Direct Electroless Silver Plating on Copper Metal from Succinimide Complex Bath Using Imidazole as the Reducing Agent

Size: px
Start display at page:

Download "Direct Electroless Silver Plating on Copper Metal from Succinimide Complex Bath Using Imidazole as the Reducing Agent"

Transcription

1 Technical Paper Direct Electroless Silver Plating on Copper Metal from Succinimide Complex Bath Using Imidazole as Reducing Agent Hidemi NAWAFUNE*, Keiko SHIROGUCHI**, Shozo MIZUMOTO*, Yasuhito KOHASHI*** and Keiko OBATA*** *Faculty of Science and Engineering, High Tech. Reseach Center, Konan University (8-9-1, Okamoto, Higashinada-ku, Kobe-shi, Hyogo ) **Graduate School of Science, Konan University (8-9-1, Okamoto, Higashinada-ku, Kobe-shi, Hyogo ) ***DAIWA FINE CHEMICALS Co., Ltd. (21-8, Minamifutami, Futami-cho, Akashi-shi, Hyogo ) Direct electroless silver plating on copper metal from a succinimide complex bath using Imidazole as reducing agent was examined. Though electroless silver plating from this bath is essentially an autocatalytic, re is a problem in properties and adhesion of plated film because of substitution of silver due to dissolution of base copper metal that occurs during first stage of plating. By adding, which is catalytically reacted on copper surface to emit electrons, as second reducing agent, substitution of silver was suppressed, surface condition became dense and adhesion was improved. It has been determined that mixed potential ory can be applied to this reaction based on result of local polarization curve measurement. Key Words ; Electroless Silver Plating, Cyanide Free, Copper Substrate, Deposition Mechanism 1. Introduction Silver has lowest specific resistance, it is comparatively cheap, and excels in soldering among various metal elements, refore, it is widely used as a surface treatment material for general-purpose contact points and various electronic parts. In particular, as miniaturization of electronic parts occurs, it is difficult to apply a plating of uniform thickness for minute parts having a complex shape by electroplating, which has a problem with current distribution uniformity. Consequently, silver plating by electroless is demanded as a new functional material in fields related not only to contact parts but also to optics and semiconductors. Recently, adoption of BGA (Ball Grid Array) type electronic parts and buildup substrate, which can be wired in high density, has increased for use in electronic equipment in which miniaturization and weight-saving are rapidly proceeding. However, buildup substrate tends to increase cost though possible to be wired in a high density compared with a conventional IVH (Interstitial Via Hole) substrate. Moreover, though electroless nickel-phosphorus/gold plating has been conventionally adopted for copper pad of printed wiring substrate to secure reliability of contact point in shielding case, nickel diffuses to surface of gold plating through pinholes, etc., in gold plating layer, and soldering quality deteriorates due to formation of nickel oxide and hydroxide, which causes a decrease in strength of solder bonding part. The adoption of silver plating for printed wiring substrate can solve se problems. Currently, silver plating has been practically applied to main substrate of some models of cellular phones though it is a displacement plating type reaction''. It is considered that its use will expand furr if silver plating by autocatalytic becomes possible in which a predetermined thickness plating can be obtained directly on copper base metal. We have already reported that electroless silver plating bath using an organic nitrogen compound as complexing agent and reducing agent excels in stability and silver film is autocatalytically deposited2'~4'. In this report, possibility of electroless silver plating on copper base metal using this bath was examined, and application of as second reducing agent was examined in order to suppress substitution of silver due to dissolution of copper base metal. 2. Experimental 2. 1 Film thickness, rate, and film appearance The basic bath composition and plating conditions are listed in Table 1. Rolled sheet copper (4 cm2), which was alkaline electrolytically degreased, was used as Table 1 Basic bath composition and plating condition of electroless silver plating.

2 Vol. 52, No.10, 2001 Direct Electroless Silver Plating on Copper Metal from Succinimide Complex Bath Using Imidazole as Reducing Agent 703 substrate, and electroless silver plating was done for a predetermined period. The film thickness and rate were calculated from weight change before and after plating. Surface conditions of deposited film was observed using a scanning electron microscope (JSM-5200 made by Japan Electron Optics Laboratory Co., Ltd. ; hereafter abbreviated SEM). The secondary electron images and reflection electron images were observed at an accelerating voltage of 25 kv, a working distance of 20 mm and a magnification of Determination of dissolved copper and calculation of substitution amount Copper (Cu2++2 e- > Cu, E =0.340 V) metal has a baser potential than silver (Ag++e--> Ag, E =0.799 V), refore, silver due to substitution reaction can be expected to occur on copper base metal. Because film, which was deposited by substitution reaction, has a large possibility to be a film with poor adhesion which causes easy peeling at interface with substrate, it is necessary to suppress substitution as much as possible. In this study,, which is catalytically reacted on copper surface to emit electron5'', was added to basic plating bath as second reducing agent, and effect was examined. Glyoxylic s of predetermined concentrations were individually added to basic plating bath indicated in Table 1. After soaking copper base metal in each plating bath for a predetermined period, copper ion concentrations in plating bath were determined using RF plasma emission spectrophotometer (SPS-7700 made by Seiko Instruments Inc. ; hereafter abbreviated ICP). The amount of silver due to substitution based on following equation was calculated from amount of copper ion dissolved in plating bath, and amount of silver due to autocatalytic reaction was obtained as difference from total amount of. In above calculation, it was assumed, based on electron configuration, that copper ion is oxidized to 2 valence due to various factors at electrode interface though it is supposed to dissolve as a copper ion of 1 valence during first stage. The substitution reaction of silver (2 mol of Ag is deposited by dissolution of 1 mol of Cu2+) due to dissolution of copper is indicated in following equation. Cu -- Cu e- 2 Ag+ + 2 e- --~ 2 Ag 2. 3 Local polarization curve In general, it is necessary to measure rate of metal and hydrogen gas and oxidizing velocities of reducing agent to clarify mechanism of electroless plating. Moreover, reaction of electroless plating is interpreted based on mixed potential ory. The mixed potential ory suggests that plating reaction proceeds at a mixed potential (Emp) where oxidizing rate of reducing agent and reduction rate of metal ion becomes equal'. In this study, a local polarization curve was measured by potentiodynamic method to clarify mechanism of this electroless silver plating and to confirm wher or not mixed potential ory is applicable to this process. The HZ-3000 electrochemical system (made by Hokuto Denko Corporation) was used for measurements at potential scanning rate of 10 mv/s. A silver-plated platinum disc of 2 mm in diameter, embedded in a Teflon folder, was used as working electrode, and silver plating of about 3,um in thickness was done at a cathodic current density of 10 ma/cm2 before each measurement. A platinum wire was used for counter electrode and silver-silver chloride electrode (KC1 3.3 mol/l) was used for reference electrode. The electrode potentials in this study are values based on this reference electrode. The solution, which excluded silver nitrate from basic plating bath composition indicated in Table 1, was used for measurement of local anodic polarization curve. Moreover, local anodic polarization curve in each single solution of imidazole, succinimide, and was measured. In measurement of local cathodic polarization curve, solution that excluded imidazole from basic plating bath composition was examined. Nitrogen gas was aerated through solution for 20 minutes before measurements, and oxygen dissolved in solution was eliminated. 3. Results and discussion 3. 1 Film thickness, rate, and amount of dissolved copper by electroless silver plating on copper metal Figure 1 shows relation between plating time, thickness of obtained silver coating and amount of dissolved copper. The film thickness of silver coating increased as plating time increased. On or hand, amount of copper dissolved in plating bath by substitution reaction linearly increased for three hours after start of plating, and n reached almost a constant value. As a result, it is Fig. 1 Relation between plating time and amount of deposited Ag and dissolved Cu substrate.

