SOLAR CELLS WITH FRONT BORON EMITTER HIGH EFFICIENCY INDUSTRIAL SCREEN PRINTED N-TYPE SOLAR CELLS WITH FRONT BORON EMITTER V.D. Mihailetchi 1, Y. Komatsu 1, G. Coletti 1, R. Kvande 2, L. Arnberg 2, C. Knopf 3, K. Wambach 3, L.J. Geerligs

More information

EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES

EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES EFFICIENCY AND PRODUCTIVITY INCREASE OF SOLAR-CELLS AND -MODULES BY INNOVATIVE LASER APPROACHES PD Dr. Alexander Horn, V. Schütz, J. Gonzalez, C.C. Kalmbach Photovoltaics Group Dpt. for Production and

More information

Reclaimed Silicon Solar Cells

Reclaimed Silicon Solar Cells 61 Reclaimed Silicon Solar Cells Victor Prajapati. Department ofmicroelectronic Engineering, 82 Lomb Memorial Dr., Rochester, NY 14623. Email: Victor.Prajapati@gmail.com Abstract Fully processed CMOS Si

More information

Solar cell performance prediction using advanced analysis methods on optical images of as-cut wafers

Solar cell performance prediction using advanced analysis methods on optical images of as-cut wafers Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000 000 www.elsevier.com/locate/procedia SiliconPV: March 25-27, 2013, Hamelin, Germany Solar cell performance prediction using advanced

More information

Amorphous silicon waveguides for microphotonics

Amorphous silicon waveguides for microphotonics 4 Amorphous silicon waveguides for microphotonics Amorphous silicon a-si was made by ion irradiation of crystalline silicon with 1 10 15 Xe ions cm 2 at 77 K in the 1 4 MeV energy range. Thermal relaxation

More information

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS

FABRICATION ENGINEERING MICRO- NANOSCALE ATTHE AND. Fourth Edition STEPHEN A. CAMPBELL. of Minnesota. University OXFORD UNIVERSITY PRESS AND FABRICATION ENGINEERING ATTHE MICRO- NANOSCALE Fourth Edition STEPHEN A. CAMPBELL University of Minnesota New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Preface xiii prrt i OVERVIEW AND MATERIALS

More information

ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang

ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang ICDs (InterConnect Defects) What are they? Where do they come from? How can we make them go away? Doug Trobough Suixin Zhang Definition of ICD ICDs are any defect that occurs adjacent to the innerlayer

More information

Hard Coated Silica/Silica (Low OH) Radius

Hard Coated Silica/Silica (Low OH) Radius DESCRIPTION When looking for a silica core and silica clad fiber with a hard polymer coating that allows a high core-to-clad ratio and a numerical aperture (N.A.) of 0.22 for efficient light coupling,

More information

RECORD EFFICIENCIES OF SOLAR CELLS BASED ON N-TYPE MULTICRYSTALLINE SILICON. Center, ISC-Konstanz, Rudolf-Diesel-Str. 15, D Konstanz, Germany

RECORD EFFICIENCIES OF SOLAR CELLS BASED ON N-TYPE MULTICRYSTALLINE SILICON. Center, ISC-Konstanz, Rudolf-Diesel-Str. 15, D Konstanz, Germany RECORD EFFICIENCIES OF SOLAR CELLS BASED ON N-TYPE MULTICRYSTALLINE SILICON J. Libal *, R. Kopecek +, I. Roever, K. Wambach * University of Konstanz, Faculty of Sciences, Department of Physics, now at

More information

Laser printing and curing/sintering of silver paste lines for solar cell metallization

Laser printing and curing/sintering of silver paste lines for solar cell metallization Lasers in Manufacturing Conference 2015 Laser printing and curing/sintering of silver paste lines for solar cell metallization D. Munoz-Martin a *, Y. Chen a, A. Márquez a, M. Morales a, C. Molpeceres

More information

Anodic Aluminium Oxide for Passivation in Silicon Solar Cells

Anodic Aluminium Oxide for Passivation in Silicon Solar Cells Anodic Aluminium Oxide for Passivation in Silicon Solar Cells School of Photovoltaic & Renewable Energy Engineering Zhong Lu Supervisor: Alison Lennon May. 2015 Co-supervisor: Stuart Wenham Outline Introduction

More information

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009 Suggested Reading EE40 Lec 22 IC Fabrication Technology Prof. Nathan Cheung 11/19/2009 300mm Fab Tour http://www-03.ibm.com/technology/manufacturing/technology_tour_300mm_foundry.html Overview of IC Technology

