FUEL CELL CHARGE TRANSPORT

Size: px
Start display at page:

Download "FUEL CELL CHARGE TRANSPORT"

Transcription

1 FUEL CELL CHARGE TRANSPORT M. OLIVIER 19/05/2008

2 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they are produced to the electrode where they are consumed. They are two major types of charges species: electrons and ions. The transport of electrons versus ions is fundamentally different, primarily due to the large difference in mass between the two. In most fuel cells, ion charge transport is far more difficult than electron charge transport. Resistance to charge transport results in a voltage loss (given by Ohm s law) = ohmic, or IR, loss. These losses are minimized by making electrolytes as thin as possible and employing high-conductivity materials. 2

3 INTRODUCTION Flux J measures how much of a given quantity (ex: moles) flows through a material per unit area per unit of time. Charge flux j measures the amount of charge that flows through a material per unit area per unit of time. Typical units: C 2 = cm s A cm Charge flux = current density 2 3

4 INTRODUCTION J i j = z = k i F J M ik F k J i = flux of species i F k = the k different forces acting on i M ik = coupling coefficients which reflect the relative ability of a species to respond to a given force with movement as well as the effective strength of the driving force itself 4

5 INTRODUCTION If charge transport is dominated by electrical driving forces: dv j = σ dx 5

6 6 CHARGE TRANSPORT : VOLTAGE LOSS CHARGE TRANSPORT : VOLTAGE LOSS Why does charge transport result in a voltage loss? Because fuel cell conductors are not perfect they have an intrinsic resistance to charge flow. σ σ σ σ A L R i A L i V L j V L V j = = = = Resistance of our conductor

7 CHARGE TRANSPORT : VOLTAGE LOSS V is the voltage which must be applied in order to transport charge at a rate given by i. This voltage represents a loss (Ohmic loss)= voltage which was expended or sacrificed in order to accomplish charge transport. η ohmic ohmic ( R R ) = i R = i + elec ionic Often small compared to R ionic 7

8 8 CHARGE TRANSPORT : VOLTAGE LOSS

9 TRANSPORT RESISTANCE Fuel cell resistance scales with area and with thickness: for this reason fuel cell electrolytes are generally made as thin as possible. Fuel cell resistances are additive. Performance improvements may be won by the development of better ion conductors. 9

10 TRANSPORT RESISTANCE RESISTANCE SCALES WITH AREA Area-normalised resistance known as area-specific resistance (ASR): η ohmic ASR ASR = i ohmic ohmic R = ohmic A L = σ = fuel Cell j ( ASR ) ohmic [ 2 Acm ] R ohmic 10

11 TRANSPORT RESISTANCE RESISTANCE SCALES WITH THICKNESS The shorter the conductor length L, the lower the resistance. 11 L ASR ohmic = σ Fuel cell electrolytes are designed to be as thin as possible. The most important limitations are: - Mechanical Integrity : Ex: membrane failure can result in catastrophic mixing of the fuel and oxidant. - Nonuniformities: Thin electrolyte areas may become hot spots that are subject to rapid deterioration or failure. - Shorting: Especially when the electrolyte is on the same order of magnitude as the electrode roughness.

12 TRANSPORT RESISTANCE RESISTANCE SCALES WITH THICKNESS The shorter the conductor length L, the lower the resistance. L ASR ohmic = σ Fuel cell electrolytes are designed to be as thin as possible. The most important limitations are: - Fuel crossover : As the electrolyte thickness is reduced, the crossover of reactants may increase. - Contact resistance : Resistance associated with the interface between the electrolyte and the electrode. - Dielectric breakdown: When the electrolyte is so thin that the electric field across the membrane exceeds the dielectric breakdown field for the material. 12

13 TRANSPORT RESISTANCE RESISTANCE SCALES WITH THICKNESS Practical limitations : Limit achievable thickness : µm 13

14 TRANSPORT RESISTANCE FUEL CELL RESISTANCES ARE ADDITIVE It is extremely very difficult to distinguish between all the various sources of resistance loss. 14

15 TRANSPORT RESISTANCE IONIC RESISTANCE USUALLY DOMINATES The best electrolytes employed in fuel cell: 1 1 σ 0.1 Ω cm At a thickness of 50 µm: ASR 0,05 0,1 Ωcm 2 A 50-µm-thick porous carbon cloth electrode: ASR < Ωcm This example illustrates how electrolyte resistance usually dominates fuel cells. Developing satisfactory ionic conductors is challenging. 15

16 PHYSICAL MEANING OF CONDUCTIVITY Conductivity quantifies the ability of a material to permit the flow of charge when driven by an electric field. Two major factors: how many carriers are available to transport charge and the mobility of those carriers within the material. σ = ( z ) i F ci ui A material s conductivity is determined by carrier concentration C i and carrier mobility u i. 16