3 Technical Paper Fig. 3 Effect of on of Ag. Fig. 2 Effects of bath components and plating conditions on rate. considered that silver in this bath is based on autocatalytic reaction. The rates when various factors were individually changed under condition of plating and basic plating bath composition indicated in Table 1 are shown in Figure 2. The rate of silver increased as concentration of silver nitrate, concentration of imidazole, and bath temperature increased. Moreover, it decreased as concentration of succinimide increased. The rate of silver increased as concentration of imidazole increased, and a continuous was not observed in bath which did not contain imidazole. Consequently, it is considered that imidazole worked as a reducing agent. The effect of ph on rate was remarkable, and rate decreased as ph increased. Moreover, an increase in rate due to an increase in bath temperature was observed. Based on se results, a neutral plating condition and low temperature can be used for electroless silver-plating bath when succinimide is complexing agent, imidazole is reducing agent, and bath composition and plating conditions shown in Table 1 are considered to be optimum Effect of concentration of on amount of dissolved copper and film thickness Glyoxylic of mol/l, mol/l, and mol/l were individually added to basic plating bath indicated in Table 1, and copper base metal was soaked in each plating bath for a predetermined period. The result of examining effect of concentration Fig. 4 Effect of concentration on dissolved Cu substrate. of on amount of deposited silver and dissolved copper is shown in Figures 3 and 4. In Figure 3, effect of concentration of on thickness of obtained silver film is shown, and thickness of silver film obtained from basic plating bath shown in Table 1 is indicated by symbol "0". It is understood that thickness of deposited silver film decreased as concentration of, which was added in basic plating bath, increased. Figure 4 shows effect of concentration of on amount of copper, which was dissolved in plating bath by substitution reaction, amount of copper dissolved from base metal decreased as concentration of increased. Moreover, substitution reaction with copper almost stopped in about three hours after starting plating in basic bath without addition. On or hand, substitution reaction stopped in about

4 Direct Succinimide Vol. 52, No.10, 2001 Electroless Complex Silver Plating on Copper Metal from Bath Using Imidazole as Reducing Agent 705 Oxidation reaction of Glyoxylic on copperr without with Glyoxylic Glyoxylic Fig. 6 Mechanism oxidation metal. bath, Fig. 5 Effect of autocatalytic on of Ag. two hours after starting plating displacement for acceleration reaction On or nucleation of of nucleation with on Cu substrate. hand, in -added by oxidation reaction of on copper base metal simultaneously occurs with nucleation due to substitution reaction as shown in Figure 6. However, it is considered that and generation of silver nucleus caused by occurs rar than nuclear growth of generated silver nucleus, refore, particle size is small, and masking of base metal is completed in a short time. The addition of into basic for mol/l added bath, and in about one hour after starting plating for mol/l and mol/l added baths. Figure 4 shows amount of copper dissolved in basic plating bath and -added bath by substitution reaction with silver. Figure 5 shows amount of silver deposited by autocatalytic reaction, where amount of silver due to substitution is calculated from this amount of dissolved copper measured by ICP method ; this amount is subtracted from total amount of deposited silver. From this figure, it is understood that silver by substitution reaction was suppressed as concentration of increased. Based on this result, decrease in total amount of silver (Figure 3) obtained from baths can be understood : basic plating bath, mol/l -added bath, mol/l -added bath, and mol/l -added bath, is attributed to decrease in amount of substitution. Such an action of is schematically expressed in Figure 6. In bath without, silver particle is deposited on base metal by substitution reaction of copper with silver ion. It is considered that deposited silver particles behave as nucleus during electroless plating reaction, nuclear growth on surface occurs rar than new nucleation on base metal, refore, particle size increases, and more time is required to mask base plating bath causes decrease autocatalytic silver, which decrease in concentration of liberated in rate of can be due to imidazol formed through azomethyne-forming condensation of imide group with aldehyde group of. Moreover, it was confirmed that electroless copper, which used as a reducing agent, from copper ion dissolved into bath by substitution reaction did not occur in neutral range. From se results, it was understood that added as second reducing agent was effective in suppressing substitution of silver Appearance of electroless silver plating film on copper metal Figure 7 shows SEM images that describes effect on initial of silver by adding glyox- ylic, which was added to basic plating bath as second reducing agent in order to suppress substitution of silver. Both are surface conditions of silver plating having a film thickness of about 0.5,um. In silver plating film obtained from basic plating bath, which did not include, silver particles, which were deposited during initial stage, were comparatively large. On or hand, deposited silver particles film obtained from -added 51 in bath

5 Technical Paper Glyoxylic Omol/L Glyoxylic 0.01Omol/L Glyoxylic 0.030mol/L Glyoxylic 0.050rnol/L Fig. 7 Effect on surface morphology of Ag film by adding. Thickness Ag films : 0.5 um became small while increasing concentration of. This is considered to be reason why it did not require time to mask base metal and suppress substitution reaction. Moreover, deposited silver film did not peel off during tape peeling off testing, which indicated excellent adhesion Deposition mechanism Concerning mechanism of electroless silver plating in which succinimide was used as complexing agent and imidazole was used as reducing agent, we have already clarified it in a previous report'". In this study, effect when was used as second reducing agent exerted on behavior of silver was examined by polarization measurements using potentiodynamism. The result is shown in Figure 8. The solution, which excluded silver nitrate, a metal salt, from basic plating bath composition indicated in Table 1 was used for measurement of local anodic polarization curve. Moreover, anodic polarization curves of this solution to which mol/l was added, and mol/l single solution (ph=7 for both solution) were also measured. In measurement of local cathodic polarization curve, solution, which excluded imidazole from basic plating bath composition shown in Table 1, was examined. Curve "e" is anodic polarization curve of single solution, and anodic current flowed in potential range nobler than about -0.2 V. Moreover, an anodic Fig. 8 Anodic polarization and cathodic polarization of Ag electrode at 50 C. Working electrode : disc of 2 mm in diameter