More information

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Advances in Intense Pulsed Light Solutions For Display Manufacturing XENON Corporation Dr. Saad Ahmed Japan IDW 2016 Talk Outline Introduction to Pulsed Light Applications in Display UV Curing Applications

More information

Available online at ScienceDirect. Energy Procedia 84 (2015 ) 17 24

Available online at  ScienceDirect. Energy Procedia 84 (2015 ) 17 24 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 84 (2015 ) 17 24 E-MRS Spring Meeting 2015 Symposium C - Advanced inorganic materials and structures for photovoltaics Annealing

More information

PV module durability testing under high voltage biased damp heat conditions

PV module durability testing under high voltage biased damp heat conditions Available online at www.sciencedirect.com Energy Procedia 8 (2011) 6 384 389 1 5 SiliconPV: 17-20 April 2011, Freiburg, Germany PV module durability testing under high voltage biased damp heat conditions

More information

Light-Induced Degradation of Thin Film Silicon Solar Cells

Light-Induced Degradation of Thin Film Silicon Solar Cells Journal of Physics: Conference Series PAPER OPEN ACCESS Light-Induced Degradation of Thin Film Silicon Solar Cells To cite this article: F U Hamelmann et al 2016 J. Phys.: Conf. Ser. 682 012002 View the

More information

31st European Photovoltaic Solar Energy Conference and Exhibition APPLICATIONS OF CARRIER DE-SMEARING OF PHOTOLUMINESCENCE IMAGES ON SILICON WAFERS

31st European Photovoltaic Solar Energy Conference and Exhibition APPLICATIONS OF CARRIER DE-SMEARING OF PHOTOLUMINESCENCE IMAGES ON SILICON WAFERS This is a pre-peer review version of the paper submitted to the ournal Progress in Photovoltaics. APPLICATIONS OF CARRIER DE-SMEARING OF PHOTOLUMINESCENCE IMAGES ON SILICON WAFERS S. P. Phang, H. C. Sio,

More information

Issue 51 September 2013

Issue 51 September 2013 Laser Decapsulation By Christopher Henderson Historically, failure analysts used either mechanical or chemical means to decapsulate integrated circuits. They used primarily mechanical means on hermetically-sealed

More information

The Effect of Front and Rear Surface Recombination Velocities on the Photocurrent of Buried Emitter Silicon Solar Cell

The Effect of Front and Rear Surface Recombination Velocities on the Photocurrent of Buried Emitter Silicon Solar Cell The Effect of Front and Rear Surface Recombination Velocities on the Photocurrent of Buried Emitter Silicon Solar Cell Sayantan Biswas *, Ashim Kumar Biswas * and Amitabha Sinha * *Department of Physics,

More information

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate

Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Plasma Etching Rates & Gases Gas ratios affects etch rate & etch ratios to resist/substrate Development of Sidewalls Passivating Films Sidewalls get inert species deposited on them with plasma etch Creates

More information

INACCURACIES OF INPUT DATA RELEVANT FOR PV YIELD PREDICTION

INACCURACIES OF INPUT DATA RELEVANT FOR PV YIELD PREDICTION INACCURACIES OF INPUT DATA RELEVANT FOR PV YIELD PREDICTION Stefan Krauter, Paul Grunow, Alexander Preiss, Soeren Rindert, Nicoletta Ferretti Photovoltaik Institut Berlin AG, Einsteinufer 25, D-10587 Berlin,

More information

Polycrystalline CdS/CdTe solar cells

Polycrystalline CdS/CdTe solar cells Polycrystalline CdS/CdTe solar cells Al Compaan Distinguished University Professor of Physics, Emeritus (Lecture for Heben/Ellingson solar cells class) March 3, 2011 1 Absorption spectra of various semiconductors

More information

All-Aluminum Screen-Printed IBC Cells: Design Concept

All-Aluminum Screen-Printed IBC Cells: Design Concept l-uminum Screen-Printed IBC Cells: Design Concept Paul Basore, Emmanuel Van Kerschaver, Kirsten Cabanas-Holmen, Jean Hummel, Yafu Lin, C Paola Murcia, Kate Fisher, Simeon Baker-Finch, Oun-Ho Park, Frederic

More information

Available online at ScienceDirect. Energy Procedia 55 (2014 )

Available online at  ScienceDirect. Energy Procedia 55 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 55 (2014 ) 287 294 4th International Conference on Silicon Photovoltaics, SiliconPV 2014 Codiffused bifacial n-type solar cells (CoBiN)