17 PHYSICAL MEANING OF CONDUCTIVITY ELECTRONIC VERSUS IONIC CONDUCTORS 17

18 REVIEW OF FUEL CELL ELECTROLYTES Three major candidate materials classes for fuel cells: aqueous, polymer, and ceramic electrolytes Any fuel cell electrolyte must meet the following requirements: - High ionic conductivity - Low electronic conductivity - High stability (in both oxidizing and reducing environments) - Low fuel crossover - Reasonable mechanical strength (if solid) - Ease of manufacturability 18

19 REVIEW OF FUEL CELL CLASSES IN AQUEOUS ELECTROLYTES/IONIC LIQUIDS Almost all aqueous/liquid electrolyte fuel cells use a matrix material to support or immobilize the electrolyte. 1. Provides mechanical strength to the electrolyte 2. Minimizes the distance between the electrodes while preventing shorts 3. Prevents crossover of reactant gases through the electrolyte Examples: Alkaline fuel cells use concentrated aqueous KOH electrolytes; phosphoric acid fuel cells use either concentrated H 3 PO 4 electrolytes or pure H 3 PO 4. Molten carbonate fuel cells use molten (K/Li) 2 CO 3 immobilized in a supporting matrix. 19

20 REVIEW OF FUEL CELL CLASSES IN AQUEOUS ELECTROLYTES/IONIC LIQUIDS σ = ( z ) i F ci ui Selected Ionic Mobilities at Infinite Dilution in Aqueous Solutions at 25 C. 20

21 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES For a polymer to be good ion conductor, at a minimum it should possess the following structural properties: 1) The presence of fixed charges sites; 2) The presence of free volume ( open space ). The fixed charge sites should be opposite charge compared to the moving ions. In a polymer structure maximizing the concentration of these charge sites is critical to ensure high conductivity. Excessive addition of ionically charged side chains will significantly degrade the mechanical stability of the polymer. 21

22 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES Schematic of ion transport between polymer chains: Polymer segments can move or vibrate in the free volume, thus inducing physical transfer of ions from one charged site to one another. 22

23 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES: Ionic Transport in Nafion Teflon backbone = mechanical strength Sulfonic acid functional groups: charge sites for proton transport 23

24 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES: Ionic Transport in Nafion In the presence of water, the protons (H + ) in the pores form hydronium complexes (H 3 O + ) and detach from the sulfonic acid side chains. When sufficient water exists in the pores, the hydronium ions can transport in the aqueous phase. -Under these circumstances, ionic conduction in Nafion is similar to conduction in liquid electrolytes. -The hydrophobic nature of the Teflon backbone accelerates water transport through the membrane, since the hydrophobic pore surfaces tend to repel water. -To maintain this extraordinary conductivity, Nafion must be fully hydrated with liquid water. 24

25 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES: Ionic Transport in Nafion The water content λ in Nafion = the ratio of the number of water molecules to the number of charged (SO 3- H + ) sites 0 < λ < 22 Completely dehydrated Nafion Full saturation 25

26 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES: Ionic Transport in Nafion Water content versus water activity for Nafion 117 at 303 K 26

27 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES: Ionic Transport in Nafion Ionic conductivity of Nafion versus water content λ at 303 K 27

28 REVIEW OF FUEL CELL CLASSES IN POLYMER ELECTROLYTES: Ionic Transport in Nafion σ 1 1 ( λ, T ) = σ 303 ( λ) exp 1268 K 303 T Ionic conductivity of Nafion versus temperature when λ= 22 28

29 REVIEW OF FUEL CELL CLASSES IN CERAMIC ELECTROLYTES SOFC electrolytes = are solid, crystalline oxide materials that can conduct ions The most popular SOFC electrolyte is yttria stabilised zirconia (YSZ) Typical YSZ electrolyte contains: 8% yttria mixed with zirconia Zirconia = ZrO 2 (zirconium oxide) Yttria = Y 2 O 3 (Yttrium oxide) Yttria stabilised the zirconia crystal structure in the cubic phase (where it is most conductive). Yttria induces high concentrations of oxygen vacancies into the zirconia crystal structure. High ion conductivity 29

30 REVIEW OF FUEL CELL CLASSES IN CERAMIC ELECTROLYTES Charge compensation effects in YSZ lead to creation of oxygen vacancies The addition of 8% (molar) yttria to zirconia causes about 4% of the oxygen sites to be vacant. 30

31 REVIEW OF FUEL CELL CLASSES IN CERAMIC ELECTROLYTES A material s conductivity is determined by the combination of carrier concentration c and carrier mobility u: σ = ( z F ) cu = c ( zf ) RT 2 D The oxygen vacancies can be considered to be ionic charge «carriers». Carrier mobility is described by D, the diffusivity of the carrier in the crystal lattice. Diffusivity describes the ability of a carrier to move, or diffuse, from site to site within a crystal lattice. 31