6 Vol. 52, No.10, 2001 Direct Electroless Silver Plating on Copper Metal from Succinimide Complex Bath Using Imidazole as Reducing Agent 707 current flowed from about -0.2 V in anodic polarization curve "f" for solution which contained mol/l in basic plating bath. However, because anodic current at about 0.22 V where mixed potential exists, is almost equal to local anodic polarization curve "a" obtained from basic plating bath, it is considered that anodic current around V of curve "c" is attributed to oxidation reaction of, and anodic current around V is mainly attributed to oxidation reaction of Imidazole. Based on results of Figure 5 and Figure 8, it is elucidated that effect of, which is second reducing agent, on behavior of silver is negligible. The natural electrode potential of silver electrode in basic plating bath to which mol/l had been added was 0.24 V, and it almost coincided with mixed potential obtained from local polarization curves "c" and "d" in Figure 8. Moreover, calculated value of silver rate obtained from current value in this mixed potential almost coincided with actual data of silver rate obtained from this bath. Consequently, it has been determined that mixed potential ory is applicable to this reaction. 4. Conclusion Concerning electroless silver plating from a neutral bath which uses an organic nitrogen compound as complexing agent and reducing agent, plating conditions to deposit silver coating during autocatalytic have been established. The possibility of using a second reducing agent to suppress substitution of silver due to dissolution of copper basis metal was examined. The behavior of silver was electrochemically analyzed by measuring local anodic polarization and local catholic polarization. As a consequence of this study, following results were obtained. 1) The electroless silver plating bath containing succinimide, which is an organic nitrogen compound, as a complexing agent, and Imidazole as a reducing agent, exhibited features that it could be used under neutral and low temperature conditions considering durability of organic resist, and it does not contain cyanide. The silver film was deposited by an autocatalytic reaction from bath, and bath also excelled in stability. Moreover, neir turbidity of plating bath nor abnormal of silver was observed. 2) The silver by substitution reaction with copper could be suppressed by adding as second reducing agent. Moreover, silver film, which was obtained from -added bath, exhibited a dense and smooth surface with excellent adhesion because particle size of deposited silver decreased with an increase in concentration of. 3) The mixed potential obtained from local anodic and cathodic polarization curve in basic plating bath almost coincided with natural electrode potential of silver electrode in plating bath. Moreover, actual silver rate coincided with calculated value of silver rate obtained from current value at mixed potential. From se results, it has been determined that mixed potential ory is applicable for reaction in electroless silver-plating bath used in this study. (Received April 16, 2001; Accepted August 8, 2001) References 1) G. Nakamoto ; Proc. of 9 th Microelectronics Symposium, p. 205 (1999). 2 ) K. Shiroguchi, H. Nawaf une, S. Mizumoto, T. Takeuchi, Y. Kohashi ; Proc. of 14 th JIEP Annual Meeting, p. 241 (2000). 3 ) H. Nawaf une, K. Shiroguchi, S. Mizumoto, Y. Kohashi, K. Obata ; Hyomen Gijyutsu, in press. 4 ) K. Shiroguchi, H. Nawaf une, S. Mizumoto, Y. Kohashi, K. Obata ; Proc. of 103 th Annual Conference of SFJ, p. 163 (2001). 5 ) J. Darken ; PCWCV, B 6/2 (1990). 6 ) H. Honma, M. Komatsu, T. Fujinami ; Hyomen Gijyutsu, 42, 913 (1991). 7 ) M. F. Paunovic ; Plating, 55, 1161(1968).

METAL FINISHING. (As per revised VTU syllabus: )

METAL FINISHING. (As per revised VTU syllabus: ) METAL FINISHING (As per revised VTU syllabus: 2015-16) Definition: It is a process in which a specimen metal (article) is coated with another metal or a polymer in order to modify the surface properties

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

Metallization deposition and etching. Material mainly taken from Campbell, UCCS Metallization deposition and etching Material mainly taken from Campbell, UCCS Application Metallization is back-end processing Metals used are aluminum and copper Mainly involves deposition and etching,

More information

Ultra High Barrier Coatings by PECVD

Ultra High Barrier Coatings by PECVD Society of Vacuum Coaters 2014 Technical Conference Presentation Ultra High Barrier Coatings by PECVD John Madocks & Phong Ngo, General Plasma Inc., 546 E. 25 th Street, Tucson, Arizona, USA Abstract Silicon

More information

EFFECTS OF CURRENT DENSITY ON SIZE AND SURFACE MORPHOLOGY OF HIGH SPEED DIRECT NANO-CRYSTALLINE NICKEL PLATING ON TITANIUM SURFACE

EFFECTS OF CURRENT DENSITY ON SIZE AND SURFACE MORPHOLOGY OF HIGH SPEED DIRECT NANO-CRYSTALLINE NICKEL PLATING ON TITANIUM SURFACE EFFECTS OF CURRENT DENSITY ON SIZE AND SURFACE MORPHOLOGY OF HIGH SPEED DIRECT NANO-CRYSTALLINE NICKEL PLATING ON TITANIUM SURFACE Noor Zaimah 1, Azieyanti Nurain 1 and Sakhawat Hussain 2 1 Department

More information

High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices

High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices Kato et al.: High-Temperature-Resistant Interconnections (1/6) [Technical Paper] High-Temperature-Resistant Interconnections Formed by Using Nickel Micro-plating and Ni Nano-particles for Power Devices

More information

Metallization of MID Dec 2 010

Metallization of MID Dec 2 010 Metallization of MID Dec 2010 Agenda Introduction to Dow Electronic Materials MID Applications & Advantages Dow MID Metallization Processes Plating Equipment Summary Dow Business Structure Where Dow Electronic

More information

Via Filling: Challenges for the Chemistry in the Plating Process

Via Filling: Challenges for the Chemistry in the Plating Process Via Filling: Challenges for the Chemistry in the Plating Process Mike Palazzola Nina Dambrowsky and Stephen Kenny Atotech Deutschland GmbH, Germany Abstract Copper filling of laser drilled blind micro