More information

ENS 06 Paris, France, December 2006

ENS 06 Paris, France, December 2006 CARBON NANOTUBE ARRAY VIAS FOR INTERCONNECT APPLICATIONS Jyh-Hua ng 1, Ching-Chieh Chiu 2, Fuang-Yuan Huang 2 1 National Nano Device Laboratories, No.26, Prosperity Road I, Science-Based Industrial Park,

More information

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs

Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Improvement of Laser Fuse Processing of Fine Pitch Link Structures for Advanced Memory Designs Joohan Lee, Joseph J. Griffiths, and James Cordingley GSI Group Inc. 60 Fordham Rd. Wilmington, MA 01887 jlee@gsig.com

More information

"Plasma CVD passivation; Key to high efficiency silicon solar cells",

Plasma CVD passivation; Key to high efficiency silicon solar cells, "Plasma CVD passivation; Key to high efficiency silicon solar cells", David Tanner Date: May 7, 2015 2012 GTAT Corporation. All rights reserved. Summary: Remarkable efficiency improvements of silicon solar

More information

Fabrication of Mg2Si pn-junction Photodiode with Shallow Mesa-structure and Ring Electrode

Fabrication of Mg2Si pn-junction Photodiode with Shallow Mesa-structure and Ring Electrode Proc. Asia-Pacific Conf. on Semiconducting Silicides and Related Materials 2016 JJAP Conf. Proc. 5, https://doi.org/10.7567/jjapcp.5.011102 Fabrication of Mg2Si pn-junction Photodiode with Shallow Mesa-structure

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Radiation Tolerant Isolation Technology

Radiation Tolerant Isolation Technology Radiation Tolerant Isolation Technology Background The following contains a brief description of isolation technologies used for radiation hardened integrated circuits. The technologies mentioned are junction

More information

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element

Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element Fabrication of the Crystalline ITO Pattern by Picosecond Laser with a Diffractive Optical Element C.W. Chien and C.W. Cheng* ITRI South Campus, Industrial Technology Research Institute, No. 8, Gongyan

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

Available online at ScienceDirect. Energy Procedia 77 (2015 )

Available online at  ScienceDirect. Energy Procedia 77 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 77 (2015 ) 356 363 5th International Conference on Silicon Photovoltaics, SiliconPV 2015 Potential-induced degradation for encapsulated

More information

Design and Fabrication of Nanostructures Silicon Photodiode

Design and Fabrication of Nanostructures Silicon Photodiode Design and Fabrication of Nanostructures Silicon Photodiode Alwan M. Alwan (Corresponding author) & Allaa A.Jabbar School of Applied Sciences, University of Technology, Baghdad, Iraq E-mail: alkrzsm@yahoo.com

More information

p-si Industrial Application of Uncapped Al 2 O 3 and Firing-Through Al-BSF In Open Rear Passivated Solar Cells ARC SiN x Ag contacts n ++ p ++ Al-BSF

p-si Industrial Application of Uncapped Al 2 O 3 and Firing-Through Al-BSF In Open Rear Passivated Solar Cells ARC SiN x Ag contacts n ++ p ++ Al-BSF Industrial Application of Uncapped Al 2 O 3 and Firing-Through Al-BSF In Open Rear Passivated Solar Cells I. Cesar 1, E. Granneman 2, P. Vermont 2, H. Khatri 3, H. Kerp 3, A. Shaikh 3, P. Manshanden 1,

More information

GaAs nanowires with oxidation-proof arsenic capping for the growth of epitaxial shell

GaAs nanowires with oxidation-proof arsenic capping for the growth of epitaxial shell Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supplementary information GaAs nanowires with oxidation-proof arsenic capping for the growth of

More information

Indoor and Outdoor Characterizations of Photovoltaic Module Based on Mulicrystalline Solar Cells

Indoor and Outdoor Characterizations of Photovoltaic Module Based on Mulicrystalline Solar Cells Available online at www.sciencedirect.com Energy Procedia 18 (212 ) 857 866 Conference Title Indoor and Outdoor Characterizations of Photovoltaic Module Based on Mulicrystalline Solar Cells K.Agroui* Silicon

More information

Advances in PassDop technology: recombination and optics

Advances in PassDop technology: recombination and optics Available online at www.sciencedirect.com ScienceDirect Energy Procedia 124 (2017) 313 320 www.elsevier.com/locate/procedia 7th International Conference on Silicon Photovoltaics, SiliconPV 2017 Advances