32 REVIEW OF FUEL CELL CLASSES IN CERAMIC ELECTROLYTES There is an upper limit to doping. Above a certain dopant or vacancy concentration, defects start to interact with each other, reducing their ability to move. 32

33 REVIEW OF FUEL CELL CLASSES IN CERAMIC ELECTROLYTES The carrier diffusivity in SOFC electrolytes is exponentially temperature dependent: D 0 = constant (cm 2 /s) D = D 0 e G act ( RT ) G act = the activation barrier for the diffusion process (J/mol) σ c ( ) 2 G ( RT ) zf D e act = 0 RT 33

34 REVIEW OF FUEL CELL CLASSES IN CERAMIC ELECTROLYTES For extrinsic carriers, c is determined by the doping chemistry of the electrolyte. In this case, c is a constant and the preceding equation can be used. For intrinsic carriers, c is exponentially dependent on the temperature and the equation becomes: σ = c sites ( ) 2 hv ( 2kT ) Gact ( RT ) zf D e e 0 RT 34

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as

a) The self-diffusion coefficient of a metal with cubic structure can be expressed as EXERCISES KJM5120 Chapter 5; Diffusion 1. Random (self) diffusion a) The self-diffusion coefficient of a metal with cubic structure can be expressed as 1 n D = s 6 t 2 where n/t represents the jump frequency

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

CHAPTER 5: DIFFUSION IN SOLIDS

CHAPTER 5: DIFFUSION IN SOLIDS CHAPTER 5: DIFFUSION IN SOLIDS ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion

More information

Defects and Diffusion

Defects and Diffusion Defects and Diffusion Goals for the Unit Recognize various imperfections in crystals Point imperfections Impurities Line, surface and bulk imperfections Define various diffusion mechanisms Identify factors

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/d for oxygen ions in Zr 0.

The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/d for oxygen ions in Zr 0. The Nernst-Einstein equation indicates that the ratio β /D for a given material varies only with temperature. Calculate β/d for oxygen ions in 0.8 Y 0.2 1.9 at 800 C. 1 The Nernst-Einstein equation indicates

More information

Modeling and analysis of electrochemical hydrogen compression

Modeling and analysis of electrochemical hydrogen compression Modeling and analysis of electrochemical hydrogen compression N.V. Dale 1,*, M. D. Mann 1, H. Salehfar 2, A. M. Dhirde 2, T. Han 2 Abstract One of the challenges to realizing the hydrogen economy is hydrogen

More information

Fuel Cell Technology

Fuel Cell Technology Fuel Cell Technology 1. Technology overview 2. Fuel cell performance 3. Fuel cell systems 4. Sample calculations 5. Experiment using PEM cell Goal: To provide a better understanding of the fuel cell technology,

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey

Section 4: Thermal Oxidation. Jaeger Chapter 3. EE143 - Ali Javey Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Ionic Conductivity and Solid Electrolytes II: Materials and Applications Ionic Conductivity and Solid Electrolytes II: Materials and Applications Chemistry 754 Solid State Chemistry Lecture #27 June 4, 2003 References A. Manthiram & J. Kim Low Temperature Synthesis of Insertion

More information

Advances in Materials for Solid Oxide Fuel Cells

Advances in Materials for Solid Oxide Fuel Cells Page 1 of 7 Page 1 of 7 Return to Web Version Advances in Materials for Solid Oxide Fuel Cells By: Raymond J. Gorte, Material Matters Volume 5 Article 4 Chemical & Biomolecular Engineering University of

More information

Lydia Fawcett Imperial College London, Department of Materials Submitted for examination for the degree of Doctor of Philosophy

Lydia Fawcett Imperial College London, Department of Materials Submitted for examination for the degree of Doctor of Philosophy Electrochemical Performance and Compatibility of La 2 NiO 4+δ Electrode Material with La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3-δ Electrolyte for Solid Oxide Electrolysis Lydia Fawcett Imperial College London, Department

More information

Prospect of solid oxide steam electrolysis for hydrogen production

Prospect of solid oxide steam electrolysis for hydrogen production Prospect of solid oxide steam electrolysis for hydrogen production Meng Ni a, Michael K.H. Leung b, Dennis Y.C. Leung c a Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road,

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 5. Diffusion Learning objectives: - To know the

More information

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498 Glass in energy Glasses for fuel cells and H 2 storage MAT 498 Lehigh University Rui M. Almeida Glass in energy Spring 2012 1 Fuel cells Rui M. Almeida Glass in energy Spring 2012 2 Fuel cells and the

More information

Proton conductivity of lanthanum and barium zirconate

Proton conductivity of lanthanum and barium zirconate THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Proton conductivity of lanthanum and barium zirconate Microscale aspects on first-principles basis JOAKIM NYMAN Department of Applied Physics CHALMERS UNIVERSITY

More information

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode?