More information

Corrosion Control and Cathodic Protection Data Sheet

Corrosion Control and Cathodic Protection Data Sheet Data Sheet CORROSION CONTROL Corrosion control is the application of engineering principles and procedures to minimise corrosion to an acceptable level by the most economical method. It is rarely practical

More information

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate 2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate Mighty ships upon the ocean suffer from severe corrosion. Even those that stay at dockside are rapidly becoming oxide Alas, that piling

More information

Corrosion Protect DLC Coating on Steel and Hastelloy

Corrosion Protect DLC Coating on Steel and Hastelloy Materials Transactions, Vol. 49, No. 6 (2008) pp. 1333 to 1337 #2008 The Japan Institute of Metals Corrosion Protect DLC Coating on Steel and Hastelloy Hironobu Miya and Jie Wang Semiconductor Equipment

More information

Optimizing Immersion Silver Chemistries For Copper

Optimizing Immersion Silver Chemistries For Copper Optimizing Immersion Silver Chemistries For Copper Ms Dagmara Charyk, Mr. Tom Tyson, Mr. Eric Stafstrom, Dr. Ron Morrissey, Technic Inc Cranston RI Abstract: Immersion silver chemistry has been promoted

More information

Comparative Study of NiNiP Leadframes from Different Processes

Comparative Study of NiNiP Leadframes from Different Processes Comparative Study of NiNiP Leadframes from Different Processes Wu-Hu Li *1, Jeffrey Khai Huat Low 1, Harry Sax 2, Raymond Solis Cabral 1, Esperidion De Castro Salazar 1, Pauline Min Wee Low 1 1 Infineon

More information

Sealing Mechanism of Anodic Porous Oxide Films Formed on Aluminum in Lithium Hydroxide Solution

Sealing Mechanism of Anodic Porous Oxide Films Formed on Aluminum in Lithium Hydroxide Solution Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 1463-1468 1463 Sealing Mechanism of Anodic Porous

More information

By Ron Blankenhorn, Pac Tech USA, Santa Clara, Calif., and Thomas Oppert, Pac Tech GbmH, Nauen, Germany

By Ron Blankenhorn, Pac Tech USA, Santa Clara, Calif., and Thomas Oppert, Pac Tech GbmH, Nauen, Germany INTRODUCTION Modern microelectronic products require packages that address the driving forces of reduced size and weight, as well as increased performance at high frequencies. Flipchip and direct chip

More information

Etching Mask Properties of Diamond-Like Carbon Films

Etching Mask Properties of Diamond-Like Carbon Films N. New Nawachi Diamond et al. and Frontier Carbon Technology 13 Vol. 15, No. 1 2005 MYU Tokyo NDFCT 470 Etching Mask Properties of Diamond-Like Carbon Films Norio Nawachi *, Akira Yamamoto, Takahiro Tsutsumoto

More information

Effectiveness of Conformal Coat to Prevent Corrosion of Nickel-palladium-goldfinished

Effectiveness of Conformal Coat to Prevent Corrosion of Nickel-palladium-goldfinished As originally published in the IPC APEX EXPO Conference Proceedings. Effectiveness of Conformal Coat to Prevent Corrosion of Nickel-palladium-goldfinished Terminals Michael Osterman Center for Advanced

More information

Direct nano-crystalline Ni plating on titanium surfaces

Direct nano-crystalline Ni plating on titanium surfaces Direct nano-crystalline Ni plating on titanium surfaces Dr Mohammad Sakhawat Hussain PhD (Aston) FIMF FIMMM CEng Department of Materials Engineering Faculty of Mechanical Engineering Universiti Teknologi

More information

Offshore Wind Turbines Power Electronics Design and Reliability Research

Offshore Wind Turbines Power Electronics Design and Reliability Research Offshore Wind Turbines Power Electronics Design and Reliability Research F. P. McCluskey CALCE/Dept. Of Mechanical Engineering University of Maryland, College Park, MD (301) 405-0279 mcclupa@umd.edu 1

More information

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance

Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance Using Argon Plasma to Remove Fluorine, Organic and Metal Oxide Contamination for Improved Wire Bonding Performance Scott D. Szymanski March Plasma Systems Concord, California, U.S.A. sszymanski@marchplasma.com

More information

Surface Morphology and Characteristics of Electroplated Au/Ni Films for Connector Contact Materials

Surface Morphology and Characteristics of Electroplated Au/Ni Films for Connector Contact Materials Transactions of The Japan Institute of Electronics Packaging Vol. 6, No. 1, 2013 [Technical Paper] Surface Morphology and Characteristics of Electroplated Au/ Films for Connector Contact Materials Yoshiyuki

More information

FORMATION OF TiO 2 THIN FILM BY ION-BEAM-MIXING METHOD AND ITS APPLICATION AS THE CORROSION PROTECTING FILM

FORMATION OF TiO 2 THIN FILM BY ION-BEAM-MIXING METHOD AND ITS APPLICATION AS THE CORROSION PROTECTING FILM ORAL REFERENCE:ICF100266OR FORMATION OF TiO 2 THIN FILM BY ION-BEAM-MIXING METHOD AND ITS APPLICATION AS THE CORROSION PROTECTING FILM Yuji KIMURA 1 and Hirotsugu SAITO 1 1 Dept. of Materials Science and

More information

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives

Distribution Review. Corrosion Control. Corrosion Control Vocabulary. American Water College 1. Corrosion Control Training Objectives Distribution Review Corrosion Control Corrosion Control Training Objectives To gain an understanding of: Corrosion control vocabulary The factors affecting corrosion Methods used to control corrosion Alkalinity

More information

THE INFLUENCE OF ANODISING PARAMETERS ON THE CORROSION PERFORMANCE OF ANODISED COATINGS ON MAGNESIUM ALLOY AZ91D

THE INFLUENCE OF ANODISING PARAMETERS ON THE CORROSION PERFORMANCE OF ANODISED COATINGS ON MAGNESIUM ALLOY AZ91D THE INFLUENCE OF ANODISING PARAMETERS ON THE CORROSION PERFORMANCE OF ANODISED COATINGS ON MAGNESIUM ALLOY AZ91D Zhiming Shi, Guangling Song, and Andrej Atrens (CRC for Cast Metals Manufacturing (CAST),

More information

Galvanic corrosion evaluation of 6061 aluminum coupled to CVD coated stainless steel Elizabeth Sikora and Barbara Shaw 6/9/2016

Galvanic corrosion evaluation of 6061 aluminum coupled to CVD coated stainless steel Elizabeth Sikora and Barbara Shaw 6/9/2016 SHAW AND ASSOCIATES CONSULTING Galvanic corrosion evaluation of 6061 aluminum coupled to CVD coated stainless steel Elizabeth Sikora and Barbara Shaw 6/9/2016 Evaluation of galvanic corrosion of aluminum

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

Assignments. 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water.