More information

School of Photovoltaic and Renewable Energy Engineering

School of Photovoltaic and Renewable Energy Engineering School of Photovoltaic and Renewable Energy Engineering Silicon PV Education, Research and Industry in Australia R. Corkish, Head of School r.corkish@unsw.edu.au www.pv.unsw.edu.au Photo: K. McLean Context:

More information

Review Article High-Efficiency Crystalline Silicon Solar Cells

Review Article High-Efficiency Crystalline Silicon Solar Cells Advances in OptoElectronics Volume 2007, Article ID 97370, 15 pages doi:10.1155/2007/97370 Review Article High-Efficiency Crystalline Silicon Solar Cells S. W. Glunz Fraunhofer Institute for Solar Energy

More information

PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts

PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts PV research in Neuchâtel: from high efficiency crystalline cells to novel module concepts Laure-Emmanuelle Perret-Aebi, Christophe Ballif April 11 th 2014 Congrès Photovoltaïque National 2014, Lausanne

More information

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Materials Transactions, Vol. 48, No. 5 (27) pp. 975 to 979 #27 The Japan Institute of Metals Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Akira Heya 1, Naoto Matsuo 1, Tadashi Serikawa

More information

Deposition of AlOx/SiN stack and SiN for high efficient bifacial PERC solar cells using only one deposition system MAiA 3in1

Deposition of AlOx/SiN stack and SiN for high efficient bifacial PERC solar cells using only one deposition system MAiA 3in1 SNEC PV Power Expo and Conference 2017 Deposition of AlOx/SiN stack and SiN for high efficient bifacial PERC solar cells using only one deposition system MAiA 3in1 E. Vetter 1, T. Grosse 1, H.P. Sperlich

More information

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS A.Romeo, M. Arnold, D.L. Bätzner, H. Zogg and A.N. Tiwari* Thin Films Physics Group, Laboratory for Solid State Physics, Swiss Federal Institute

More information

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current

Optimal Design of PV Module with Bypass Diode to Reduce Degradation due to Reverse Excess Current TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 15, No. 5, pp. 279-283, October 25, 2014 Regular Paper pissn: 1229-7607 eissn: 2092-7592 DOI: http://dx.doi.org/10.4313/teem.2014.15.5.279 OAK Central:

More information

HOMEWORK 4 and 5. March 15, Homework is due on Monday March 30, 2009 in Class. Answer the following questions from the Course Textbook:

HOMEWORK 4 and 5. March 15, Homework is due on Monday March 30, 2009 in Class. Answer the following questions from the Course Textbook: HOMEWORK 4 and 5 March 15, 2009 Homework is due on Monday March 30, 2009 in Class. Chapter 7 Answer the following questions from the Course Textbook: 7.2, 7.3, 7.4, 7.5, 7.6*, 7.7, 7.9*, 7.10*, 7.16, 7.17*,

More information

Aluminum / Copper oscillation welding with a 500 W direct diode laser

Aluminum / Copper oscillation welding with a 500 W direct diode laser Application Note Issued: 2016-06-01 Aluminum / Copper oscillation welding with a 500 W direct diode laser SUMMARY The performance of the 500 W DirectProcess direct diode laser for oscillating welding by

More information

Transmission Mode Photocathodes Covering the Spectral Range

Transmission Mode Photocathodes Covering the Spectral Range Transmission Mode Photocathodes Covering the Spectral Range 6/19/2002 New Developments in Photodetection 3 rd Beaune Conference June 17-21, 2002 Arlynn Smith, Keith Passmore, Roger Sillmon, Rudy Benz ITT

More information

Presented at the 28th European PV Solar Energy Conference and Exhibition, 30 September 4 October, 2013, Paris, France

Presented at the 28th European PV Solar Energy Conference and Exhibition, 30 September 4 October, 2013, Paris, France INTEGRATING DIFFRACTIVE REAR SIDE STRUCTURES FOR LIGHT TRAPPING INTO CRYSTALLINE SILICON SOLAR CELLS J. Eisenlohr 1*, H. Hauser 1, J. Benick 1, A. Mellor 2, B. Bläsi 1, J.C. Goldschmidt 1, M. Hermle 1

More information

VACUUM VIEWPORTS. Introduction... I 03 KF Viewports... I 09 I 01. VACUUM / Components & Consumables

VACUUM VIEWPORTS. Introduction... I 03 KF Viewports... I 09 I 01. VACUUM / Components & Consumables I VAUUM VIEWPORTS Introduction... I 03 KF Viewports... I 09 I I 01 Neyco manufactures a range of UHV viewports in F, ISO or KF flange styles including a variety of coatings to enhance performance. Materials