CORROSION of Metals CORROSION CORROSION. Outline ISSUES TO ADDRESS... Why does corrosion occur? What metals are most likely to corrode? Outline Corrosion - Introduction Corrosion of Metals - e.g. Rusting of iron in water Electrochemical Cell Electrode Potential in Electrochemical Cell Standard Electromotive Force Example Relative Corrosion

More information

Green usage of fossil fuels with solid oxide fuel cell

Green usage of fossil fuels with solid oxide fuel cell 211 2nd International Conference on Environmental Science and Development IPCBEE vol.4 (211) (211) IACSIT Press, Singapore Green usage of fossil fuels with solid oxide fuel cell H.Kazemi Esfeh Faculty

More information

CO 2 -Neutral Fuels. Adelbert Goede. Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden

CO 2 -Neutral Fuels. Adelbert Goede. Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden CO 2 -Neutral Fuels Adelbert Goede Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden i-sup 2016, 16-19 October Antwerp, Belgium DIFFER is part of and CO 2 Neutral fuels: What

More information

Advanced materials for SOFCs

Advanced materials for SOFCs Advanced materials for SOFCs Yoed Tsur Department of Chemical Engineering Technion Outline Intro: why SOFCs are important? Types of SOFCs Hybrid SOFC-something for power generation: NG utilization Materials

More information

Microstructure-Properties: I Lecture 5B The Effect of Grain Size. on Varistors

Microstructure-Properties: I Lecture 5B The Effect of Grain Size. on Varistors 1 Microstructure-Properties: I Lecture 5B The Effect of on 27-301 October, 2007 A. D. Rollett 2 This lecture is concerned with the effects of grain size on properties. This is the second of two examples:

More information

CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, Electrochemical energy storage and conversion

CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, Electrochemical energy storage and conversion CHEM 521 Analytical Electrochemistry TOPIC 4 Nov 28, 2016 Electrochemical energy storage and conversion Batteries and Electrochemical Capacitors Daniel A. Scherson and Attila Palencsár The Electrochemical

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Corrosion Control and Cathodic Protection Data Sheet

Corrosion Control and Cathodic Protection Data Sheet Data Sheet CORROSION CONTROL Corrosion control is the application of engineering principles and procedures to minimise corrosion to an acceptable level by the most economical method. It is rarely practical

More information

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides

Electrical and Ionic Transport Properties. (1) Laboratoire de Recherches sur la Réactivité des Solides (La 0.8 Sr 0.2 )(Mn 1-y Fe y )O 3±δ Oxides for ITSOFC Cathode Materials? Electrical and Ionic Transport Properties M. Petitjean (1), G. Caboche (1), E. Siebert (2), L. Dessemond (2), L.-C. Dufour (1) (1)

More information

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO Dipartimento Energia Ph.D. Thesis DESIGN & DEVELOPMENT OF PLANAR SOLID OXIDE FUEL CELL STACK GUSTAVO ADOLFO ORTIGOZA VILLALBA Academic advisor: Prof. Massimo Santarelli May 2013,

More information

Development of Ceria-Zirconia Solid Solutions and Future Trends

Development of Ceria-Zirconia Solid Solutions and Future Trends Special Issue Oxygen Storage Materials for Automotive Catalysts Ceria-Zirconia Solid Solutions 1 Review Development of Ceria-Zirconia Solid Solutions and Future Trends Hideo Sobukawa This review summarizes

More information

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part 2

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part 2 Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part 2 Jekanthan Thangavelautham Postdoctoral Associate Field and Space Robotics Laboratory Outline Review PEM Fuel Cell

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

Semiconductor Very Basics

Semiconductor Very Basics Semiconductor Very Basics Material (mostly) from Semiconductor Devices, Physics & Technology, S.M. Sze, John Wiley & Sons Semiconductor Detectors, H. Spieler (notes) July 3, 2003 Conductors, Semi-Conductors,

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Corrosion Rate Measurement on C-Steel

Corrosion Rate Measurement on C-Steel Measurements of corrosion rate on Carbon-steel using Electrochemical (potentiodynamic Polarization, EIS etc.) technique. Corrosion Rate Measurement on C-Steel Abdullah Al Ashraf 1. Introduction: The degradation

More information

to which it is applied. Using this approach temperature drops of up to 170 o C at the metal

to which it is applied. Using this approach temperature drops of up to 170 o C at the metal Chapter 2 Thermal Barrier Coatings 2.1 Overview By attaching an adherent layer of a low thermal conductivity material to the surface of a internally cooled gas turbine blade, a temperature drop can be

More information

Electrical conduction in ceramics

Electrical conduction in ceramics Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrical conduction in ceramics Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Conductivity

More information

Structural Properties of NiO-CGO Composites Precursor Prepared via Combustion Synthesis Route