Assignments. 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water. Assignments 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water. 2. Construct the Eh ph diagram for the Zn H 2 O O 2 system

More information

Electricity and Chemistry

Electricity and Chemistry Electricity and Chemistry Electrochemistry: It is a branch of chemistry that deals with the reactions involving the conversion of chemical energy into electrical energy and vice-versa. Electrochemical

More information

Influence of an Immersion Gold Plating Layer on Reliability of a Lead-Free Solder Joint

Influence of an Immersion Gold Plating Layer on Reliability of a Lead-Free Solder Joint Materials Transactions, Vol. 46, No. 12 (2005) pp. 2725 to 2729 Special Issue on Growth of Ecomaterials as a Key to Eco-Society II #2005 The Japan Institute of Metals Influence of an Immersion Gold Plating

More information

!"#$#%&#'(() ) **+,-./01)2-,-.3)456,1) /0! **)

!#$#%&#'(() ) **+,-./01)2-,-.3)456,1) /0! **) !"#$#%&#'(() ) **+,-./01)2-,-.3)456,1) /0!7.5853-09**) Etching Removal of unwanted or non-circuit copper from board Etch resists organic and metallic resists photoresist tin, gold, nickel, silver and alloys

More information

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes

Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Ultra Fine Pitch Bumping Using e-ni/au and Sn Lift-Off Processes Andrew Strandjord, Thorsten Teutsch, and Jing Li Pac Tech USA Packaging Technologies, Inc. Santa Clara, CA USA 95050 Thomas Oppert, and

More information

ELECTROCHEMISTRY: ELECTROPLATING

ELECTROCHEMISTRY: ELECTROPLATING ELECTROCHEMISTRY: ELECTROPLATING Hello, I m Hafizah, a chemistry teacher from Muar Science School in Malaysia. We are going to discuss about an interesting chemistry topic related to electroplating but

More information

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology

High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source Technology General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 High Rate Deposition of Reactive Oxide Coatings by New Plasma Enhanced Chemical Vapor Deposition Source

More information

ScienceDirect. Formation of Cu and Ni Nanowires by Electrodeposition

ScienceDirect. Formation of Cu and Ni Nanowires by Electrodeposition Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 8 (2015 ) 617 622 International Congress of Science and Technology of Metallurgy and Materials, SAM - CONAMET 2013 Formation

More information

FABRICATION FOR MICRO PATTERNS OF NICKEL MATRIX DIAMOND COMPOSITES USING THE COMPOSITE ELECTROFORMING AND UV- LITHOGRAPHY

FABRICATION FOR MICRO PATTERNS OF NICKEL MATRIX DIAMOND COMPOSITES USING THE COMPOSITE ELECTROFORMING AND UV- LITHOGRAPHY 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FABRICATION FOR MICRO PATTERNS OF NICKEL MATRIX DIAMOND COMPOSITES USING THE COMPOSITE ELECTROFORMING AND UV- LITHOGRAPHY Tsung-Han Yu, Shenq-Yih Luo,

More information

What is Electroplating?

What is Electroplating? Electroplating 1 What is Electroplating? An electrochemical process where metal ions are transferred from a solution and are deposited as a thin layer onto surface of a cathode. The setup is composed DC

More information

Effect of Zincate Treatment on Adhesion of Electroless Ni-P Coating onto Various Aluminum Alloys* 1

Effect of Zincate Treatment on Adhesion of Electroless Ni-P Coating onto Various Aluminum Alloys* 1 Materials Transactions, Vol. 50, No. 9 (2009) pp. 2235 to 2241 #2009 The Japan Institute of Light s Effect of Zincate Treatment on Adhesion of Electroless Ni-P Coating onto Various Aluminum Alloys* 1 Makoto

More information

Desorption of Hydrogen from Palladium Plating

Desorption of Hydrogen from Palladium Plating Desorption of Hydrogen from Palladium Plating I-yuan Wei Jerry Brewer AMP Incorporated ABSTRACT Desorption of co-deposited hydrogen from Pd and Pd alloy platings may cause micro-cracking. The desorption

More information

Electroplating. Copyright 2016 Industrial Metallurgists, LLC

Electroplating. Copyright 2016 Industrial Metallurgists, LLC Electroplating Northbrook, IL 847.528.3467 www.imetllc.com Copyright 2016 Industrial Metallurgists, LLC Course content 1. Process Steps (75 minutes) 2. Properties, Defects, and Evaluation (60 minutes)

More information

The Deposition Characteristics of Accelerated Nonformaldehyde Electroless Copper Plating

The Deposition Characteristics of Accelerated Nonformaldehyde Electroless Copper Plating C558 Journal of The Electrochemical Society, 15 8 C558-C562 23 13-4651/23/15 8 /C558/5/$7. The Electrochemical Society, Inc. The Deposition Characteristics of Accelerated Nonformaldehyde Electroless Copper

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

CORROSION PROPERTIES OF CERMET COATINGS SPRAYED BY HIGH-VELOCITY OXYGEN-FUEL. Dragos UŢU, Iosif HULKA, Viorel-Aurel ŞERBAN, Hannelore FILIPESCU

CORROSION PROPERTIES OF CERMET COATINGS SPRAYED BY HIGH-VELOCITY OXYGEN-FUEL. Dragos UŢU, Iosif HULKA, Viorel-Aurel ŞERBAN, Hannelore FILIPESCU Abstract CORROSION PROPERTIES OF CERMET COATINGS SPRAYED BY HIGH-VELOCITY OXYGEN-FUEL Dragos UŢU, Iosif HULKA, Viorel-Aurel ŞERBAN, Hannelore FILIPESCU Politehnica University of Timisoara, Romania, dragosutu@yahoo.com,

More information

2015 IEEE. REPRINTED, WITH PERMISSION, FROM Next Generation Metallization Technique for IC Package Application

2015 IEEE. REPRINTED, WITH PERMISSION, FROM Next Generation Metallization Technique for IC Package Application 2015 IEEE. REPRINTED, WITH PERMISSION, FROM Next Generation Metallization Technique for IC Package pplication Yoshiyuki Hakiri, Katsuhiro Yoshida, Shenghua Li, Makoto Kondoh, Shinjiro Hayashi The Dow Chemical