More information

27th European Photovoltaic Solar Energy Conference and Exhibition ANALYSIS OF MONO-CAST SILICON WAFER AND SOLAR CELLS

27th European Photovoltaic Solar Energy Conference and Exhibition ANALYSIS OF MONO-CAST SILICON WAFER AND SOLAR CELLS ANALYSIS OF MONO-CAST SILICON WAFER AND SOLAR CELLS Kai Petter* 1, Thomas Kaden 2, Ronny Bakowskie 1, Yvonne Ludwig 1, Ronny Lantzsch 1, Daniel Raschke 1, Stephan Rupp 1, Thomas Spiess 1 1 Q-Cells SE,

More information

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS

3.46 OPTICAL AND OPTOELECTRONIC MATERIALS Badgap Engineering: Precise Control of Emission Wavelength Wavelength Division Multiplexing Fiber Transmission Window Optical Amplification Spectrum Design and Fabrication of emitters and detectors Composition

More information

HIGHER efficiencies with lower processing costs reached

HIGHER efficiencies with lower processing costs reached Erschienen in: IEEE Journal of Photovoltaics ; 4 (2014), 1. - S. 148-153 https://dx.doi.org/10.1109/jphotov.2013.2286525 148 High Efficiency Multi-busbar Solar Cells and Modules Stefan Braun, Robin Nissler,

More information

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED Y. H. Lin and C. Y. Liu Department of Chemical Engineering and Materials Engineering, National Central University, Jhongli,

More information

EFFECT OF HYDROGEN, CERIUM AND TUNGSTEN DOPING ON INDIUM OXIDE THIN FILMS FOR HETEROJUNCTION SOLAR CELLS

EFFECT OF HYDROGEN, CERIUM AND TUNGSTEN DOPING ON INDIUM OXIDE THIN FILMS FOR HETEROJUNCTION SOLAR CELLS EFFECT OF HYDROGEN, CERIUM AND TUNGSTEN DOPING ON INDIUM OXIDE THIN FILMS FOR HETEROJUNCTION SOLAR CELLS A. Valla, P. Carroy, F. Ozanne, G. Rodriguez & D. Muñoz 1 OVERVIEW Description of amorphous / crystalline

More information

Application of photoluminescence imaing and laser-beam-induced-current mapping in thin film solar cell characterization

Application of photoluminescence imaing and laser-beam-induced-current mapping in thin film solar cell characterization Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2017 Application of photoluminescence imaing and laser-beam-induced-current mapping in thin film solar cell characterization

More information

Trench Structure Improvement of Thermo-Optic Waveguides

Trench Structure Improvement of Thermo-Optic Waveguides International Journal of Applied Science and Engineering 2007. 5, 1: 1-5 Trench Structure Improvement of Thermo-Optic Waveguides Fang-Lin Chao * Chaoyang University of Technology, Wufong, Taichung County

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 6, December 2013 ISSN: 2277-3754 Fabrication and Characterization of Flip-Chip Power Light Emitting Diode with Backside Reflector Ping-Yu Kuei, Wen-Yu Kuo, Liann-Be Chang, Tung-Wuu Huang, Ming-Jer Jeng, Chun-Te Wu, Sung-Cheng

More information

Enabling Technology in Thin Wafer Dicing

Enabling Technology in Thin Wafer Dicing Enabling Technology in Thin Wafer Dicing Jeroen van Borkulo, Rogier Evertsen, Rene Hendriks, ALSI, platinawerf 2G, 6641TL Beuningen Netherlands Abstract Driven by IC packaging and performance requirements,

More information

Efficiency Gain For Bi-Facial Multi-Crystalline Solar Cell With Uncapped Al 2 O 3 And Local Firing-Through Al-BSF

Efficiency Gain For Bi-Facial Multi-Crystalline Solar Cell With Uncapped Al 2 O 3 And Local Firing-Through Al-BSF Efficiency Gain For Bi-Facial Multi-Crystalline Solar Cell With Uncapped Al 2 O 3 And Local Firing-Through Al-BSF Ilkay Cesar 1, Petra Manshanden 1, Gaby Janssen 1, Ernst Granneman 2, Olga Siarheyeva 2,

More information

Epitaxial Silicon Solar Cells

Epitaxial Silicon Solar Cells 2 Epitaxial Silicon Solar Cells Vasiliki Perraki Department of Electrical and Computer Engineering, University of Patras, Greece 1. Introduction Commercial solar cells are made on crystalline silicon wafers

More information