Structural Properties of NiO-CGO Composites Precursor Prepared via Combustion Synthesis Route Asian Journal of Chemistry Vol. 21, No. 10 (2009), S157-161 Structural Properties of NiO-CGO Composites Precursor Prepared via Combustion Synthesis Route PANKAJ KALRA# ANIRUDH P. SINGH and AJAY KUMAR #

More information

A1104 Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodes

A1104 Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodes A1104 Effects of sintering temperature on composition, microstructure and electrochemical performance of spray pyrolysed LSC thin film cathodes Omar Pecho 1,2 Lorenz Holzer 1, Zhèn Yáng 2, Julia Martynczuk

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. 315 Problems 1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. (a) Find the temperature and partial pressure of O 2 where Ni(s), Ni(l), and NiO(s) are in equilibrium.

More information

ABSTRACT. Siddharth Patel, Master of Science, Associate Professor, Dr. Gregory Jackson, Department of Mechanical Engineering

ABSTRACT. Siddharth Patel, Master of Science, Associate Professor, Dr. Gregory Jackson, Department of Mechanical Engineering ABSTRACT Title of Document: PERFORMANCE OF Ni/CEO 2 /YSZ SOFC ANODES WITH CARBONACEOUS FUELS Siddharth Patel, Master of Science, 2009 Directed By: Associate Professor, Dr. Gregory Jackson, Department of

More information

Chapter 18: Electrical Properties

Chapter 18: Electrical Properties Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

More information

WATER AND HEAT MANAGEMENT FOR IMPROVED PERFORMANCE OF PROTON EXCHANGE MEMBRANE FUEL CELLS

WATER AND HEAT MANAGEMENT FOR IMPROVED PERFORMANCE OF PROTON EXCHANGE MEMBRANE FUEL CELLS UNIVERSITY OF SPLIT FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE MECHANICAL ENGINEERING POSTGRADUATE STUDIES DOCTORAL QUALIFYING EXAM WATER AND HEAT MANAGEMENT FOR IMPROVED

More information

The current status of fuel cell technology for mobile and stationary applications

The current status of fuel cell technology for mobile and stationary applications TUTORIAL REVIEW www.rsc.org/greenchem Green Chemistry The current status of fuel cell technology for mobile and stationary applications Frank de Bruijn Received 4th October 2004, Accepted 10th January

More information

1. Introduction. What is implantation? Advantages

1. Introduction. What is implantation? Advantages Ion implantation Contents 1. Introduction 2. Ion range 3. implantation profiles 4. ion channeling 5. ion implantation-induced damage 6. annealing behavior of the damage 7. process consideration 8. comparison

More information

Chapter 5: Diffusion

Chapter 5: Diffusion Chapter 5: Diffusion ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions: Experimental and Modeling Studies

Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions: Experimental and Modeling Studies Energy & Fuels 2009, 23, 397 402 397 Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions: Experimental and Modeling Studies D. S. Falcão, C. M. Rangel,

More information

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Ceria

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: Ceria Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: Ceria Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova Bibliography 1. N.Q. Minh,

More information

On the Onset of the Flash Transition in Single Crystals of Cubic Zirconia. Yanhao Dong

On the Onset of the Flash Transition in Single Crystals of Cubic Zirconia. Yanhao Dong On the Onset of the Flash Transition in Single Crystals of Cubic Zirconia Yanhao Dong (dongya@seas.upenn.edu) Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia,

More information

Optimization of channel geometry in a proton exchange membrane (PEM) fuel cell

Optimization of channel geometry in a proton exchange membrane (PEM) fuel cell UNLV Theses, Dissertations, Professional Papers, and Capstones 2009 Optimization of channel geometry in a proton exchange membrane (PEM) fuel cell Jephanya Kasukurthi University of Nevada Las Vegas Follow

More information

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases?

Diffusion in Solids. Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? Diffusion in Solids ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases? How does diffusion depend

More information

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Y. Wang *1,2, J. Kowal 1,2 and D. U. Sauer 1,2,3 1 Electrochemical Energy Conversion and Storage Systems Group, Institute for Power

More information

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons.

Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. Chemistry 145 Exam number 4 name 11/19/98 # Faraday s constant is 96,500 c/mole of electrons. A.(16) An electrochemical cell is prepared with a strip of manganese metal dipping in to a 1.0 M MnSO 4 solution

More information

Properties of Dense Ceramic Membranes for Energy Conversion Processes

Properties of Dense Ceramic Membranes for Energy Conversion Processes Properties of Dense Ceramic Membranes for Energy Conversion Processes Michael Schroeder, Young Chang Byun Institute of Physical Chemistry CCT 009, 18-0 May 009, Dresden Coworkers: Young Chang Byun Jianxin