More information

CHAPTER 3 DEVELOPMENT OF ELECTROPLATING SETUP FOR PLATING ABS AND POLYAMIDES

CHAPTER 3 DEVELOPMENT OF ELECTROPLATING SETUP FOR PLATING ABS AND POLYAMIDES 82 CHAPTER 3 DEVELOPMENT OF ELECTROPLATING SETUP FOR PLATING ABS AND POLYAMIDES 3.1 BACKGROUND OF ELECTROPLATING 83 3.2 DETAILS OF THE DEVELOPMENT OF ELECTROPLATING SETUP 83 3.2.1 Polypropylene Tank for

More information

Ag Plating and Its Impact on Void-Free Ag/Sn Bumping

Ag Plating and Its Impact on Void-Free Ag/Sn Bumping Ag Plating and Its Impact on Void-Free Ag/Sn Bumping Hirokazu Ezawa, Kazuhito Higuchi, Msaharu Seto, Takashi Togasaki, Sachiko Takeda* and Rei Kiumi* Toshiba Corporation Semiconductor Company Advanced

More information

Hard Gold Plating vs Soft Gold Plating Which is Right for My Application? By: Matt Lindstedt, Advanced Plating Technologies

Hard Gold Plating vs Soft Gold Plating Which is Right for My Application? By: Matt Lindstedt, Advanced Plating Technologies Hard Gold Plating vs Soft Gold Plating Which is Right for My Application? By: Matt Lindstedt, Advanced Plating Technologies When specifying gold plating for an application, the question of hard gold plating

More information

Studies on Atmospheric Non-Thermal Plasma Jet Device

Studies on Atmospheric Non-Thermal Plasma Jet Device Int. J. New. Hor. Phys. 3, No. 1, 1-6 (2016) 1 International Journal of New Horizons in Physics http://dx.doi.org/10.18576/ijnhp/030101 Studies on Atmospheric Non-Thermal Plasma Jet Device H. A. El-sayed*,

More information

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES.

UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. SESSION 14 MATERIALS AND PROCESSES FOR ADVANCED PACKAGING UTILIZATION OF ATMOSPHERIC PLASMA SURFACE PREPARATION TO IMPROVE COPPER PLATING PROCESSES. Eric Schulte 1, Gilbert Lecarpentier 2 SETNA Corporation

More information

Effect of Anodizing Potential on the Surface Morphology and Corrosion Property of AZ31 Magnesium Alloy

Effect of Anodizing Potential on the Surface Morphology and Corrosion Property of AZ31 Magnesium Alloy Materials Transactions, Vol. 51, No. 6 (21) pp. 119 to 1113 #21 The Japan Institute of Metals Effect of Anodizing Potential on the Surface Morphology and Corrosion Property of AZ31 Magnesium Alloy S. A.

More information

Electroplating, Anodizing & Metal Treatment Hand Book

Electroplating, Anodizing & Metal Treatment Hand Book Electroplating, Anodizing & Metal Treatment Hand Book Author: NPCS Board of Consultants & Engineers Format: Paperback ISBN: 9788178331386 Code: NI63 Pages: 720 Price: Rs. 1,475.00 US$ 150.00 Publisher:

More information

Introduction. 1. Sputtering process, target materials and their applications

Introduction. 1. Sputtering process, target materials and their applications Sputtering is widely used in the production of electronic devices such as liquid crystal displays (LCDs), optical media, magnetic media and semiconductors. The Kobelco Research Institute, Inc. has been

More information

Galvanic Corrosion Prevention Guide for Water Cooling Systems

Galvanic Corrosion Prevention Guide for Water Cooling Systems WATER COOLED DEVICES Galvanic Corrosion Prevention Guide for Water Cooling Systems November 2017 White Paper Created by Helen E. Kane, Advanced Energy Industries, Inc. Water Cooled Devices Abstract This

More information

Electrodeposition of Palladium Coatings from Iminodiacetate Electrolyte

Electrodeposition of Palladium Coatings from Iminodiacetate Electrolyte American Journal of Analytical Chemistry, 2013, 4, 642-646 Published Online November 2013 (http://www.scirp.org/journal/ajac) http://dx.doi.org/10.4236/ajac.2013.411076 Electrodeposition of Palladium Coatings

More information

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4,

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Bi 2 WO 6 and Bi 2 Mo 3 O 12, Using Dendritic Bi Metal Electrodes Donghyeon Kang, a, Yiseul Park, a, James C. Hill, b and Kyoung-Shin Choi a,*

More information

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT Yasushi Katayama Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1, Hiyoshi,

More information

Chapter 3. Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode

Chapter 3. Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode Chapter 3 Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode 3. Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode In order to combat the drawbacks

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

OPTIMIZED SEMI-ADDITIVE PROCESS FOR POLYIMIDE AS DIELECTRIC IN BUILD UP PACKAGES

OPTIMIZED SEMI-ADDITIVE PROCESS FOR POLYIMIDE AS DIELECTRIC IN BUILD UP PACKAGES OPTIMIZED SEMI-ADDITIVE PROCESS FOR POLYIMIDE AS DIELECTRIC IN BUILD UP PACKAGES Fei Peng 1, Ernest Long 1, Jim Watkowski 1, Kesheng Feng 1, Naomi Ando 2, Kazuhiro Inazu 2 1 MacDermid, 227 Freight St,

More information

Development of microsensors for chloride concentration in concrete

Development of microsensors for chloride concentration in concrete Development of microsensors for chloride concentration in concrete Feifei Cao and David W. Greve Department of Electrical and Computer Engineering Carnegie Mellon University, Pittsburgh, PA 15213 I.J.

More information

Korkealämpötilaprosessit

Korkealämpötilaprosessit Korkealämpötilaprosessit Pyrometallurgiset jalostusprosessit Lisäaineisto sulkeumien analysoinnista Inclusion analyses Many inclusions are not found until they cause problems in the final product - Reclamations

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Role of polyethyleneimine as an additive in cyanide-free electrolytes

More information

Titanium-Aluminum Oxide Coating on Aluminized Steel Fuyan Sun, Guang Wang, Xueyuan Nie

Titanium-Aluminum Oxide Coating on Aluminized Steel Fuyan Sun, Guang Wang, Xueyuan Nie Titanium-Aluminum Oxide Coating on Aluminized Steel Fuyan Sun, Guang Wang, Xueyuan Nie Abstract In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating

More information

Electrode Product Application. Japan Carlit Co.,Ltd 8 June 2015

Electrode Product Application. Japan Carlit Co.,Ltd 8 June 2015 Electrode Product Application Japan Carlit Co.,Ltd 8 June 2015 1 1 Electrode Application A Plate The electrode consists of a titanium substrate which is coated with platinum group metals oxides We can

More information

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected Corrosion of platinum (Pt) in HCl Now if we place a piece of Pt in HCl, what will happen? Pt does not corrode does not take part in the electrochemical reaction Pt is a noble metal Pt acts as a reference

More information

How to achieve uniform thickness of the anodic aluminum oxide film? Leonid M. Lerner AlZi Anodizing Solutions Co.

How to achieve uniform thickness of the anodic aluminum oxide film? Leonid M. Lerner AlZi Anodizing Solutions Co. How to achieve uniform thickness of the anodic aluminum oxide film? Leonid M. Lerner AlZi Anodizing Solutions Co. 2014 AAC Conference September 16-18, Pittsburgh, PA, USA. 1 How to achieve uniform thickness

More information

WHITE PAPER. Introduction to Electroforming

WHITE PAPER. Introduction to Electroforming WHITE PAPER Introduction to Electroforming Table of Contents 2 2 3 5 Introduction What is electroforming? The electroforming process Modern applications of electroforming Introduction to Electrofarming

More information

National Physical Laboratory Hampton Road Teddington Middlesex United Kingdom TW11 0LW

National Physical Laboratory Hampton Road Teddington Middlesex United Kingdom TW11 0LW NPL REPORT MAT 1 Susceptibility of Lead-Free Systems to Electrochemical Migration Ling Zou and Chris Hunt NOT RESTRICTED May 200 National Physical Laboratory Hampton Road Teddington Middlesex United Kingdom

More information

EFFECT OF COPPER AND COPPER OXIDE ON CORROSION OF BOILER STEEL

EFFECT OF COPPER AND COPPER OXIDE ON CORROSION OF BOILER STEEL 06 koperoxide www.hbscc.nl - 1 - EFFECT OF COPPER AND COPPER OXIDE ON CORROSION OF BOILER STEEL W.M.M. HUIJBREGTS Mitteilungen der V.G.B., Vol. 51, No.3, pp. 229-235, June 1971 ABSTRACT Electrochemical

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Available online at  ScienceDirect. Procedia Engineering 81 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (214 ) 1927 1932 11th International Conference on Technology of Plasticity, ICTP 214, 19-24 October 214, Nagoya Congress

More information

Arch. Metall. Mater. 62 (2017), 2B,

Arch. Metall. Mater. 62 (2017), 2B, Arch. Metall. Mater. 62 (2017), 2B, 1225-1229 DOI: 10.1515/amm-2017-0182 S.S. KIM*, I. SON* #, K.T. KIM** EFFECT OF ELECTROLESS Ni P PLATING ON THE BONDING STRENGTH OF Bi Te-BASED THERMOELECTRIC MODULES

More information

Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy -

Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy - Cu Wiring Process for TFTs - Improved Hydrogen Plasma Resistance with a New Cu Alloy - Masanori Shirai*, Satoru Takazawa*, Satoru Ishibashi*, Tadashi Masuda* As flat-screen TVs become larger and their

More information

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering

WF6317. A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering WF637 A superactive low-volatile/high heat-resistant water-soluble flux for ball soldering Low viscosity and high tacking power stabilize ball holding force and ensures excellent solder wettability Easy

More information

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015 LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS Dr. Saad Ahmed XENON Corporation November 19, 2015 Topics Introduction to Pulsed Light Photonic sintering for Printed Electronics R&D Tools for

More information

SUB-MICROMETER ORDER CORROSION OF SILVER BY SULFUR VAPOR IN AIR STUDIED BY MEANS OF QUARTZ CRYSTAL MICROBALANCE

SUB-MICROMETER ORDER CORROSION OF SILVER BY SULFUR VAPOR IN AIR STUDIED BY MEANS OF QUARTZ CRYSTAL MICROBALANCE 16th International Corrosion Congress September 19-24,, Beijing, China SUB-MICROMETER ORDER CORROSION OF SILVER BY SULFUR VAPOR IN AIR STUDIED BY MEANS OF QUARTZ CRYSTAL MICROBALANCE *Jun ichi SAKAI 1,

More information

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Oxygen Evolution Reaction

More information

Sacrificial Corrosion Protection Ability of Aluminum Alloys for Automobile Heat Exchangers

Sacrificial Corrosion Protection Ability of Aluminum Alloys for Automobile Heat Exchangers Sacrificial Corrosion Protection Ability of Aluminum Alloys for Automobile Heat Exchangers by Yoshiaki Ogiwara * and Kouji Okada * Aluminum is widely used in automobile heat exchangers in order to decrease

More information

Development of System in Package

Development of System in Package Development of System in Package In recent years, there has been a demand to offer increasingly enhanced performance for a SiP that implements downsized and lower-profile chips at lower cost. This article

More information

Sn Cu Alloy Electrodeposition and Its Connecting Reliability for Automotive Connectors* 1

Sn Cu Alloy Electrodeposition and Its Connecting Reliability for Automotive Connectors* 1 Materials Transactions, Vol. 52, No. 6 (2) pp. 237 to 23 #2 The Japan Institute of Metals Sn Cu Alloy Electrodeposition and Its Connecting Reliability for Automotive Connectors* Hiroaki Nakano, Satoshi

More information

Corrosion Rate Measurement on C-Steel

Corrosion Rate Measurement on C-Steel Measurements of corrosion rate on Carbon-steel using Electrochemical (potentiodynamic Polarization, EIS etc.) technique. Corrosion Rate Measurement on C-Steel Abdullah Al Ashraf 1. Introduction: The degradation

More information

Characteristics and Applications of High Corrosion Resistant Titanium Alloys

Characteristics and Applications of High Corrosion Resistant Titanium Alloys Technical Report UDC 669. 295. 018. 8 Characteristics and Applications of High Corrosion Resistant Titanium Alloys Hideya KAMINAKA* Satoshi MATSUMOTO Hiroshi KAMIO Masaru ABE Kinichi KIMURA Abstract In

More information

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications

Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Lead-Free Solder Bump Technologies for Flip-Chip Packaging Applications Zaheed S. Karim 1 and Jim Martin 2 1 Advanced Interconnect Technology Ltd. 1901 Sunley Centre, 9 Wing Yin Street, Tsuen Wan, Hong

More information

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon Chapter 5 Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon 5.1 Introduction In this chapter, we discuss a method of metallic bonding between two deposited silver layers. A diffusion

More information

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES

PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES 10.1149/1.2794473, The Electrochemical Society PARAMETER EFFECTS FOR THE GROWTH OF THIN POROUS ANODIC ALUMINUM OXIDES S. Yim a, C. Bonhôte b, J. Lille b, and T. Wu b a Dept. of Chem. and Mat. Engr., San

More information

Electrodes: »3 types. Types: Micro electrode Depth & needle electrodes Surface electrodes

Electrodes: »3 types. Types: Micro electrode Depth & needle electrodes Surface electrodes Electrodes: Types:»3 types Micro electrode Depth & needle electrodes Surface electrodes Micro electrodes: Intra cellular electrodes Used to measure the potential near or within cell Features: Types: Smaller

More information

What is Electrochemical Migration Dendrite Shorting of Electronic Circuits?