More information

FLUENT 6.3 Fuel Cell Modules Manual

FLUENT 6.3 Fuel Cell Modules Manual FLUENT 6.3 Fuel Cell Modules Manual September 2006 Copyright c 2006 by Fluent Inc. All rights reserved. No part of this document may be reproduced or otherwise used in any form without express written

More information

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities)

Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) Imperfections: Good or Bad? Structural imperfections (defects) Compositional imperfections (impurities) 1 Structural Imperfections A perfect crystal has the lowest internal energy E Above absolute zero

More information

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate 2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate Mighty ships upon the ocean suffer from severe corrosion. Even those that stay at dockside are rapidly becoming oxide Alas, that piling

More information

Supplemental Exam Problems for Study

Supplemental Exam Problems for Study 3.091 OCW Scholar Self-Asessment Crystalline Materials Supplemental Exam Problems for Study Solutions Key 3.091 Fall Term 2007 Test #2 page 2 Problem #1 z z y y x x (a) Using proper crystallographic notation

More information

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry Sethuraman, Vijay Anand I. AIM: The aim of this study is to calculate the adsorption and desorption rate constants

More information

Section 4: Thermal Oxidation. Jaeger Chapter 3

Section 4: Thermal Oxidation. Jaeger Chapter 3 Section 4: Thermal Oxidation Jaeger Chapter 3 Properties of O Thermal O is amorphous. Weight Density =.0 gm/cm 3 Molecular Density =.3E molecules/cm 3 O Crystalline O [Quartz] =.65 gm/cm 3 (1) Excellent

More information

Polymer Electrolyte Membrane (PEM) fuel cell seals durability

Polymer Electrolyte Membrane (PEM) fuel cell seals durability Loughborough University Institutional Repository Polymer Electrolyte Membrane (PEM) fuel cell seals durability This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Metallization. Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance

Metallization. Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance Metallization Interconnects Typical current density ~10 5 A/cm 2 Wires introduce parasitic resistance and capacitance RC time delay Inter-Metal Dielectric -Prefer low dielectric constant to reduce capacitance

More information

Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference

Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference Etching Etching Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between 2 materials Need strong selectivity from masking

More information

Fabrication Technology

Fabrication Technology Fabrication Technology By B.G.Balagangadhar Department of Electronics and Communication Ghousia College of Engineering, Ramanagaram 1 OUTLINE Introduction Why Silicon The purity of Silicon Czochralski

More information

3- PHOSPHORIC ACID FUEL CELLS

3- PHOSPHORIC ACID FUEL CELLS 3- PHOSPHORIC ACID FUEL CELLS (PAFCs) The phosphoric acid fuel cell (PAFC) was the first fuel cell technology to be commercialized. The number of units built exceeds any other fuel cell technology, with

More information

Electricity and Chemistry

Electricity and Chemistry Electricity and Chemistry Electrochemistry: It is a branch of chemistry that deals with the reactions involving the conversion of chemical energy into electrical energy and vice-versa. Electrochemical

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL PARAMETRIC STUDY VIA MATHEMATICAL MODELING AND NUMERICAL SIMULATION

PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL PARAMETRIC STUDY VIA MATHEMATICAL MODELING AND NUMERICAL SIMULATION PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL PARAMETRIC STUDY VIA MATHEMATICAL MODELING AND NUMERICAL SIMULATION By Rihab Jaralla B.Eng., University of Technology, Baghdad, Iraq, 1993 MASc., Ryerson University,

More information

Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons

Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons University of Pennsylvania ScholarlyCommons Departmental Papers (CBE) Department of Chemical & Biomolecular Engineering January 2007 Recent Progress in SOFC Anodes for Direct Utilization of Hydrocarbons

More information

Reliability of High-Voltage MnO 2 Tantalum Capacitors

Reliability of High-Voltage MnO 2 Tantalum Capacitors Reliability of High-Voltage MnO 2 Tantalum Capacitors Erik Reed, George Haddox KEMET Electronics Corporation, 2835 Kemet Way, Simpsonville, SC 29681 Phone: +1.864.963.6300, Fax: +1.864.228.4081 e-mail:

More information

Efficient Use of Energy Converting Applications. Nadine Jacobs

Efficient Use of Energy Converting Applications. Nadine Jacobs Efficient Use of Energy Converting Applications Agenda Introduction NEXT ENERGY EURECA Principal objectives Research areas Test protocols Stacktest Stadardisation DEMMEA Degradation Mechanisms in HT-PEM

More information

Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte

Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte Feng Han 1, Robert Semerad 2, and Rémi Costa 1 1 German Aerospace Center 2 Ceraco Ceramic Coating

More information

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study Research Article International Journal of Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Effect of Mass Flow Rate and Temperature

More information

Sustainable Hydrogen and Electrical Energy Storage. F.M. Mulder & M. Wagemaker

Sustainable Hydrogen and Electrical Energy Storage. F.M. Mulder & M. Wagemaker Sustainable Hydrogen and Electrical Energy Storage 06-05-2013 F.M. Mulder & M. Wagemaker 1 Production of hydrogen - fossil fuels - biomass - electrolysis of water - thermonuclear - photocatalysis - 2 Production

More information

ELECTRICAL AND THERMAL PROPERTIES OF YTTRIA-STABILISED ZIRCONIA (YSZ)-BASED CERAMIC MATERIALS. Doctor of Philosophy

ELECTRICAL AND THERMAL PROPERTIES OF YTTRIA-STABILISED ZIRCONIA (YSZ)-BASED CERAMIC MATERIALS. Doctor of Philosophy ELECTRICAL AND THERMAL PROPERTIES OF YTTRIA-STABILISED ZIRCONIA (YSZ)-BASED CERAMIC MATERIALS A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of

More information

Characteristic and efficiency of PEM fuel cell and PEM electrolyser

Characteristic and efficiency of PEM fuel cell and PEM electrolyser Related topics Electrolysis, electrode polarisation, decomposition voltage, galvanic elements, Faraday s law. Principle and task In a PEM electrolyser, the electrolyte consists of a protonconducting membrane

More information

Amherst. University of Massachusetts Amherst. Yash Sanghai University of Massachusetts Amherst. Masters Theses February 2014

Amherst. University of Massachusetts Amherst. Yash Sanghai University of Massachusetts Amherst. Masters Theses February 2014 University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 Techno-Economic Analysis of Hydrogen Fuel Cell Systems Used as an Electricity Storage Technology

More information

National Physical Laboratory Hampton Road Teddington Middlesex United Kingdom TW11 0LW

National Physical Laboratory Hampton Road Teddington Middlesex United Kingdom TW11 0LW NPL REPORT MAT 1 Susceptibility of Lead-Free Systems to Electrochemical Migration Ling Zou and Chris Hunt NOT RESTRICTED May 200 National Physical Laboratory Hampton Road Teddington Middlesex United Kingdom

More information

1. Introduction. 2. Objectives

1. Introduction. 2. Objectives FUEL CELL Strategic Research Programme School of Mechanical and Production Engineering Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Republic of Singapore. Contact person: Associate

More information

Automotive gas sensors. Christophe PIJOLAT, Ecole des Mines de St-Etienne, France

Automotive gas sensors. Christophe PIJOLAT, Ecole des Mines de St-Etienne, France Automotive gas sensors Christophe PIJOLAT, Ecole des Mines de St-Etienne, France Outline - EC regulation - AQS - Oxygen sensors - DeNOx SCR - NOx and NH3 sensors - Soots sensors Christophe PIJOLAT, Ecole

More information

Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS)

Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) Unit-1 THE SOLID STATE QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. What are anistropic substances. 2. Why are amorphous solids isotropic in nature?. Why glass is regarded as an amorphous solid? 4.

More information

Lateral Current Density Variation in PEM Fuel Cells with Interdigitated Flow Fields

Lateral Current Density Variation in PEM Fuel Cells with Interdigitated Flow Fields University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2014-04-21 Lateral Current Density Variation in PEM Fuel Cells with Interdigitated Flow Fields Song

More information

Extended Life Tantalum Hybrid Capacitor

Extended Life Tantalum Hybrid Capacitor Extended Life Tantalum Hybrid Capacitor David Zawacki and David Evans Evans Capacitor Company 72 Boyd Avenue East Providence, RI 02914 (401) 435-3555 dzawacki@evanscap.com devans@evanscap.com Abstract

More information

Florida Atlantic University, U.S.A, D = diffusion coefficient ( m / s ) eff

Florida Atlantic University, U.S.A, D = diffusion coefficient ( m / s ) eff Correlation of Chloride Diffusivity and Electrical Resistivity for Cracked Concrete D.V. Reddy, Ph.D., P.E., P.Eng, C. Eng (U.K.) 1, Stanley W. Merantus, B.S., and Khaled Sobhan, Ph.D. 1 1 Florida Atlantic

More information

Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel Cells

Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel Cells Experimental and Modelling Studies of Cold Start Processes in Proton Exchange Membrane Fuel Cells by Kui Jiao A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for

More information

Silicon Manufacturing

Silicon Manufacturing Silicon Manufacturing Group Members Young Soon Song Nghia Nguyen Kei Wong Eyad Fanous Hanna Kim Steven Hsu th Fundamental Processing Steps 1.Silicon Manufacturing a) Czochralski method. b) Wafer Manufacturing

More information

Neural network based control for PEM fuel cells

Neural network based control for PEM fuel cells IOSR Journal of Electronics & Communication Engineering (IOSR-JECE) ISSN(e) : 2278-1684 ISSN(p) : 2320-334X, PP 47-52 www.iosrjournals.org Neural network based control for PEM fuel cells Vinu.R 1, Dr.Varghese