What is Electrochemical Migration Dendrite Shorting of Electronic Circuits? What is Electrochemical Migration Dendrite Shorting of Electronic Circuits? By Terry Munson, Foresite Inc. www.foresiteinc.com Dendrite shorting of electrical circuits are metal ions plating in a linear

More information

Guideline for Prevention of Damage in Water Heating Installations

Guideline for Prevention of Damage in Water Heating Installations VDI 2035, Part 2 Guideline for Prevention of Damage in Water Heating Installations Original document published by the Society of German Engineers Summary by Elysator Engineering AG 1. Preliminary Remarks

More information

Performance Evaluation of Zinc Deposited Mild Steel in Chloride Medium.

Performance Evaluation of Zinc Deposited Mild Steel in Chloride Medium. Int. J. Electrochem. Sci., 6 (2011) 3254-3263 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Performance Evaluation of Zinc Deposited Mild Steel in Chloride Medium. Popoola A.P.I

More information

NASF SURFACE TECHNOLOGY WHITE PAPERS 80 (7), 1-8 (April 2016) 10th Quarterly Report April - June 2015 AESF Research Project #R-117

NASF SURFACE TECHNOLOGY WHITE PAPERS 80 (7), 1-8 (April 2016) 10th Quarterly Report April - June 2015 AESF Research Project #R-117 10th Quarterly Report April - June 2015 AESF Research Project #R-117 Electrodeposition of Ni-Fe-Mo-W Alloys by Prof. E.J. Podlaha-Murphy, * and A. Kola Northeastern University Boston, Massachusetts, USA

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

Evaluating the CAF (conductive anodic filament)

Evaluating the CAF (conductive anodic filament) Technology report Evaluating the CAF (conductive anodic filament) resistance of multi-layered PWBs Akiko Kobayashi, Yuichi Aoki, Keiko To Headquarters ESPEC Corp. Technical Development A dvances in the

More information

a: potential difference before direct current is applied b: potential difference after the application of current

a: potential difference before direct current is applied b: potential difference after the application of current CATHODIC PROTECTION Cathodic protection is a proven corrosion control method for protection of underground and undersea metallic structures, such as oil and gas pipelines, cables, utility lines and structural

More information

TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION. S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin

TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION. S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin TIN-BASED LEAD-FREE SOLDER BUMPS FOR FLIP-CHIP APPLICATION S. Yaakup, H. S. Zakaria, M. A. Hashim and A. Isnin Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim

More information

The Leader in Oilfield Coating Technology ISO 9001:2008.

The Leader in Oilfield Coating Technology ISO 9001:2008. The Leader in Oilfield Coating Technology ISO 9001:2008 www.ssplating.com Who We Are S&S Plating/Coating Dynamics is the leading provider of electro plated coatings to the oilfield, power generation and

More information

Laboratory Experiments in Corrosion Engineering II

Laboratory Experiments in Corrosion Engineering II Lecture - 40 Laboratory Experiments in Corrosion Engineering II Keywords: Polarization Experiments, Pitting Potentials, Microbial Corrosion. A. Electrochemical tests in a given environment Polarization

More information

06. Electroplating Industry

06. Electroplating Industry PRTR Estimation Manual 06. Electroplating Industry January 2001 Revised: March 2002 Federation of Electro Plating Industry Association, Japan Contents 1. Class I Designated Chemical Substances (Referred

More information

The Role Of Electroplates In Contact Reliability

The Role Of Electroplates In Contact Reliability The Role Of Electroplates In Contact Reliability W.H. Abbott Battelle-Columbus Abbott@battelle.org 10/24/02 1 Overview Electroplating Is A Process; i.e. It Should Not Be Viewed As Simply A Material The

More information

ELECTROCHEMICAL SYNTHESIS OF POLYPYRROLE (PPy) and PPy METAL COMPOSITES ON COPPER and INVESTIGATION OF THEIR ANTICORROSIVE PROPERTIES

ELECTROCHEMICAL SYNTHESIS OF POLYPYRROLE (PPy) and PPy METAL COMPOSITES ON COPPER and INVESTIGATION OF THEIR ANTICORROSIVE PROPERTIES ELECTROCHEMICAL SYNTHESIS OF POLYPYRROLE (PPy) and PPy METAL COMPOSITES ON COPPER and INVESTIGATION OF THEIR ANTICORROSIVE PROPERTIES Sibel Zor, Hatice Özkazanç Kocaeli University, Department of Chemistry,

More information

Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate

Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate , July 6-8, 2011, London, U.K. Interfacial Reactions between the Sn-9Zn Solder and Au/Ni/SUS304 Multi-layer Substrate *Yee-Wen Yen 1, Chien-Chung Jao 2, Kuo-Sing Chao 1, Shu-Mei Fu Abstract Sn-9Zn lead-free

More information

Chips Face-up Panelization Approach For Fan-out Packaging

Chips Face-up Panelization Approach For Fan-out Packaging Chips Face-up Panelization Approach For Fan-out Packaging Oct. 15, 2015 B. Rogers, D. Sanchez, C. Bishop, C. Sandstrom, C. Scanlan, TOlson T. REV A Background on FOWLP Fan-Out Wafer Level Packaging o Chips

More information

IRON CARBONATE SCALE GROWTH AND THE EFFECT OF INHIBITION IN CO 2 CORROSION OF MILD STEEL

IRON CARBONATE SCALE GROWTH AND THE EFFECT OF INHIBITION IN CO 2 CORROSION OF MILD STEEL IRON CARBONATE SCALE GROWTH AND THE EFFECT OF INHIBITION IN CO 2 CORROSION OF MILD STEEL Kunal Chokshi, Wei Sun, Srdjan Nesic Institute for Corrosion and Multiphase Technology, Ohio University 342 West

More information