More information

Transport Properties of Cerium Oxide Pure Non Doped

Transport Properties of Cerium Oxide Pure Non Doped , March 13-15, 2013, Hong Kong Transport Properties of Cerium Oxide Pure Non Doped Băilă Diana Irinel, Lazăr Livia Veronica, Members, IAENG Abstract In the last years, the solid electrolyte fuel cells

More information

An Investigation of GDL Porosity on PEM Fuel Cell Performance

An Investigation of GDL Porosity on PEM Fuel Cell Performance 37 A publication of VOL. 42, 2014 CHEMICAL ENGINEERING TRANSACTIONS Guest Editors: Petar Sabev Varbanov, Neven Duić Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-33-4; ISSN 2283-9216 The Italian

More information

ZIRCONIA SENSOR THEORY

ZIRCONIA SENSOR THEORY The zirconia carbon sensor is really an oxygen sensor. The primary mechanism for electrical current flow in many ceramic electrolytes is ionic conduction, in this case via Oxygen ions. Typical construction,

More information

CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a

CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3. Crystal Structure z a CRYSTAL GROWTH, WAFER FABRICATION AND BASIC PROPERTIES OF Si WAFERS- Chapter 3 Crystal Growth, Si Wafers- Chapter 3 z a C y B z a y Crystal Structure z a y Crystals are characterized by a unit cell which

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Durability Testing of Ceramic Coatings for Indirect Resistance Heat Treating in Vehicle Lightweighting Applications

Durability Testing of Ceramic Coatings for Indirect Resistance Heat Treating in Vehicle Lightweighting Applications Durability Testing of Ceramic Coatings for Indirect Resistance Heat Treating in Vehicle Lightweighting Applications Warren Peterson and Jerry E. Gould EWI Abstract The need for vehicle lightweighting has

More information

Modeling of Chemical-Mechanical Couplings in Solid Oxide Cells and Reliability Analysis

Modeling of Chemical-Mechanical Couplings in Solid Oxide Cells and Reliability Analysis University of South Carolina Scholar Commons Theses and Dissertations 2014 Modeling of Chemical-Mechanical Couplings in Solid Oxide Cells and Reliability Analysis Xinfang Jin University of South Carolina

More information

Tubular Proton Ceramic Steam Electrolysers

Tubular Proton Ceramic Steam Electrolysers Tubular Proton Ceramic Steam Electrolysers Einar Vøllestad 1, R. Strandbakke 1, Dustin Beeaff 2 and T. Norby 1 1 University of Oslo, Department of Chemistry, 2 CoorsTek Membrane Sciences AS Tubular Proton

More information

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Molten Carbonate Fuel Cells - Kouichi Takizawa

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Molten Carbonate Fuel Cells - Kouichi Takizawa MOLTEN CARBONATE FUEL CELLS Kouichi Takizawa Tokyo Electric Power Company, Japan Keywords: alkali metal carbonate, coal gasfication gas, lithium aluminate, nickel oxide, wet seal. external reforming, internal

More information

Definition and description of different diffusion terms

Definition and description of different diffusion terms Definition and description of different diffusion terms efore proceeding further, it is necessary to introduce different terms frequently used in diffusion studies. Many terms will be introduced, which

More information

Effect of grain size on the mobility and transfer characteristics of polysilicon thin-film transistors

Effect of grain size on the mobility and transfer characteristics of polysilicon thin-film transistors Indian Journal of Pure & Applied Physics Vol. 42, July 2004, pp 528-532 Effect of grain size on the mobility and transfer characteristics of polysilicon thin-film transistors Navneet Gupta* & B P Tyagi**

More information

THERMAL BARRIER COATINGS THERMOMETRY BY FLUORESCENCE. Molly Gentleman, Matt Chambers, Samuel Margueron and David R. Clarke

THERMAL BARRIER COATINGS THERMOMETRY BY FLUORESCENCE. Molly Gentleman, Matt Chambers, Samuel Margueron and David R. Clarke Groupe Français de Spectroscopie Vibrationnelle, 25, 26 et 27 JANVIER 2006, Spectroscopies Infrarouge et Raman «Mesures in situ et rayonnement thermique» THERMAL BARRIER COATINGS THERMOMETRY BY FLUORESCENCE

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological surface state in the Kondo insulator samarium hexaboride D. J. Kim, J. Xia and Z. Fisk 1 Sample quality and thickness reduction The key feature of SmB 6 resistance is an exponential rise with

More information

Electricity. Characteristic and efficiency of PEM fuel cell and PEM electrolyser Stationary currents. What you need:

Electricity. Characteristic and efficiency of PEM fuel cell and PEM electrolyser Stationary currents. What you need: Stationary currents Electricity Characteristic and efficiency of PEM fuel cell and PEM electrolyser What you can learn about Electrolysis Electrode polarisation Decomposition voltage Galvanic elements

More information